
Nested Anticipation in
Design of Reconfigurable Manufacturing Systems

Pascal Bemret
LESTER, Université de Bretagne Sud

CNRS FR-N,2734
Centre de recherche. Rue St. Maude. BP 92116

F -56321 Lorient CEDEX, France
E-mail : Pascal.Bemret@univ-ubs"fr

http ://lester. univ-ubs. fr

Eugene Kindler
Ostrava University Faculty of Sciences

CZ-70103 Ostrava, Dvorakova T,Czech Republic
FAX: +420 596120 478

E-mail : evkind@ksi.mff. cuni. cz
http;/iwww.osu.cz

Abstract
The presented work deals with a special modelling method that is relevant to analyse
reconfigurable manufacturing systems during their desigrr phase and to anticipate their
behaviour when they themselves are viewed as anticipatory systems. The technique
named nested simulation consists rn the simulation of elements that simulate their own
environment using their own models. It enables a desiga process based on on-line
predictive simulation to be analysed. Different implementations using SIMULA
language have been performed. The features ofthe tool are presented. The interest for
reconfigurable manufacturing systems is discussed.
Keywords: Industrial desigrr with anticipation, Industrial control with anticipation,
Simulation, Nested anticipation, Flexible Manufacturing systems.

I Objectives

1.1 Manufacturingsystems

A society that designs a reconfigurable manufacturing system M represents an
anticipatory system S, because:

a. M is a subsystem of S and M is regarded as an integral part of S, because it will
interact with the rest R of ^9 - relation between M and À will represent inputs and
outputs for M,

b. S generates a set {p} of models of variants of M to get the optimal (or a suboptimal)
variant V; when Z is determined M begins to carry it into effect - therefore /
influences the instantaneous state of Sbefore I/exists.

International Journal of Computing Anticipatory Systems' Volume 19'2006
Edited by D. M. Dubois, CIIAOS, Liège, Belgium,ISSN 1373-5411 ISBN 2-930396-05-9

This simple principle is however bottomed on very complex physical, social and

economic faitori. When manufacturing systems are being designed, many problems rise

and the designers are confronted with them. The complexity of manufacturing systems

requires modular approaches in order to decompose very large and complex design pro-

blems into more simple ones. It is necessary to obtain the best approximations between

functional solutions and material architecture at the eadiest stage of design. The compe-

titive markets imply demands for reducing time to design and implement a new manu-

facturing system. Nevertheless, a manufacturing system has to be flexible, robust, easy

to maintain, easy to control, modular and fault tolerant. Often several solutions with

different costs are possible and then they have to be evaluated in order to choose the op-

timal one. In the evaluation process, computer simulation is very important. Computer

simulation models are applied as tools giving data for the decision support during the

real time control. Therefore the modern way is to use simulation models in {p}.
Nowadays, another aspect is more and more present in current manufacturing sys-

t"*r, num"ly the reaction toward failures. It is a constraint influencing the acceptation

of a concreti manufacturing system and therefore influencing the design. Manufacturing

systems have not only to be efficient from instantaneous performance point of view. In

anticipating their behavior, one must take into account that they also have to react

toward failure occrurences. In other words, the variants considered during the design

and mapped in {p} have to reflect the reactions toward failures.

1.2 Reconfiguration

Reconfiguration process is a response to faults during exploitation phase. It consists

in reorganiiing both the material structure of the process and its control part, to allow it

to go on with its production after fault occurrence. This reaction does not only take the

foÀ ofan adaptation ofthe capacities to satisfy the production target given but can lead

to a modification of the elements of the whole system and relations between these

elements. It essentially answers an availability objective. It has to focus on operating

sequences, system potentialities, and product nature. Although this kind of procedure

could not be centralized, the reaction needs global information about the whole system'

This problem is quite a complex one regarding the number of parameters and functions

it requests.
The challenge ofon-line reconfiguration has been taken into account by the research

community (Shen et al., 1999, Brennan et al., 2001, Kamach et a1.,2003, Ruy et al.,

2003, Henry et al., 2004). The conclusion is that many different specific models have

been developed, different parts ofreconfiguration have been treated but very few works

consider the evaluation ofthe reconfiguration process itself'
From practical point of view, reconfigurafion process requires first to localize the

faulty part of the system, to analyze the impact on the rest of the system, to decide a

new-oiganization of the system and then to apply corrective actions to reach the

proporul organization. Within the framework of the reconfiguration as previously

à.r".iU"d, piesented works give some ideas to implement and validate the decisional

step. This âecision step requires the knowledge of the potentialities of the system and

l l 0

the operating sequences. Previous works using graph models and graph theory enable to

determine (Bemret et al., 2000):

o if there is a possibrliry for the manufacturing system to go on with the current
production;

r if some resources have to be set in production mode;

r the path, a part can follow, to complete its logical operating sequenc€: the sets of
possible controls.

