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Abstract. We have developed Non-Abelian gauge $oups for real and complex
amended Ma:<well's equations in a complex 8-Dimensional Minkowski space to
describe nonlocality in quantum theory and relativity which has quantum gravitational
implications. We demonstrate a mapping between the twistor algebra of the complex
8-space and the spinor calculus of 5D Kaluza-Klein geomeûry which attempts to unifu
Gravitational and EM theory. ûur quantum formalism demonstrates that solving the
Schriidinger equation in a complex 8D geometry yields coherent collective state
phenomena with soliton wave solutions. The model shows that standard quantum
theory is a linear approximation to a higher Dimensional complex space. Through
this formalism we can assess that complex systems can be defined within
conventional quantum theory as long as we express that theory in a hyper-geometric
space. We utilize our complex dimensional geometry to formulate nonlocal
correlated phenomena, including the quantum description of the 1935 EPR paradox
formulated with Bell's theorsrn. Tests by Clauser, Aspect, Gisin have demonstrated
that particles emitted with approximde sirnultaneity at c remain correlated nonlocally
over meter and kilometer distances. As Stapp has said, Bell's theorem and its
experimental verification is one of the most profound discoveries of the 20th century.'We 

will dernonstrate the application of our formalism for complex systems and
rcview the history of our rnodel from 1974.
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l. Introduction

We have analyzed, calculated and extended the modification of Maxwell's equations
in a complex Minkowski metric, lvla in a C2 space using the SU2 gauge, SL(2,c) and
other gauge groups, such as SU, for n> 2 expanding the U1 gauge theories of Weyl.
This work yields additional predictions beyond the electroweak unification scheme.
Some of these are: l) modified gauge invariant conditions, 2) short range non-Abelian
force terms and Abelian long range force terms in Maxwell's equations, 3) finite but
small rest mass of the photon, and 4) a magnetic monopole like term and 5)
longitudinal as well as transverse magnetic and electromagnetic field components in a
complex Minkowski metric lvt in a C, space.
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This is an 8D complex Minkowski space IvIa (1) composed of four real and
four imaginary dimensions consistent with Lorentz invariance and analytic
continuation in the complex plane [l]. The unique feature of this geometry is that it
admits nonlocality consistent with Bell's theorem, (EPR paradox), possibly Young's
double slit experiment, the Aharonov Bohm effect and multi mirrored
interferometri c experiment.

Additionally, expressing Maxwell's electromagnetic equations in complex
eight space, leads to some new and interesting predictions in physics, including
possible detailed explanation of some of the previously mentioned nonlocality
experiments [2]. Complexification of Maxwell's equations require a non-Abelian
gauge group which amend the usual theory, which utilizes the usual unimodular Weyl
U1 group. We have examined the modification of gauge conditions using higher
symmetry groups such as SUz, SU" and other groups such as the SL(2,c) double cover
group of the rotational group SO(3,1) related to Shipov's Ricci curvature tensor [3]
and a possible neo-aether picture. Thus we are led to new and interesting physics
involving extended metrical space constraints, the usual trarrsverse and also
longitudinal, non Hertzian electric and magnetic field solutions to Maxwell"s
equations, possibly leading to new communication systems and antennae theory, non
zero solutions to V . F , and a possible finite but small rest mass of the photon.
Comparison of our theoretical approach is made to the work of J. P. Vigier, [4] T.W.
Barrett [5] and H.F. Harmuth's [6] work on amended Maxwell's theory. W'e compare
our predictions such as our longitudinal field to the B(3)term of Vigier, and our Non-
Abelian gauge groups to that of Barrett and Harmuth. This author interprets this work
as leading to new and interesting physics, including a possible reinterpretation of a
neo-aether with nonlocal information transmission properties.

2. Complexified EMFields In Mr Minkowski Space And Nonlocality

We expand the usual line element metric fls2 = grytdr" drp in the following manner.
We consider a complex eight dimensional space, I\,f4 constructed so that Z"
=.tr'*"*;;* andlikewise for Z'wheretheindices v and p run l to4yielding (1,

l, l, -1). Hence, we now have a new complex eight space metric as ds2 =r1uodZ'dZp .
'We 

have developed this space and other extended complex spaces (l) and examined
their relationship with the twister algebras and asymptotic twister space and the spinor
calculus and other implications of the theory [7]. The Penrose twister SU(2,2) or Uc
is constructed from four space - time, Uz@t2 where Uz is the real part of the space

and Û, is the imaginary paft of the space, this metric appears to be a fruitful area to
explore.

