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Abstract

In the presented study it is shown how heteroscedastic normal variables with un-
known variance can be characterized by a symmetric beta distribution of the first
kind with a known parameter. The presented variance-free characterization tech-
nique is illustrated with testing for normality the empirically observed financial re-
turn time series. We further suggest one of the possible extensions of the presented
method that can be used for statistical learning with applications in real-time and
time-critical systems.

Keywords : Hypothesis testing; Beta distribution family; Financial econometrics;
Realized volatility; End-of-sample instability.

1 Introduction

Suppose the following assumingly zero-mean heteroscedastic serially uncorrelated
normal random variable can be observed:

L1159 Tlkye -y LTy -, TT ks (1)

2
where z,; ~ N (0, %) and the variance o? is unknown. Since the variable Tis,
(t=1,...,7,i=1,...,k) is serially uncorrelated, r, = Zf;l z;; is distributed as
e ~ N(0,07). It is required to test if z,; is indeed normally distributed, which
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is not trivial since the variance ¢ is unknown and unequal within different sub-
periodst = 1,...,T. In the following study a new test for heteroscedastic normality
is presented that requires none or very little knowledge about the variance of an
underlying variable. The test is illustrated on the example of testing for normality
the financial return time series, though we believe that the results of the study can
be of a practical value for a wide range of theoretical and applied disciplines.

The study is structured as follows. In Section 2 a non-asymptotic relationship
between a normal distribution and beta distribution of the first kind is presented.
In Section 3 the indicated relationship is applied in a variance-free test for het-
eroscedastic normality, which is illustrated with an application to the empirically
observed financial return time series. Section 4 concludes with the summary of the
main results and suggests the direction for further research.

2 A Non-Asymptotic Relation Between Normal and Beta
Distributions

Having the observed sequence of variables similar to (1), it is required to test if
T, (t=1,...,T,i=1,...,k) is a serially uncorrelated zero-mean normal variable.
Recognising that the variance parameter is different for different ¢, a traditional way
to start with would be the examination of standardized variables given by
Tt

2z = (2)

gy
where r; = ):2“:1 z; and oy is the underlying standard deviation of r, within each sub-
period ¢. If the distribution of z;; given by (1) is indeed normal, then the resulted
series 2y, (t = 1,...,T) will be standard normally distributed N(0,1). However, the
standardization given by (2) is difficult to implement since the variance is unknown
and therefore only variance estimates can be used for standardization. The following
estimator, which is known in finance as a realized volatility estimator,

k
0 tz,k 5y Z m?,i 3)
i=1
is unbiased (E(07,) = o), consistent (o7, — 07 as k — oo) and highly efficient
variance estimator that does not require information outside any individual sub-
period (t = 1,...,T) (see Andersen and Bolerslev, 1998; Andersen et al., 2001).
Note that the subscript k in of’ « indicates that it is an estimate of the true parameter
o? computed by summing k squared variables as shown by (3). With the use of a
realized volatility estimator, the standardization (2) takes the following form:

k .
S LIRS ()

k .2 o
V iz Tr tk

61



Some authors (e.g. Andersen et al., 2000; Bollen and Inder, 2002; Djupsjobaska,
2002; Kayahan et al., 2002, among others) used the standardization given by (4) in
the empirical studies expecting a resulted variable z;, (t = 1,...,T) to be standard
normally distributed. However, the authors did not recognise that for finite &, the
variable z; is no longer expected to be standard normally distributed due to the
positive correlation between the absolute of the numerator |r;| and the denominator
Ouk in (4). Intuitively, such correlation will result in shifting the random variable
z; given by (4) towards zero, inducing platykurtosis. Furthermore, for finite k,
maximum and minimum of 2, are also finite. For demonstrating this, suppose the
following function is given:

k.
i=1Li

2y = e (z; € (—o00,+0), k€2,3,...,00). (5)
V Zf:la:‘t?

It is required to find the minimum and maximum of the given function. In order to do
this, the partial derivatives of the function (5) with respect to each z;, (i = 1,...,k)
should be taken and jointly set to zero:

1 ;- f_ x; )
flag) =~ - BZE g5, (6)
\/ii:l o \/( i=1 27)3
flz) =0
: (7)
f(ze) =0
The system (7) has a multiple solution given by z; = ... = zy, (z; € (=00, +00)).
Therefore the function (5) has min(z;) = —Vk for ; < 0 and max(z;) = vk for
z; > 0:
ming, <o/max,, -o(zx) = —==L . < +Vk, (8)
VEhiz kst VR
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As a result, z; € (—vk, V&), which differs from (=00, +00) of a normal variable.
The above arguments lead to the conclusion that for finite values of k& > 1, z, given
by (4) follows a specific distribution which is not normal. Thompson (1935) and
Pearson and Chandra Sekar (1936) studied a variable given by

Lt Vk _ i Vk 9)
V i % Tok
and concluded that it is distributed with a Pearson type II distribution, a distrib-

ution that belongs to the beta family (see Devroye, 1986). However, the authors
did not explore the distribution of z; given by (4) more likely because they worked