But the presented procedures took very few dynamics parameters into account. To

complete the procedure that gives several configurations, an evaluation step should be

performed. The result should be to find the most appropriateness configuration

àccording with the current situation. Simulation is good help for performing this step- It

is user1 as forward-looking simulation as an assistance for complex decision making
(T'omizuka, 2002)

Therefore the real manufacturing system constructed according to the variant Z is to

be an anticipatory system using simulation model. It has to be noticed that this kind of

simulation ii performed during the system existence but it has to be included into the

models {p} in order to get information enough on the possibility to reduce the

unavailability. Already in the case of the design phase of a reconfigurable system. it is

of great importance to evaluate the reconfiguration process. If simulation models are

ut"à fo. anticipating the system's behavior during the design, the point is then to have

models that enable to reflect that the modeled systems are anticipatory ones, i.e. to have

models that enable different levels of simulation. Indeed, one must simulate systems

holding elements that simulate their own environment using their own models. In such

"u.e.,
*" can speak about nested simulation, expressing that the simulated systems

themselves contain clements that handle simulation models. Moreover, we speak about

reflective simulation, expressing that the simulating elements held by the simulated

systems simulate (parts of) systems that holds them, Reflective simulation is thus a

special case of nested simulation.
This paper focuses on reflective simulation of reconfigurable ûansitic systems that

ar" .p""iui case of reconfigurable manufacturing systems. The concept of nested

simuùtion is first defined in Section 2. Section 3 tackles with the implementation of this

kind of simulation. Examples and tools are then presented in section 4 to illustrate.

Section 5 discusses the benefit of nested simulation in the design of reconfigurable

manufacturing systems.

2 Nested simulation

As it was already indicated, reconfigurable manufacturing systems can be simulated

for two categories of tasks:

l l l

during their design (in order to anticipate the best variant to be physically realized) -

let suih a simulation be called external simulation, the models used by it be called

external models and the anticipation be called external anticipation;

during the physical existence of the simulated system (in order to get suppott data

for the anticipation of the system control) - let such a simulation be called internal

sîmulation, the model used by it be called internal models and the anticipation be

called internal anticipation. The intemal simulation is applied to make a

reconfigurable system more effective.

At the design phase of such a system S, extemal simulation models are classically

used. If the desigrrers know that the system will use a control computer that will apply

simulaûon (i.e. that will handle with one or more internal simulatioh models), that

computer (inclutling the intemal models) has to be reflected by the internal model.

Namely, the computer itself does not need to be reflected in its many details, but the run

of the intemal models on it has to be reflected in details (Kindler, 2000a,b). Let us limit

ogr considerations to the most important situation, namely that the anticipation u$ing

iltemal simulation models cannot be replaced by anything other technique in the really

existing S. Then this internal model has to be reflected in the external one. Otherwise

the extemal model would anticipate the behavior of S in a way different from the real

one (and surely give different - i.e. false - information on it). Let the next analysis be

limited to the case that all computing processes used for the internal anticipation
(including intemal simulation models) run at the only one computer C exists in S.

The external simulation model of .l should reflect the components of S and also "one

of them" -- the computer C. The components have to be reflected according to their

mutual interactions. It holds for C in the same manner as for the other components (e.g.

machines, transport tools, storage, persons, energy units, material units, etc..')

Therefore C has to be reflected in the model so that both its interactions wrth the other

elements of S and its isolated actions are taken in account: the interactions cover the

controlling instructions which C sends to its environment and the phase when C is

"watching" for its environment in S in order to prepare the internal model. The isolated

actions cover the building and run of intemal models. The intemal models are used

many times during the existence of S. Each of them should (be generated and) start to

reflect the instantaneous situation in,S. As the situation can vary, the initial structures of

the intemal models can differ. Therefore, considering reconfiguration process, the
principle of which is based on forward looking simulation of the system, reflective

iimulation, that enables the evolution of such a reconfigurable system to be evaluated, is

very appropriate.