The twister Z canbe a pair of spinors UA and an which are said to represent
the twister. The condition for these representations are l) the null infinity condition
for a zero spin field is 2ts7 u = 0, 2) conformal invariance and 3) independence of the
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origin. The fwister is derived from the imaginary part of the spinor field. The
underlying concept of twister theory is that of conformally invariance fields occupy a
fundamental role in physics and may yield some new physics. Since the twister
algebra falls naturally out complex space.

Other researcher have examined complex dimensional Minkowski spaces. In
reference [0], Newman demonstrates that lrzla space do not generate any major
"weird physics" or anomalous physics predictions and is consistent with an expanded
or amended special and general relativity. [n fact the Kerr metric falls naturally out of
this formalism as demonstrated by Newman [11].

As we know twisters and spinors are related by the general Lorentz conditions
in such a manner that all signals are luminal in the usual four N Minkowski space but
this does not preclude super or trans luminal signals in spaces where N > 4. Stapp, for
example, has interpreted the Bell's theorem experimental results in terms of trans
luminal signals to address the nonlocality issue of the Clauser, et. al and Aspect
experiments. C.N. Kozameh and E.T. Newman demonstrate the role of non local
fields in complex eight space [6].

We believe that there are some very interesting properties of the IvIa space
which include the nonlocality properties of the metric applicable in the non-Abilian
algebras related to the quantum theory and the conformal invariance in relativity as
well as new properties of Maxwell's equations. [n addition, complexification of
Maxwell's equations in lvla space yields some interesting predictions, yet we find the
usual conditions on the manifold hold [2,8]. Some of these new predictions come out
of the complexification of four space 2 and appear to relate to the work of Vigier,
Barrett, Harmuth and others ï4,5,6). Also we find that the twister algebra of the
complex eight dimensional, lvla qpace is mapable I to I with the twister algebra, C2
space of the Kaluza-Klein five dimensional electromagnetic - gravitational metric [l7,
1 81.

Some of the predictions of the complexified forrn of Maxwell's equations are
l) a finite but small rest mass of the photon, 2) a possible rragnetic monopol,e,
Y ' f * 0, 3) transverse as well as longitudinal B(3) like components of E and B_, 4)

new extended gauge invariance conditons to include non-Abelian algebras and 5) an
inherent fundamental nonlocality property on the manifold. Vigier also explores
longitudinal E and B components in detôil and finite rest mass of the photon [19].

We consider both the elecric and magnetic fields to be complexified as

E= E ̂ " + iLm and B = !n" * ip,^ for Es",El.,Bs" and 8,. are real quantities. Then
substitution of these two equations into the complex form of Maxwell's equations
above yields, upon separation of real and imaginary parts, two sets of Maxwell-like
equations. The first set is

V.E*.  =4np",  Vx^E*.  =- :+t  V 'Bn" =0,  V"B*.  = 
! ! *=t"  ( l )

the second set is
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v . (,d,, ) = 4nip., v " (;r,, ) = :ry; v . (rr',. ) = 0, v x (i A) = :ry = i Jm (2)
The real part of the electric and magnetic fields yield the usual Maxwell's

equations and complex parts generate "mirror" equations; for example, the divergence
of the real component of the magnetic field is zero, but the divergence of the
imaginary part of the electric field is zero, and so forth. The structure of the real and
imaginary parts of the fields is parallel with the electric real components being
substituted by the imaginary part of the magnetic fields and the real part of the
magnetic field being substituted by the imaginary part of the electric field.

In the second set of equations, (2), the l's, "go out" so that the quantities in the
equations are real, hence V.B,-=47rp^, and not zero, yielding a tenn that may be

associated with some classes of monopole theories. See references in ref. [2].
We express the charge density and current density as complex quantities based

on the separation of Maxwell's equations above. Then, in generalized form
p = p" = ip, and J:J"+g* where it may be possible to associate the imaginary
complex charge with the magnetic monopole and conversely the electric current has
an associated imaginary magnetic current.

The alternôte of defining and using, which Evans does E : En" + i&, and B :

Bn" + i$- would not yield a descripion of the magnetic monopole in terms of
complex quantities but would yield, for example V'(i8r.)=0 in the second set of
equations.

