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Abstract
Mixed Integer Nonlinear Problems (referred as MINLP) is a nonlinear optimization
problem, where two types of variables are present, namely integer variables and
continuous ones. The presence of integer variables extends fundamentally the areas of
MINI-P applications. There is a linear goal function subject to linear and nonlinear
constraints (quadratic forms).Two dimensional case of integer variables as well as
continuous ones is analyzed. Main subject of interest is construction of feasible set of
variables. Some numerical results will be given, where water distribution network will
be interesting application area.
Keywords: mixed integer variables, optimization algorithm, feasible set.

I Introduction

Mixed Integer Nonlinear Programming (MINLP) Problem [1], [4], [7], [8] one can
describes as follows:

Minimize J(ù+ D x;
Subject to

B û / ) + H r < 0
L < y  < u
x  =  {0 ,1 ,2 , . . } ;

where y is a vector of variables that are continuous real numbers.
The expression

/u)+Dx;

is the objective function and expression

g(y) + H x;

represents the set ofconstraints. Z and Uare vectors oflower and upper bounds on the
væiables. Expressions D x and H x are inner products.
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l g ,n ,  *2 ,  Ê t '  ! ,  =  (a r  n  +  B ' ' y )+min

Where: ni, li àrê integer variables and continuous correspondingly;

f l  =  (n r ,  n2 , , . . . ,  np ) r ,  |  :  ( J t ,  ! 2 , , . . . ,  y  n , )T  ;

and

q r  = f a r ,  e 2 t . . . t  d r , ]  ; p  
'  : [ - Ê r , 8 r , . . . , p 0 , )

areknown constanLs. Coefficients d6 Pj> 0; i: 1,2, ... ,p.
Some linear and nonlinear constraints should be alsoT : l, ..., p' taken into account.
In this paper the detailed analysis will be carried on in the case, whenp : p':2.

2 Problem Description

The optimization problem is formulated as follows:

an + dono + 0 . y@) + poyofu) -+ min

All the variables yo(no), y(n)are subject to lower upper bounds constraints:

Subject to

(  r  1 2

1" , -o . l  
' '  

|  -eo+z)y l -doro
I  \uo /
t ^
|  /  \ r

l ,  
- r l i )  -(k+z)y2 -d>o

y (n )+yo (no )=o

( l )

(2)

n y < y < n y ,  n o ! o S ! o S n o î o

Where:
!,V,! o,!o- denote respectively, upper and lower bounds ofthe

The coefficients a,ao,Ê,Êo> 0; /t, no, !, ys are variables and
(2), (3) are known parameters.

(3)

variables y, yo .

the rests of elements in
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The algorithm for problern (1) subject to constraints (2), (3) is composed on the
following parts:

(D the determination of the functions:

v=y(n); lyo=yo@ù7
or
n=n(y\; [ ro=no(yo)]

(ii) the determination of the sets of feasible solutions;
(iii) the determination of the optimal solution of the MINLP.

In this paper the subject of interest concems point (ii) only.

(4)

(s)

3 An algorithm for the determination of feasible set solutions

We are looking for a solution of (l) subject to (2) and (3.) Taking into account already
presented algorithms outlines it is necessary to determine (a) or (5) in explicit forms and
finally optimal solution. From (2) and (3) one obtains the relations between continuous
variables y, yo and integer variables n, n0 6y introducing following parameters:

0 S  p -  p '  = 2 .  ! 2 ,  0 3  p o -  p '  =  z o ! â ,

Let's look at the problem (1) under the constraints (2), (3).The set offeasible variables
(n, y\n)"yo(no), ro) should be determined first. There are one-to one relations between
t'f û, "Fr'n an d t?0" * "ng'as follow:

O f  n =
JG'v

. ln -a-p-ky '

(6)

(7)

(8)

'no or no=@

Hence the intersection of the sets in (3) is empty, if

(
I n >-2-
I  y - y

f r r>r ( f r+ l )y+ j  - -L 
ln,>--!b-
I  l o - ! o
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From (8) the feasible sets forp and po parameters are obtained, when n and ns is fixed.
Taking into account (6) one obtains:

["r=r("> 
and noyo(n) 

1
[ o=o  <H  -a - y '  . t u t '  =F ;  03  po<E  -do -ko r t yo=  po )

(e)

rWhenp is chosen between 0 alrrdp, the valuesy is element of the following set:

Where:

H  =  H  - G y ' ; Eo= Ho-cy_X;

(10)
( l -
I conespondi ngly po. [0, p]= y, .l no y o;roIL

Under the assumption that:

aH4
lc;7V 

= 
"'

In opposite case:

yo  e lnor  s ,  noyo l .

From the formula (9) the maximal values of variables n i noare obtained.
BecauseBipo >0,hence

-

H - d - y'kn' >-0 and n (fr =;l+ ,

and

( l  1)

(r2)

(t 3)

H o - d o .

Ko

r26

(14)



H o - d o

Hence the maximal feasible values ofy andye are bounded, as below:

0 s y(n)s y(î) and 0 < yo(no) 3 yo(no)

and lo <

Thus the estimated value of o'* can be determined as:

o * o = d > o = y + Y o

Otu* = = d >  y ( n ) + y o ( n o ) .

Now we should take into account fact, thato is a linear function ofy andye variables:

6 = ! + ! o

So, the additional constraints are obtained now, namely lower bounds of n i np

n l n a n d n r S n o

and constraints modification ofys.
Finally, following inequality (10), is obtained:

and n6 variables as follows:
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(17)

(1 8)

(le)

The following feasible sets occur for r



Jn 
e {o}..,h r] 

I
fn, e {o} ub,o,l)

For each feasible n *0, under the assumption, that Ws y, one obtains
\Go + kon"o

from (12) feasible set ofy(n) values :

(20)

Hence, for each feasible pair of(n, y(r)) exists
set:

(2r)

y6, which should belong the following

(22)

For each feasible triple of elements (n, y(n) , yo (n)) exists nonempty set in the form of:

n o e N r o A "lÇ1o 
-nvs

The feasible set of elements in the form of quadruples (n, y, yu n6) is created in the
following way:

D-  V_ ,kn ,y ,yo .nù ,  2yeA^*0 ;  3yoeA0^ ,1n0eNn\ ;  r y<no<î l  e4 )
nel4,il'

The set ofconstraints could be in general incoherent set. The quadratic forms in (2) can
not be neither (semi -) positive nor (semi -) negative ones and the feasible set of
constraints can be non-convex one.

4 Numerical example for the proposed method

Water distribution network system s€ems to be a very good illustration for the already
presented algorithm. System consists of two pumping station, with known maximal

o - n 7n -a
. t - ----

\ G + k n '

%
(23)

- ko(o * ny)
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number of pump identical units (see Fig l). The aggregated network is composed of two
arcs with known parameters and known receiveros demands. The goal function in such a
system represents the cost of electrical energy consumed by the pumps units when
receiver's demands are fulfilled [2], [3], [5].
The mathematical model for this system is described as follow (25). It differs slightly
ûom previously used models in the chapter 2,3, because the quadratics forms (2) are

"centred" by y' ,yi.

-(ft .  + z)yt -do- p' =0

,  _d_o '=a

The systems parameters [2]:

(25)

,-o,(^-rr) 't,
I
["

-G" (Z- l ' l  - (k+z)y
" [ z  )
y (n )+yo(no)=o

Pump station P:
Number of punps units: 3
Parameter H = 52,5776647
Parameter G:0,0004761
Pamneter y* = -30,5363 336
Pranreær 7= 192
Prmreter y:132
Parameter y,ror= 431,64
Paranraer rt=3,22
Parameter o: 1599,183
Pammeter $= 19,775
Networks panmeters:
Arc's pipeline resistant coefficient È =
0,00006058

Geodesic height d : 28,685

Pump station Pp:
Number of pumps units: 2
Parameter Ho= 58,13348
Parameter Ga = 0,000313388
Parameter yi : 218,07342