3 Implementation Using SIMULA

As previously mentioned in section 2, the extemal model should have a component
(reflecting O that simulates its own simulation models (i.e. internal models). When C is

simulating, it exists in the time of S but it simulates what will happen in another time.

That can be illustrated by a statement "during time interval (Ts Tù, computer C

t12

simulates what can be expected during time interval (h, tz)". Z1 serv'es to express the
scheduling in the extemal model while ri serves to do it in the internal model. But both
time flows must be simultaneously present in the external model at least when it reflects
the simulation phases of its element C.

Nested simulation then requests the introduction of two time axes. In addition,
reflective simulation requests model copying and must avoid transplantation. This last
request concems a problem induced by the fact that the same languages are often used
for the extemal and internal models. As these two models concern different "worlds",
that have to communicate, they have to be secure against chaotic (erroneous) mutual
mixing.

It was shgwn that the commonly used simulation languages, packages (in object-
oriented languages, too) and pro€trams are implemented so that they enable to model
only one time axis (and therefore they cannot help to implement such nested simulation
models). The solution of the problem consists in using programming languages that are
object-oriented, agent-oriented (or - in simpler cases - process oriented) and block-
oriented. Let they be called languages with three orientation, or shortly 3-O-languages.
One ofthe consequences ofthe synthesis ofprocess or agent orientation and object ori-
entation is that in the information content of any class (i.e. of any representation of ge-
neral concept) a description ofbehavior can be inserted in a form ofan algorithm so that

(1) any instance of that class (i.e. any representation of the class existing as an indivi-
dual object) interprets the algorithm, branching it according to the common rules
in the algorithmic languages, and

(2) the perfiorming of the algorithms can be switched among any objects, independent-
ly whether they belong to the same class or not.

The consequance of (l) is that the objects that perform such algorithms rÊpresent
active entities, possibly reacting to the states ofother objects. The consequence of(2) is
a possibility of modeling parallel activities of objects that exist contemporarily.
Therefore the algorithms joined with the classes are called life rules and their interpreta-
tions for the individual instances are called lives of the instances (of the objects).

The advantages of the object and agent orientation are well known, among other in
terms of reusing. Moreover, previously developed classes can be enriched by tools
reflecting the essential properties of Newtonian time, namely the event scheduling. The
block orientation provides some "range" (scope) to entities. It enables to include blocks
into the life rules of the classes. Block is a phase that has "local" entities. These entities
are at disposal when the life of an instance is being inside the block. Block ô can be a
sub-block of another block B. In such a case, when the life is inside à the entities of
both ô and B are accessible. In other words, classes ofa block are accessible only inside
the given block. Note that a block can be also inside the life rules or rnside a method of
a class.

The formalization of the cûncepts was performed in SIMULA, (SIMULA Standard,
1986). That language was chosen because ofseveral reasons:

r SIMULA is a 3-O-language;

113

. SIMULA has very suitable tools for computer simulation, which are based at (2) -Iet

them be called T-tools;

o SIMULA has a lot of implementations for PC computers and work stations, which
cornpile fast models:

o SIMULA is a strictly standardized language that allows a high portability of models;

o SIMULA is open for reflective simulation (see further).

3,1 Implementation Using Block Orientation

The introduction of two time axes is simply performed by the introduction of T-tools
into two blocks so that one of them is a sub-block of the other one. The "outet''. block
corresponds to the extemal simulation. The other block (the "inner" one) does not need
to be a direct sub-block of the outer block; for example it can be a sub-block of life rules
of a class introduced in the outer block. The outer block contains the description of the
external model M. When the computing process enters that block, M begins to exist. M
exits and operates until the computing process accesses the end of the block. Into the
block, the list of classes is.introduced. The instances of the classes represent the
components of the simulated system. The inner block is devoted to the internal
simulation. During its life, the computing process can then enter the inner block and
access similar but different instances of the "outer" block.