Using the invariance of the line element s2 : x2 - c2Ê for r: ct: Ji2 and for
x2 = x' +y2 + * for the distance from an electron charge, we can write the relation,

tu\tu=:) =iJm ot Lut! = r.; y* (,Ë,.) = 0 for 8,. = 0
c  ô t  c ô t

t rlia,^)
or -=l = iJm (3)

3. New Gauge Conditions, Complex Minkowski Mr Space
& Implications For Physics

ln a series of papers, Barrett, Harmuth and Rauscher have examined the modification
of gauge conditions in modified or amended Maxwell theory. The Rauscher
approach, as briefly explained in the preceding section is to write complexified
Maxwell's equation in consistent form to complex Minkowski space [2].

The T.W. Barrett amended Maxwell theory utilizes non-Abelian algebras and
leads to some very interesting predictions which have interested me for some years.
He utilizes the non commutive SU2 gauge symmetry rather than the Ur symmetry.
Although the Glashow electroweak theory utilizes Ur and SU2, but in a different
manner, but his theory does not lead to the interesting and unique predictions of the
Barrett theory.

T.W. Barrett, in his amended Maxwell theory, predicts that the velocity of the
propagation of signals is not the velocity of light. He presents the magnetic monopole
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concept resulting frorn the amended Maxwell picture. His motive goes beyond
standard Maxwell formalism and generate new physics ulilizing a non-Abelian gauge
theory.[5]

The SUz group gives us symmeûry breaking to the Ur group which can act to
create a mass splitting symmetry that yield a photon of finite (but necessarily small)
rest mass which may be created as self energy produced by the existence of the
vacuum'. This finite rest mass photon can constitute a propagation signal carrier less
than the velocity of light.

We can construct the generators of the SU2 algebra in terms of the fields E, B,

and A. The usual potentials, l, is the important four vector quality Ao=(A,Ô)

where the index runs I to 4. One of the major purposes of introducing the vector and
scalar potentials and also to subscribe to their physicality is the desire by physicists to
avoid action at a distance. In fact in gauge theories l, is all there is! Yet, it appears

that, in fact, these potentials yield a basis for a fundamental nonlocality!
Let us address the specific case of the SU2 group and consider the elements of

a non-Abelian algebra such as the fields with SUz (or even SUn) symmetry then we
have the commutation relations where XY-YX+O or [X,Y] *0. Which is
reminiscent of the Heisenberg uncertainty principle non-Abelian gauge." Barrett does
explain that SU2 fields can be transforrred into Ur fields by symmetry breaking. For
the SUz gauge amended Manwell theory additional terms appear in term of operatrons
such l.E,A.B and Ax8andtheirnonAbelianconverses. Forexample V'B no

longer equals zero but is given as V.B = -iC(A' B - B' A)+ 0 where [A,B];a 0 for

the dot product of A and B and hence we have a magnetic monopole term and j is the
currefi and g is a constmt. Also Barrett gives references to the Dirac, Schwinger and
G. t Hooft monopole work. Frnther commentary on the SU2 gauge conjecture of H.F.
Mrruth [6] that under symmety breaking, electric charge is considered but magnetic
charges are not. Barrett further states that the symmetry breaking conditions chosen
are to be determined by thephysics of the problem. These non Abelian algebras have
consistence to quantum theory.

In our analysis, using the SU2 group there is the automatic introduction of
short range forces in addition to the long range force of the Ur group. Ur is one
dimensional and Abelian and SUz is three dimensional and is non-Abelian. Ur is also
a zubgroup of SUz. The Ur group is associated with the long range 1/r2 force and
SUz, zuch as for its application to the weak force yields short range associated fields.
Also SU: is a subgroup of the useful SL(2,c) group of non compact operations on the
manifold. SL(2,c) is a semi simple four dimensional Lie group and is a spinor group
relevant to the relativistic formalism and is isomorphic to the connected Lorcntz
group associated with the Lorentz transformations. It is a conjugate group to the SUz
group and contains an inverse. The double cover group of SUz is SL(2,c) where
SL(2,c) is a complexification of SUz. Also SL(2,c) is the double cover group of SU:
related to the set of rotations in three dimensional space [3]. Topologically, SU2 is
associated with isomorphic to the three dimensional spherical, O:* (or three
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dimensional rotations) and Ur is associated with the 02 group of rotations in two
dimensions. The ratio of Abelian to non Abelian components, moving from Ur to
SU2, gauge is I to 2 so that the short range components are twice as rnany as the long
range components.

Instead of using the SUz gauge condition we use SL (2,c) we have a non-
Abelian gauge and hence quantum theory and since this group is a spinor and is the
double cover group of the Lorentz group (for spin %) we have the conditions for a
relativistic formalism. The Barrett formalism is non-relativistic. SL (2,c) is the
double cover group of SUz but utilizing a similar approach using twister algebras
yields relativistic physics.