2ti =
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with a single-period 7" = 1 and examined a more general case with subtracting a
mean estimate from each z;;, (i = 1,...,k), which leads to % (71, — 71) = 0,
(T1 = k'35, 7;,). Taking into account one additional degree of freedom ob-
tained by not subtracting a mean Z;, we state that the distributions of z; given
by (4) and z;; given by (9) are identical, though this result does not directly fol-
low from the analytical proofs given in Thompson (1935) and Pearson and Chan-

dra Sekar (1936). To justify this result we first can present any single variable
2
£ =10 (:ch ~ N(0,52),62 = %) given by (1) as a sum of k independently identi-
52
cally normally distributed variables z; = >F_, i, (yj_h ~ N(0, 7})) Performing
the same analytical manipulations with z; = Z,’jzl y;» as we did with the initial
‘ variable Ty = Zf:ﬁ?t,i, (ry ~ N(0,02)) clearly will lead to the conclusion that

B = - = 3~ is distributed with the same distribution as 2, given by (4).
‘ Zh:l y?,h o
. . . o _ o? ] s _ & _ #VE
| Since the variance of y; is 67 = 3+ by construction we have z; = i~ = G
W) .

| which is equivalent to (9). On this ground, it can be concluded that the distributions
| of z; given by (4) and z;; given by (9) follow the same Pearson type II probability

distribution as proven by Thompson (1935) and Pearson and Chandra Sekar (1936).
| Further. knowing the upper and lower limits of the variable z; given by (4), it is
‘ straightforward to perform the following normalization:

| 5 = 2 + \/%
t 2 . \/E ’
| Noticing that z, € (—vk, Vk), it is easy to show that z, € (0,1). Moreover, it has

been found that z;, given by (10) is distributed with a symmetric beta distribution
of the first kind with a known parameter:

(t=1,...,T, k=2,3,...,00). (10)

| k-1
z't~,31< 5 ) t=1,...,T, k=2,3,...,00), (11)

&

| which is a well studied theoretical distribution (see Jambunathan, 1954, among
| others). This result is confirmed by the following equality:

JE=1+(£—05)

Zt k -1
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The left-hand side of (12) is a well known transform of symmetric beta of the first
kind distributed variables to Student ¢ distributed variables (see Devroye, 1986). The
right-hand side of (12), after taking into account one additional degree of freedom,
is given by Thompson (1935) as a transform of variables z; given by (4) to Student ¢
distributed variables. In fact, both sides of (12) give a variable distributed as Student
t with (k — 1) degrees of freedom, which is consistent with Thompson (1935) and

(12)
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Pearson and Chandra Sekar (1936) and enough for drawing the conclusion that z;
given by (10) is distributed with a symmetric beta distribution of the first kind.

To summarise the section, we have demonstrated how normally distributed vari-
ables given by (1) can be transformed to symmetric beta of the first kind distributed
variables by the strict mathematical manipulations given by (4) and (10). The in-
dicated relation is non-asymptotic, in contrast to the asymptotic convergence of a
symmetric beta of the first kind towards normal when a parameter of beta goes to
infinity, and this enables the use of the presented relation for real-world finite-sample
problems.

3 A Variance-Free Test for Heteroscedastic Normality

In the following section we demonstrate how the property given by (11) can be
used in a variance-free test for heteroscedastic normality. We illustrate the test
with an application to the empirically observed financial return time series, which
according to the Efficient Market Hypothesis (EMH) by Fama (1970) and Mixture
of Distributions Hypothesis (MDH) by Clark (1973) are expected to be zero-mean
serially uncorrelated normally distributed. Considering the series z;; given by (1)
and ry = Zf:l x4, as intradaily and daily continuously compounded financial returns
respectively, the test can be stated in the form of the following hypothesis:

k 2
Hy : e~ N(0,07), (Tt =Y T i~ N (01 %) 3 (13)
i=1
Cov(zi,z;) =0, i # j)

is tested against

k 2
H, : 1, is not N(0,07), (’r't = th,i, xe; ~ N <0. %) , (14)
i=1

Covlzy,2;) =0, 14 7).

H, should not be rejected if the variable Z, given by (10) is distributed with a
symmetric beta distribution of the first kind given by (11). It should be noted that
this test is simple, as opposed to composite, because we do not treat o7, given by
(3) as a variance estimate when calculate a characteristic variable Z; in (10). Thus,
the suggested test is variance-free. The obvious weakness of the test is the required
equality of variances of z,;, (i = 1,..., k) within each day ¢. However, the empirical
evidence suggest that the variance of intradaily financial returns, in general, has the
same pattern within each day, though it is not necessary equal for different days (see
Andersen and Bolerslev, 1997; Areal and Taylor, 2002). Relying on this empirical
observation, we use the weighting procedure suggested by Areal and Taylor (2002)
for maximizing the efficiency of the estimator given by (3):

k
Uzk = Zwixzi, (15)

i=1
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where w; = - ,\ , following Taylor and Xu (1997) )\ _Tz—:t—ik_tdl‘— and Ek Aw; =
1. Now a test for normality of 7; takes the form of the follown;g ﬂypothems
£1s
Hy : TtNN(O at ( Z‘tha .T“NN( wz]:t)’ (16)
i=1