As previously mentioned, the case of reconfigurable manufacturing systems
requested reflective simulation, in which the internal model is formally similar to the
external model, because it models the same object as the external model does. It allows
using the same classes introduced by means of the object-oriented paradigm. The
classes can be imported into both the external simulation block and the internal one- As
an advantage, it enables both the extemal and internal blocks to be formulated in the
same "language". The most delicate programming work concerns the copying of the
instantaneous state of the external model and interpreting it as the initial state of the
internal one. Nevertheless all problems related to it were in general successfully solved
(Kindler, 2000b).

Note that many Simula implementations offer a possibility for the system linker to
build only one exemplar of classes into the executable model, although it should behave
as being twice in the program: once in the outer block and once - with a completely
different interpretation - in the inner block.

3.2 Principles of Model Copying

Suppose r is a real time moment, during which the extemal model of a system S is
running on the used computer C. And suppose / is the time reflected by the external
model M as the simulation time, i.e. suppose the computer models at time r what should
happen in the simulated system at time t. The organization of computing on an ordinary
commercial computer implies that, at that time, only one oblect W of M performs its life
rules (see thesis (2) of section 3). Suppose further that at the same time the iuternal

l14

model m is to be started. In the real world, it is performed by the computer c that is in S,
and therefore in M it is reflected at the image X of c. The consequence is that lZ is equal
to 1 and that all the other components, i.e. all class instances of M which are to be
reflected in m, are just being in "suspended state". Starting n should root in similar
conditions that are just holding for M. This implies that

o tbr m, the images of "outer" class instances are created as copies, including all their
attributes (a class instance E of Mbe copied at a class instance e of m);

o the next life rule of any such copy e has to be the same as it was prepared for its
original E in LI and must be scheduled for the same simulation timc in m as it was
scheduled in M

o the intemal simulation is scheduled to start using a simulation time numerically equal
to t.

Simula provides relevant programming methods performing such steps. A general
description of'them can be taken from (Kindler, 2000b). Therefore it was no problem to
implement extemal models of systems that contain controlling computers that use
internal simulation models.

3.3 Transplantation

It is already a bit known (Kindler, 2001) that ttre presence of homonl'mous classes in
two nested blocks could be a source of serious programming errors called transplantat-
ion. Such an elror consists in mixing instances belonging to the outer block with those
belonging to the inner block. For example a parcel belonging to the internal model
would be described as entering into a queue introduced for the extemal model. Such an
e1ror may be discovered after millions of further computing steps during that the com-
ponents of both the models are very interchanged. In such a case the true reasons of the
error are difficult to be discovered.

fhere is a small number of the 3-O-languages: beside Simula are Java and Beta. Java
does not prevent from transplantation and Beta has to make a lot of tests (during the
simulation run) to prevent from. The tests make the computing rather slow. Simula has
syntactical rules that introduce certain limitations. They minimize the occasions of
making transplantation errors and therefore a lot of such errors can be discovered during
compilation. Thus the occurrence of transplantation during the computing phase is very
reduced. The simulation is almost not lengthened by the tests. That is another reason
why we use Simula in spite of its lack of graphical devices.

4 Application

4.1 Example of IUP conveyor

The principles mentioned above were a bit illustrated on the example of a conveyor
named IIIP (Bemtet, Coudert, Kindler, 2Q04), but then new possibilities were

l t 5

discovered. While in the first illustration the internal anticipation concerned only the
question whether the transitic system with unavailable working area(s) would be able to
supply its normal function (and how long it would be able to do so), nowadays the
anticipation concerns the question of the future operation when some components of the
system are out oforder. Based on these conclusions, the system is reconfigured. Let us
explain it in more details.

Figure 1: Static structure of the conveyor IUP

The description ofthe physical architecture can be seen in Fig. 1. It consists ofa
great cycle called muin ring and of five working areas (t4/AI to IlrA5). Parcels enter the
main ring at the beginning of its lower long component and are transported to working
places according with their technological programs. The transport proceeds according
with the arrows. Both the long cornponents of the main ring carry the parcels by
motorized rollers while all other components of the system are deserved by pneumatic
jacks. Parcels can be stopped due to mechanical stops. At a working area, a parcel can

access subsequently three places A, B and 7< The parcel is manufactured at B, but it can

enter a working area and wait at its place d,if P is occupied. When a parcel has been

manufactured it comes to place Tand then can leave the working area for the main ring.
In case its injection on the main ring could cause a crash with another parcel there, it has

to wait at t< The elaborated parcels leave the conveyor at the same place where they
entered. In the presented example, every working area can implement two different
transformation functions. WAI and l4tA5 can perform FI and F2, Il/A2 and I(A3 can
perform F2 andF3,andWA4 canperform FI andF3.