It appears that complex geomeûy can yield a new complementary unification
of quantum theory, relativity and allow a domain of action for nonlocality
phenomena, such as displayed in the results of the Bell's theorem tests of the EPR
paradox [23], and in which the principles of the quantum theory hold to be
universally. The properties of the nonlocal connections in complex four space may be
mediated by non -or low dispersive loss solutions. We solved Schrôdinger equation
in complex Minkowski space [24].

In progress is research involving other extended gauge theory models, with
particular interest in the nonlocality properties on the S pact-time manifold, quantum
properties such as expressed in the EPR paradox and coherent states in matter.

Utilizing Coxeter graphs or Dynkin diagrams, Sirag lays out a comprehensive
program in terms of the An, Dn and Eo, Et and Es Lie algebras constructing a hyper
dimensional geometry for as a classification scheme for elementary particles.
Inherently, this theory utilizes complexified spaces involving twisters and Kaluza-
Klein geometries. This space incorporates the string theory and GUT models [21].

4. The Complex Vector Potential, Advanced Potentials
and Bell's Inequality

The issue of whether Bell's theorem and other remote connectedness phenomena, such
as Young's double slit experiment, demands superluminal or space-like signals or
prior luminal signals is an area of hot debate [31]. Also, the issue of advanced vs.
retarded potentials is of interest in this regard.

Using the complex model of AP we will examine the issue of the non-locality
of Bell's theorem as quantum mechanical "transactions" providing a microscopic
communication path between detectors across space-like intervals, which violate the
EPR locality postulate [9]. This picture appears to be consistent with the remote
connectedness properties of complex Minkowski space. Also there are implications
for macroscopic communications channels; another area of hot debate. Detailed
discussions of Bell's theorem are given in [3,6].

We will formulate frelds in terms of I or A = (A' ,ô\wherc At isA mther than

the tensor F * or E or 0. we can proceed from the continuity
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equationv - J + ôpl ôt=0 and the expression d, = ôA, I ôX 
" 

- ôAt, I ôX,.

the usual restored potentials then, we have the Lorentz condition

Y'A+ O"X =O and a lso

- . .  ô 2 6  I
v 'Q-  p t= ;  -  - -  p

ô1- t

Y æln,eexr-' 'f ' '

o'n-*#=-N

r- =I)lpi, +@k)2 q2q1ul.

(4)

(s)We can also derive

These equations possess a restored potential solution. The radiation field in
quantum electrodynamics is usually quantized in terms of (A,Q).

[We can also convert back to the EandB.fields using E =-Yû-ôAIôtand

B = Y x A 7 .

Quantization of the field consists of regarding the coordinates (x, k) or (q, p)
as quantum mechanical coordinates of a set of equivalent harmonic oscillators [X].
ln the second quantized method treating k,,q,ætd ,,4"as quantum numbers then we

have quantized allowable energy levels such as ll' = L(n, * 7z\at,. Solutions are

given in the tbrm

and we have a Hamiltonian equation of motion
p,,o+@k)2 Qot, =O or Qot = pot and

The electromagnetic field energv of the volume integral (82 +Bz)l8a is just equal

to the Hamiltonian.
We can examine such things as absorption and polarization in terms of the

complexification of E_andB_or Aand Ô. We define the usual D=eE(or

displacement field) and g = lttl for a homogeneous isotopic media. If we

introducepoand noas independent of-Eandl/where the induced polarizations of the

media are absorbed into the parameterse and p, we have

(6)

(7\

D = e E + p n  a n d  H : L B - m o

Then we define a complex field as Q = B + i,[îp E

so that we have Maxwell's equations now rnritten as

t67

YxQ+t ' [ *@À,=o,  and Y 'Q=, ]% p .

Using vector identities [33] and resolving into real and imaginary parts, we have

v2H -" t t#=-YxJ and v'r-ep{= p+*Lvp
ôt- 01 t

For

(8)

(e)

(10)

(1 1)



We define p in terms of the complex vector potential thatl*" è L* otu and

û^" ) ë"o.ot",. ftêî

- â I

e = y x L - i"fstt 
# 

- irfîpv ô (r2)

subject to the condition similar to before, Y - L + tttôû/^.= 0. Then we have'  / o [

v2L- 
"pô'LA,, 

= -N and y2(- 
"pô'û4,= 

=- f c ( t 3 )

Separation into real and imaginary parts of these potentials, L and, Q can be written as

L = A*" - rW n,^ and û = û*, -,W O,^ (14)