Parameter yo:292

Parameter yo:245,4

Paameteryn,* = 609,61
Parameter io= 2,48

Parameter ao:7992,195
Parameter ps : 10,798
Networks parameters:
Arc's pipeline resistant coefftcient ko:
0,00003782
Geodesic height do: 41,735

Aggregated water distribution models have been described by many authors [2], [3], [5].
The cost of electicity consumed by pump stations in the system is our goal frrnction.
The solution determines the number of pumps which should be tum on in the pump
stations and their actual yields. It can be easy find that feasible set can be incoherent for
all considered variables.
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Figure 1: Aggregated water distribution system.

Parameters { n. f , î s, Lo, / @),..., y o (n o), p (n) | determination.

On the Fig.2,3 are shown described beforehand parameter and functions.
The feasible sets are denoted by Ar, Az, A: and Ar, Az.

For the first pump's station there were following pammeters calculated:

r The one-to-one functiony(n) is given as follows:

-0,0144*
y t i i t = n  

6

o The sets of feasibley according to the formula (21) is given below:

fu=p32;183,7781
Az: [264;323,130J
A: = [396; 414,248]

For the second pump's station one obtains:

r The one-tû-one functionye(ns) is given as follows:

3,66 + J(l6,265X0,003 I * w
0,0031 + 0,00003782nj

(26)

(27)

r30
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Figure 2: Feasible set for variable y : y(n\

r The sets of feasible variable y, according to the formula (22):

N: [243;283,44]
Az: [490;523,85]

Declared consumers demand and maximal system outflow are siven as follow:

o = 1000

d.* = lo(io)+ y(E) =1044,793

The main goal of water distribution networks is to fulfill the receiver's demand. It is
necessary to deliver the appropriate volume of water in the specified time intervals.
Since the operation and maintenance of such system can be included in the capital costs,
the most used optimization criterion is that of electrical energy costs minimization.
The goal function (1) has its interpretation as the energy costs used by pumping stations
in the analyzed water distribution network [2], [3].
On the Fig. 4 are shown the optimal strategy for all feasible o.
There are some gaps on the o (receiver's demands) axis. It is that for some o values
the optimal solution doesn't exist.
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Figure 3: Feasible set ofy6 = yo (no')

The one segment on the Fig. 4 denotes:
o The relationship between o = ! t.lo md minimal energy necessary for the

realization of such demand.
o The natural numbers above the each segment line denote the number of pump

section which should be tum on at suitable pump station, where demanded value
of o should be achieved.

Our optimization problem is related to water distribution network system and involves
both nonlinear constraints to model physical phenomena and integer variables to model
control decisions. In the mentioned before case nonlinear constraints are connected with
water distribution network. The discrete variables enable to turn on pumping sections in
each pump station so they are control variables.
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(n, y, no, yo) [kW]

F'igure 4: The relationship between goal function and receivers demands.

5 Remarks

The usudwaytotrnd the solutions for Mixed IntegerNonlinear Optimization Problem

(MINLP) is by using a branch-and-bomd method [1], [4]. [8]' [9]. First necessary step

ielays on searching the feasible set of variables. The construction of such a sêt was

presented here for the dimension of both variables equal two. Before, a very good

illustrutioo of mqrtioncd method was given for water distribution network. Although,

the dimension of csntinuous and discrete variables seems to be small, but obtained

results looks very promising. The proposed attempt is a very good basis for more

complicated and larger systems with higher variables dimensions. In the next study the

algorithrn for sotving MINLP in the form of (1) subject to (2), (3) constraints will be

presenæd. Of cogrsé, the dimension of both variables, continuous and integer will be

greater than two.-The 
featured here algorithm is connected with the sequential optimization strategy [l].

It consists of solving a sequence of sub-problems where the level of difficulties is

decreasing. The major motivation is to solve a sequence of simpler problems to avoid

solving J l*ge single and more diffrcult MINLP. The procedure allows reducing

numbà of pioblems and obtained results confirm the usefulness of the proposed

attempt.
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