116

rwA4
<(-

I sto

{ illtN fir 1

-t 1"

The logical description of the application is mainly performed by the introduction of
the concept of Logical Operating Sequence (Log.Op.Seq.). A Log.Op.Seq. is a set of
ordered machining functions applied to a family of parts. A function describes a service
which the system (FMS) can àeliver without allocated resource. Two Log.Op.Seq -

(FI,F2,F3) and (F3,F2,FI) are considered in our example.
The adopted configuration system architecture is the following. All the workshop is

in normal operating mode (no element is in failure). WAl, lYA2 and WA4 ate in
production (exploitation) mode (they are used for the current production), IlA3 is put on
standby mode (under tension, but not solicited), WA5 is not uuder tension (stop mode).

4.2 Tool description

A computer modeling tool has been developed. By setting parameters and other
manipulation, having use mainly of the object-oriented development of its generic
headstones, the tool can be used as the version figuring in the definition of the
anticipation systems by Rosen (1985). It is based on the use of components that provide

an easy way to build the different models and the internal one, too. Different rules
govern the parcels movements. These rules are changed according with a structural
change at the level of the system, a conclusion expressed by an internal simulation.

Different experiments were carried out.
As it was already mentioned by Bemret, Coudert and Kindler (2004), the first

experiments applied a simulation model M of arather simple system, in which there was
no difference among the coming parcels: each of them was supposed to expect one
processing step that was possible to be performed on any of the five existing working

areas. During the run of M,the operator could model a failure occurrence, mentioning a
change of state of the corresponding working area WAi, where i is the hit key. The
model M refTected the fact that the comput€r controlling the system simulates possible

consequences of the change of state of wAi and displays them by animation.
Next development consisted in adding rules for the processing of the parcels.

Referring to the example section 4.1, the parcels were classified into two sorts so that
each of the sorts had its prcper Logical Operating Sequence. Each Log.Op.Seq. is
composed of three machining functions. For any Log.Op.Seq., working areas were

assigned that shpuld be able to perfiorm one of the considered machining function.
In the following step of the development, the initial input of data allowed the

operator to introduce statistical laws for the duration of the processing at any working

area. At the disposal of the operator, normal, exponential and uniform distribution
models exist, and a deterministic one (i.e. constant) as well. Similar choice is offered for

the time intervals between parcels entering the system. That allows simulating cases
when the functions are originally affected to a certain working area with a short mean
value of processing. After this area becomes no more accessible, the processing is

switched to another working area having its mean value of processing notably greater.

That practice enables alarge spectrum of simulation experiments.
Fig. 2 displays a reflective simulation of the system Fig. l. The animation of the

extemal model is at the lower part of the display while the animation of the intemal

tL7

model takes place at the upper part. When the extemal model runs WA3 and llA5 ate
not used according with the initial configuration. When a failure affecting l4tAl is

considered, the intemal model is projected at the upper part of the display simulating
one other system configuration (the case of the activation of WA3), while the lower part

of the display is frozen.

Figure 2: Reflective simulation of IUP conveyor

1398.6351

ïlfA5 WA4

JllH:ln,,,,,,,,lilHiifi
I
I
I

=
I*,,,'lll

[iI fff
,','urrr I I

WAl

a?Ê .59?3

WA2

l l 8

In the same figure, one can see that the extemal model called the internal one at time
878.5973. This intemal model now shows what could happen at time 1398.0351 using
another configuration where WAI is out of order, WA2, WA3, WA4 are set in
production mode. Near the time information, one can see the images of the queues of
the parcels that are waiting to be accepted by the conveyor (one can see that the queue
conceming the intemal model has a bit increased). This enables to compare the future of
the current configuration where WAI is out of order with another possible
configuration. For taking the snapshot the intemal model run had to be intemrpted. That
was performed by an abrupt change of the continuous regime into the step-by-step one.
The used software allows doing it from the keyboard. In the step-by-step regime, the
simulated time of the rururing model appears at the bottom of the crane window. One
can see there the value 1398.0351, too.