Upon substihrtion into the equation for Q and separation into real and imaginary parts
we have

B*. =V rn*"-9#-pv^^l i  r '*" =-vlR" -*-lo"O,- (15)

The usual equations are allowed when 1,, and /,- are taken as zero.
If free currents and charges are everywhere zero in the region under

consideration. then we have

Y xQ+i^["aôQ/u,=o; vQ --o

and we can express the field in terms of a single complex Hertzian vector f

solution of

v 2 f  _  
" u  

ô t /  .  = o'  / o t '

We can define f by f = o*" - if,/ ît^

where /*" = -V 'L and we can write such expressions as

Ar^ = /r"ôor/t and ûr^ =Y .Er^

(  t6)

as the

(17)

(  l 8 )

( le )
This formalism works for a dielectric media but if the media is conducting the field
equations is no longer symmetric then the method fails. Symmetry can be maintained

by introducing a complex induced capacity r'=ân" xi o'/r. The vectorB is in a

solenoid charge-free region; this method works. Calculation of states of polarization
by the complex method demonstrates its usefulness and validity. Also, absorption can
be considered in terms of complex fields. We will apply this method to solutions that
can be described as restored and advanced and may explain Bell's theorem of non-
locality. Linear and circular polarization can be expressed in terms of complex
vectorsl =An *iAr^. The light quanta undergoing this polarization is given
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ash(rfr=ho=fi1r. Complex unit vectors are introduced so that real and imaginary
components are considered orthogonal. We have a form such as
A = (A.7 r^\7 *"+ (1. j,.)j*". The linearly polarized wave at angle d is

1 = $ g . * "  e - , t  - r J *  e , t ) .
^ J 2 '  

*

, )  -  /
c r v r f  __e - !_ / . ,

,/ Qt

(20)

Now let us consider use of this polarization formalism to describe the polarization-
detection process in the calcium source photon experiment of J. Clauser et al [34].

Let us fint look at solutions to the field equations for time-like and space-like
events. The non-locality of Bell's theorem appears to be related to the remote
connected-ness of the complex geometry and the stability of the soliton over space
and time.

We will consider periodically varying fields which move along the x-axis. For
source-free space, we can write

(21)

where F represents either E' or B . The two independent solutions for this equation
are [35]

E * ( * , t )  =  Eos in (2n lu  xv t )  and B- r ( . r , t )  =  Bos in  2n( la  +  v t )  Q2)
and ft is the wave number md v the frequency of the wave. The V sign refers to the
two independent solutions to the above second order equation in space and time. The
wave coresponding tor.and 4will exist only when t < 0 (past lightcone) and the
rvave oorresponding to {_ and B_ will exist for t >0 (future lightcone). Then the E_
wave arrives at a point x in a time , after emission, whiles_ wave arrive at.r in time, /
befo're ernission (like a tac,hyon).

Using Maxwell's cquations for one spatial dimension, x, and the Poynting
vector which indicates the direction of energy and momentum flow of the
electromagnetic sravs, we find that r-and 4correspond to a wave emiued in the +x

direction but with energy flowing in the -r direction. For example, f-(x, r) is a
negatives-energy and negative-frequency solution. The wave signal will arive t : x/c
before it is emifted, and is termed an advanced wave. The solution E (at) is the
normal positive.energy solution and arrives at x in timg r : x/c, after the instant of
ernission and is called the retarded potential, which is the usual potential.

The negative en€rgy solutions can be inærpreted in the quantum picture in
quntum electrodynamics as virtual quântum states such as vacuum states in the
Fermi-sea model U5,28,297. These virtual states are not fully realizable as a single
real state but can defrnitely effect real physical processes to a significant testable
extent [5]. The causality conditions in S-matrix theory, as expressed by analytic
continuation in the corrylex plane, relate real and virtual states [2819]. Virtual states
can operate as a polarizable media leading to modification of real physical states. ln
fact, coherent collective excitations of a real media can be explained through the
operations in a underlying virtual media [15].
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Four solutions emerge: Two retarded (r,andrr) connecting processes in the
forward light cone and two advanced, (Frandd) connecting processes in the
backward slight cone.

These four solutions are

F, = Fog-i(-k'-a) , F, = fogi(k-a). Fl = Foe'(b'*) , Fn = gi(k+ot) e3\

where4 is for a wave moving in the (-x, + t) direction,f, is for a (+x, +t) moving
wave, .F, is for a (-x, -t) moving wave, and4is a (+x, -t) moving wave. 4 and4 are
complex conjugates of each other and FrandF, are complex conjugates of each

other, so thatr,- = r,andFi = {. Then the usual solutions to Maxwell's equations are
retarded plane wave solutions.