Every parcel situated on the conveyor is mapped as a field containing a sequence of
three symbols (for example, at l(A4 of the extemal model we can watch two fields 3Al
arrd 381). The first symbol identifies the operational sequence, the second symbol
represents the order of expected operation and the last symbol informs on the number of
cycles that the parcel has performed over the main ring. The instantaneous states of the
parcels are represented also by colors of the fields. The symbols XXX depicts that the
correspondin g WA is out of order.

5 Contribution of reflective simulation for reconfigurable systems

Based on the tool presented in section 4.2, experiments emphasizing the interest of
reflective simulation in case of anticipation of reconfigurable systems were carried out.

At the beginning, the configuration of the system is simulated in its initial
configuration. Its external model is computed. At a time l, a perturbation is introduced.
It can be a failure occurrence or unexpected manufacturing order. The current
configuration is no more suitable. Different configurations are then generated. For each
of them, it is possible to simulate the system behavior and to calculate some parameters
such as the number of manufactured parts and the mean waiting time. After, it is
possible to return to the external model with the selected configuration and to simulate
its evolution until a new change occurs.

For example, internal simulation shows that in the case of a failure affecting WAI, at
the moment it occurs, it is suitable to switch to the new configuration: lI/A2, WA3 znd
I(A4 are in production (exploitation) mode, llAI is set in shut down mode, llA5 stay in
stop mode. This configuration is sufficient according to the simulated processing times.
There is no need setting l4A5 in production mode. According with criteria expressed in
(Bemret, et aI.,2000), only sigrrificant reconfiguration is sufficient. The anticipation of
possible consequences of the decisions and choice among the variants can be got by
means of forward-looking simulation. The computer C that controls a given system S
can be used to generate the decisions that are physically possible and then to simulate
the future of S according with the generated decision. So reflective simulation enables to
measure how C can come to a quite good decision. The interest is not only to simulate a
system that can change its configxation according with its possibilities and production

t19

criteria, but also to simulate how the reconfiguration process based on simulation is
suitable.

The next part opens the discussion and presents some examples of questions, the
answers of which are given by mean of reflective simulation. Questions can be
classiflred at two different levels.

The first level mainly concerns production objectives and performance evaluation. It
can not be answer by mean of "classical" (not reflective) simulation if the intemal
simulation could not be omitted from the real system, as it could not be replaced by any
other methods.

Ql) A failure occurs at IlAi tbat can be supplied by other working areas. The repair
would cause an intemrption of the whole system. The question is about the length of the
gueue of the parcels requesting the system. Simulation of the conveyor operating with
four working areas can answer and therefore help in the decision whether the failure
should be repaired immediately or after a series of parcels have been performed.

Q2) Only four working areas belonging to a set W are used. The fifth area p is
currently stopped due to the maintenance of a processing element. A fault occurs at a
working area P belonging to 14. The question is how long the conveyor will be able to
work in a good manner in case Q supplies P.

The second level concerns the interest ofreconfigurable system and relevancy,rfthe
reconfi guration process.

Q3) Based on criteria introduced in Kindler et al. (2003), what should be the
maximum size for reflective simulation? Does the evaluation of one configuration spend
a lot of time? Do only two or three configurations should be evaluated?

Q4) Is it interesting to add a lot of redundancies to the design system? As it is well
known, redundancy has a cost. Reflective simulation of such a system can help
designers in their choices by providing data from dependability point of view.

Other questions concern the reconfiguration process itself.

Q5) What is the interest of the reconfiguration from dependability point of view?

Q6) Does this process be relevant in a transitional phase?
The system with and without reconfiguration can be simulated and the impact of

dependability aspects studied.

6 Conclusion

After defining the notion of nested simulation, this work points out some applications
of reflective simulation. The area of interest concems reconfigurable manufacturing
systems and particularly a decisional reconfiguration process based on predictive
simulation. The advantage of the presented techniques is that it can be applied during
the desigrr phase of the system. It opens some interesting ways for the evaluation using
simulation of this kind of process. Technically, another benefit is that the building of the
internal model is automatically performed when needed and the current statement of the
extemal model is transmitted for internal simulation.