The proper formulation of non-local correlations, which appear to come out of
complex geometries may provide a conceptual framework for a number of quantum
mechanical paradoxes and appear to be explained by Bell's nonlocality, Young's
double slit experiment the Schriidinger cat paradox [36], superconductivity,
superfluidity, and plasma "instabilities" including J.A. Wheeler's "delayed choice
experiment" [37]. Interpretation of these phenomena is made in terms of their
implications about the lack of locality and the decomposition of the wave function
which arises from the action of advanced waves which 'veriff" the quantum-
mechanical transactions or communications.

J.G.Cramer [38] has demonstrated that the communication path between
detectors in the Bell inequality experiments can be represented by spaceJike intervals
and produce the quantum mechanical result. By the addition of two time-like fow
vectors having time components of opposite signs which demonstrate the locality
violations of Bell's theorem and is consistent with the Clauseq Fry and Aspect
experimental results [32]. This model essentially is an "action-at-a-distance"
formalism.

One can think of the emitter (in Bell's or Young's quantum condition) as
sending out a pilot or probe "wave"in various allowed directions to seek a
"transaction" or collapse of the wave function. A receiver or absorber detects or
senses one of these probe waves, "sets its state" and sends a "veriffing wave" back to
the emitter confirming the transaction and arranging for the transfer of actual energy
and momentum. This process comprises the non-local collapse of the wave function
[34, 39]. The question now becomes: does such a principle have macroscopic effects?
Bell's non-locality theorem cancan be effective over a matter of distance.

An attempt to examine such a possible macroscopic effect over large distances
has been made by R.B. Partridge [a0]. Using 9.7 GHz microwave transmitted by a
conical horn antenna so that waves were beamed in various directions. Partridge
found that there was little evidence for decreased emission intensities in any direction
for an accuracy of a few parts perl0e". Interpretation of such a process is made in
terms of advanced potentials. Previously mentioned complex dimensional geometries

t70



give rise to solutions of equations that form subluminal and superluminal signal
propagations or solitons.

The possibility of a remote transmitter-absorber communicator now appears to
be a possibility. The key to this end is an experiment by R.L. Pflelgov and L. Mandel

t41]. lnterference effects have been demonstrated, according to the authors, in the
superposition of two light beams from two independent lasers. Intensity is kept so
low that, to high probability, one photon is absorbed before the next one is emitted.
The analogy to Young's double slit experiment is enormous [4].

In J.A. lVheeler's recent paper, he presents a detailed discussion of the physics
of delayed choice proton interference and the double slit experiment (from the Solvay
conference, Bohr-Einstein dialogue). Wheeler discusses the so-called D. Bohm
"hidden variables" as a possible determinant that nonlocality collapses the wave
tunction [42].

lt is clear that further theoretical and experimental investigation is indicated
but there appears to be a vast potential for remote non-local communication and
perhaps even energy transfer.

In the next section we detail the forms of transformations of the vector and
scalar potentials at rest and in moving frames, continuing our formulation in terms of

U,ù. The issues of sub and superluminal transformations oflandlare given in a

complex Minkowski space. Both damped and oscillatory solutions are found and
conditions for advanced and restored potentials are given.

5. Transformation Laws for Vector and Scalar Potential
Under a Superluminal Boost

For simplicity we will consider superluminal boost V, = @ along the positive x

direction. The space and time vectors in the real four dimensional Minkowski space
transform as follows [43]:

give rise to solutions of equations

x t = 1 ; t ,  y ' : - i y ,  z ' : i z ,  t '  :  x (24\
for real and imaginary parts separately, where x, y, z, / are real quantities in the
laboratory (S) frame, arrd x',y',2',t ' are the real quantities in the rnoving (S') fræ.
Now in the six dimensional (tt/) complex Minkowski sp:lce, the above transformation
laws for a superluminal boost(v, = aæ) in the positive x direction become [aa]

-x*" +rr j .  =/r ,*"  * /r .1. ,  -r ls" +?l-  =/r-  -{ ln ,  z '^.+iz ' r .=zr-- iZp.",
(2s)

I r ,n "  * i l r . r .  = . t r * "  * i x , . ,  1 , . * .  + i1 , , , , ,  = / .u , , ,  - i l .u . * " ,  l ' " .R  + i l ' , , t ^  = t r . r - - i t r ,p "

The transformation laws given by (25) preserve the magnitude of the line element but
not the sign as in: 

- x'p x',' = )e! x,' (26)
where index pand v run over 1,2,3,4 representing I as time vector and 2,3,4 as

spatial vectors. Therefore we have the signature (+++-;. Similar to the
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transformation laws for space and time vectors as given by (25) we can write the
transformation laws for the vector and scalar potential. For a superluminal boost in
positive.r direction, the transformation laws for(A,û) are:.