The tools have now to be exploited in details. Different experiments are to be carried
out considering the variation of both parameters of system physical architecture (as

t20

machining speed, number of redundancies, ...) and parameters of reconfiguration (time

to react, to .àdu"" the system stop for withdrawal, to minimize the tardiness in complet-

ing the process, ...). The objective of the anticipation shall be to have a productive

,yit"* wittr gooa performances on a wide time horizon including some failures. The

reactive piloting pràblematic could then be tackled by these kinds of techniques'

Reflective simulation is also able to anticipate whether the decision algorithms are

able to be calculated during the evolution of the real system. The rate of the simulating

computer can be introduced as a parameter for the reflective simulation. The presented

software tool enables to integrate the intemal simulation model as one of the dynamic

systems existing in time together with the other elements of the system mapped in the

extemal model.
The nested simulation of the conveyors illustrated the abundance of stimuli that

come from technology to anticipatory systems and plenitude of ways how to solve the

related obstacles.
Cunently further works are:

. io use scripts to automatically generate simulation experiments with different failure

occtllïences.

o to introduce some rules based on simulation to anticipate where is the most suitable

llA toperformthe next step of a logical operating sequence. This will induce another

level of internal model (Kindler et al. 2003). The reflective simulation will have

depth two (depth one for the evaluation of the reconfiguration process with another

level for the simulating computer that enables to choose the best working area)'

References

Berruet, P., Coudert, T., Kindler, E. (2004). Conveyors With Rollers as Anticipatory

Systems: Their Simulation Models: CASYS 2003 - Sixth Intemational Conference.

n-Otea by Daniel M. Dubois, Published by The American Institute of Physics, AIP

C,srfErerrce Proceedings 718, pp. 582'592-
Bemte! P., Toguyeni, A. K.A., El Khattabi, s., and craye E. (2000). Toward an Imp-

lementation of Recovery Procedures for FMS Supervision. Computers in Industry

43.227-236.
grenx|n R., Fletcher M., Zhang X., Norrie D. (2001) Reconfiguration of Real-time Dis-

tribute.d Control Systeins: An IEC 61499 Based Approach. Proc. International Confe-

rence on Industrial Engineering and Production Managernent, Quebec, pp' 620-630'

Henry, S.,Zamai,E.n Jacomino, M. (2004) Real Time Reconfiguration of Manufactur-

ing systems, Proc. IEEE SMC, The Hague, Edited by will Thissen, Peter wieringa,

M-aja Pantic, Marcel Ludema, Published by IEEE System Man and cybemetics

Society, pp.4266-4271
Kamach,-O., l. Pi"ttu", Niel E. (2003) Multi-model Approach for Discrete Event

systems: Application to operating Mode Management. Proc. IEEE-IMACS CESA,

fiile. gditeà by Pierre Bome, Etienne Craye, Nathalie Dangoumeau, Published by

IMACS/IEEE SMC,7 Pages

tzl

Kindler, E. (2000a). Nesting Simulation of a Container Terminal Operating With its
own Simulation Model. JORBEL (Belgian Journal of Operations Research, Statistics
and Computer Sciences) 40, 169-18l.

Kindler, E. (2000b). Chance for Simula. ASU Newsletter26,2-26.
Kindler, E. (2001). Computer Models of Systems Containing Simulating Elements:

CASYS'2000 - Fourth International Conference. Edited by Daniel M. Dubois,
Published by The American Institute of Physics, AIP Conference Proceedings 573,
pp.390-399.

Kindler, E., Krivy I. and Tanguy, A. (2003) Is it Possible to lntroduce Order Among
Nesting Simulation Models? ln: J. Stefan (ed.): ASIS'03 - Advanced Simulation of
Systems (Proceedings of a conference held at Sv. Hostyn in September 8-10, 2003),
MARQ, Ostrava, pp. 359-364

Rosen, R. (1985), Anticipatory Systems. Pergamon Press, Oxford, MA
Ruy K., Son Y., Jung M. (2003) Modeling and Specifications of Dynamic Agents in

Fractal Manufacturing Systems. Computers in Industry 52,16l-182.
Shen, W., Norrie, D.H. (1999) Agent-based systems for intelligent manufacturing: a

state of the art survey, Knowledge and information systems 1, 129-156.
SMULA Standard (1986). SIMUI-A a.s., Oslo.
Tomizuka, M (2002). Mechatronics: From the 20th to 2lst Century. Control Engineer-

ing Practice 10, 877-886.

r22

	Casus_v19_pp109-122_Berruet