/ r \

e', = r l  n" -4û1, o', = A,, A'" = A", ô = r(û-v,A,) (27)
t c - l

where/ is the scalar potential and 7 is defined as the usual Lorentz term

y= V .  . i/ -  / ( u '  )
/  t+- t l

/  \ c '  )

(28)

We consider A,, etc., transforming a$ a gauge. In eq. (27), the vector potential ,,4 is

consideredtobeafour-vectorrealquantity,Aror A=(A,,A,,A,,+.whichpreserves

the length of the line element but not the sign, i.e. we have
ArAo = -AoAo Q9)

Equation (27) then simplifies to the following relationships for the velocities
approaching infinity, v_, = e.

We can write the transformation laws for scalar and vector potentials under the
superluminal boost in the positive x direction forv. = +co. From the rest frame, S, to
the moving frame, S', for unaccelerated vector and scalar potentials, we have

A , = - Ô ' ,  A r = A ' r ,  A , = A ' , ,  û = - A ' , (30)

From the moving frame, S', to the rest frame, S, for the unaccelerated vector and
scalar potentials we obtain

A'" = -ë, A', = An, A', = Ar, ë' = -A, (3  l 1

Equation (31) is valid for real or complex vector and scalar potentials. Real
and imaginary parts are easily separable in a complex quantity and they will transform
according to eq. (31) under the influence of a superluminal boost in the positive x
direction. Now if these are the retarded (or accelerated or advanced) vector and scalar
potentials tlren the transformation laws under the superluminal boosts will be different
from the ones given by equation (3l).These will be given by the combination of
equation (31) and the transformation laws of the complex space and time vectors as
given by equation (25).

The propagatiorr constant is considered to be isotropic in vacuum and defined
N d,=rolv6, whereu' is the phase velocity and ro is the radian frequency of the
propagating signal. Usually in most cases the phase velocity of propagation in
vacuum is a constant vû = c , where c is the velocity of light in vacuum. For the
purpose of this paper, we will consider a tachyon traveling faster than light emitting
an electromagnetic signal at frequency o which propagates at the velocity of light.
This assumption will simpliff the subject matter of this paper. Later on, in a separate
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paper, v/e will exarnine the faster than light electromagnetic signals emitted by a
traveling tachyon which might lead into a Doppler effect at velocities faster than light.

Let us consider the advanced potential solution only ùom equation (24).
Equation (24) can now be rewritten as two separate terms, so that in the S frame,

A, = (Ao*.*, + ilo,.,-){eexpf[o/,,n. - h*"J, eexp-[a;t,,,, - hr.]] (32)

where the first exponent represents the usual type of oscillatory terms and the second
exponent represents a decaying component which is not present in the usual four
dimensional spacetime model. Note also that we have used the isotropy of the vector fr
in equation (32) as examined in the previous section.

Now let us examine the complex exponential of equation (32) using the
transformations of equation (2a) as follows so that we have for the exponents

eexpt\rm*. - h,.*"]; eexp-[arri- - kt',.r*)

We regroup terms in at and t so that we have
eexpi[a{x*" + fo,.) - fr(l,.*. - it,.r. )]

(33)

(34)

Now using equations from [29,30] forf = r*. + iri. we have

eexpifrtx'-k(/-.*" - it,.,,)l (35)

Note that the second part of the exponent for the /r term does not reduce to /' since

there is a minus before ir,.,.. Thus for the boost vr -+ co or v )c, we obtain for

eexpflra + Ix] from equation (24) under this transformation going to

eexpifox'f; eexp- kfi,.R" - it',.tuJ (36)

Let us look at fie example of the transforrnation froml.(in the moving frame,f) to

its form in the restfrf,ne, ^S. We find a mixing vector and scalar potential.
In the SLT from the resfframe ,S to the moving S' frames we have a change of

length of the time component vector in equation (36). The vector potential terrnAo,

lrmsforms as

which is the same as equation (28), so that for the superluminal boost v, -+ oo '
implies that

(38)

n,=r(n,-5r) (37\

1 l c : - = -' \ t \ , v " 1 , " ' v ,

r l - ; - l  
- . l r - -

Tc '  c l f -  v |

where the"lt-c'? t vl term approaches

fansformed vector pote,ntial as

unity as
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A',=+,
l3-'

v x

n,--p4
lv; ,
17-^

(3e)

(40)

(41)

(42)

(4s

Then for yx -+ co and from equations (38) and (39),

4 =4:--4Lô=o-4=-O
v, c- v, cQ

for units in which c: l. Therefore A, = -S fot a superluminal boost, yr -+ æ .

For the transformation of the scalar potential, in aaalogy to equation (28), we
have

6,= y(Q_v,A,\
and for vr -+ oo, we haveT = c lv, so that in the limit of the SLT,

r/' l im- 
s-6-cAr =4A,

væ P-.

and for the units of c: l,then{'-A,. Compare this equation to equation (40). Also

for A', = Arand,A', = Arwe can now write

A, =fAr",*" + iAr,,r^feexpilû/ + k) =l-û*, - i$r^feexpiox' eexptk,ft,.R" -tt:.,, ] (43)

wherer'= -r*. + rri. and using the result of equation (40)an d (42) for the non-exponent
part and the exponential term which is given in equation (35), equation (43) gives us
the vector and scalar form in the moving S frame.

If we consider only the accelerated potential, then we consider only the plus
sign in equation (a3). By use of the definition of complex quantities, equation (43)
can be rewritten in a compact, simplified form:

A, = -ôo, exp(irrx') . exp(r/c,r, ) . (44)

Then by use of equation (44) we can describe the,r component of the complex vector
potential in moving frame ,S after a superluminal boost in the positive x direction. The
same vector potential in the rest fuame is defined by equation (167) or (169) from
[29,301.

The transformation of theluand,4,components of the complex vector

potential under a superluminal boost in the positive x direction can similarly be
written as

A, : Ao, exp[-a{lu,*. + f 
".,. )J.expl-bQ'^" + iy'r^)f

= Ao, expl-.at(/,.*" + i1".,. )]. exp[-ky(z'*" + izi. )]

\Me will now consider the scalar potential as defined by a complex quantity, so
that

p,= ql* + iQr^
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which we use for the non-exponential term of equation (45)which then becomes
A, = -Q'eexpiax' eexplc[1,.."" -i1,,.,*] (47)

Let us now compare the vector potential forms ofl* in equation (42) in the ,S or

laboratory frame, andl,of equation (47) in the S frame or moving frame. (Table 1.)

TABLE l. Comparison Of The Exponential Part Of The Vector
Potential l"In The ,S and S Frames Of Reference

OSCILLATORY DAMPEI)

S
Frame:

Ao., æ eexpi[ax,.^" -Àx*.] eexp-fat ,.r^ - h*]

S '
Frame: Q'x. expifax' j eexp/c[t,.*" - i1,.,. ]

In the oscillatory solution of the S frame for û' , we find no dependence on the wave
number factor /r and hence we have apparent media independence, recalling
J'= r*" + ih,. , whereas in the ̂ 9 frame forl,,., we have dependence on at and k.

For the damped solution, we have rttand k dependence in the S frame forlo,,
which is a pure real exponential and hence not oscillatory. In the ,f frame
then,/'sometimes has a damped solution dependent on & which has a real and
imaginary component. The exponential factor can be written as

lr ,R" -  i t ' r , r*=/n, - fot . (48)
Time dilation and vector length are modified in the complex twelve dimensional
space [44]. We find that a superluminal, unidimensional (.r-dimensional) boost in
complex Minkowski space not only modifies space and time (as well as mass [27])
by the7, factor, it also modifiesl :(A,û) and we find a rnixing of A and Q

lorA=A,tvherejrunslto3(orspacelikequantities)arrdëtransforrnsasatemporal

quantity for subluminal transformations.
\ilork is in progrcss to continue ttre examination of the forms of

transformations of the vector and scalar potentials in sub and superluminal
transformations [30].

6. Conclusions

It appears that utilizing the complexification of Maxwell's equations with the
extension of the gauge condition to non-Abelian algebras, yields a possible metrical
unification of relativity, electromagnetism and quantum theory. This unique new
approach yields a universal nonlocality. No radical spurious predictions result from
the theory, but some new predictions are made which can be experimentally
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examined. Also, this unique approach in terms of the twister algebras may lead to a

broader understanding of macro and micro nonlocality and possible transverse

electromagnetic fields observed as nonlocality in collective plasma state and other

media-
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