CO’U(IZ', I]*) = 0, 1 % ])

is tested against

% 2
Hy : 7, is not N(0,02), (rt = Ty, T~ N (0, u;cat ) ; (17)
=
=0, 1 # j)

As before, Hy should not be rejected if the variable given by

. z+Vk _ E?:l Wil
= G =
2-vk 2

Z?=1 WiTy ;

follows a symmetric beta distribution of the first kind given by (11). Although the
transformed test is no longer simple, since estimates of weights w;, (i = 1,...,k)
are used for testing, it still does not require estimates of daily return variance o2
and thus is variance-free. Further we give the empirical illustration of a test assum-
ing that only three intradaily observations are available: open (z.), middle-day
(x+2) and closing (z:3) continuously compounded returns. The hypothesis given
by (17) and (18) has been tested with two financial return time series. The re-
turn series have been computed from the foreign futures exchange rates between
the Australian dollar and US dollar (AUD/USD) and between the Japanese yen
and US dollar (JPY/USD). The data has been initially provided by Tick Data, Inc
(www.tickdata.com) and covers the period from 02 January 1990 to 31 March 2000
(T = 2586 trading days). The duration of each trading day ¢ is 400 minutes. Trading
is open Monday to Friday, from 7.20 a.m. to 2.00 p.m. z., is the last return recorded
before 8.10 a.m. and 8.00 a.m. for AUD/USD and JPY/USD series respectively.
The middle-day return z,. is the last return recorded before 10.40 a.m. for both
series. The closing return z; 3 is the last return recorded before 2.00 p.m. for both
series within a day ¢t. The days when at least one intradaily return z;;, (i = 1,2, 3)
could not be observed, have been excluded from the series. As a result, we have left
with 2394 and 2436 daily observations (2394-3 = 7182 and 2436-3 = 7308 intradaily
observations) for AUD/USD and JPY/USD return series respectively.

Before proceeding with the empirical test, we report some characteristics of size
and power for the simple test given by (14) and (15) and its composite alternative
given by (17) and (18) for k = 3, though we should note that the power can be
greater for values of k£ other than 3.

Cov(z;i, z;)

 t=1...,T k:2.3....,oo) (18)
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| Table 1: The size and power of a simple test for normality given by (14) and (15)
with k = 3. The power is measured against Student ¢ distributions with 2, 4 and 6

‘ degrees of freedom and autocorrelated normal with autocorrelation coefficients (a.c.)
equal to 0.05, 0.10 and 0.20. The number of Monte Carlo trials M = 10000.

‘ N(0,02) t(2) t(4) t(6)  Autocorrelated Normal
T = 1000 a.c.=0.05 0.10 0.20
‘ a=0.01 0.0088 02242 0.0328 0.0177 0.0360 0.2322 0.9770
0.05 0.0465 0.5116 0.1229 0.0792 0.1452  0.5488 0.9990
0.10 0.0965 0.6983 0.2136 0.1445 0.2542  0.7255 1.0000
T = 2500
a =001 00093 0.7560 0.0927 0.0377 0.1174 0.8010 1.0000

0.05 0.0488 0.9626 0.2671 0.1273 0.3548  0.9704 1.0000
0.10 0.0957 0.9938 0.4164 0.2222 0.5241  0.9933 1.0000
T = 5000
a=0.01 00102 09990 0.2481 0.0749 1.0000 1.0000 1.0000
0.05 0.0508 1.0000 0.5513 0.2228 1.0000 1.0000 1.0000
0.10 0.0988 1.0000 0.7294 0.3628 1.0000 1.0000 1.0000

Table 2: The size and power of a composite test for normality given by (17) and
(18) with k£ = 3. The power is measured against Student ¢ distributions with 2, 4
and 6 degrees of freedom and autocorrelated normal with autocorrelation coefficients
(a.c.) equal to 0.05, 0.10 and 0.20. The number of Monte Carlo trials M = 10000.

N(0,0%) (2 t(4) t(6)  Autocorrelated Normal

T = 1000 : a.c.=0.05 0.10 0.20

a =001 00062 04271 0.0343 0.0100 0.0107 0.0295 0.2240
0.05 0.0398 0.5815 0.1081 0.0500 0.0579  0.1289 0.5610
0.10 0.0822 0.6773 0.1861 0.1032 0.1135 0.2346 0.7500

T = 2500

a =001 0.009 0.6496 0.0591 0.0197 0.0218 0.1005 0.8404
0.05 0.0400 0.8094 0.1697 0.0741 0.0981 0.3256 0.9868
0.10 0.0853 0.8841 0.2739 0.1434 0.1845 0.5138 0.9989

T = 5000

a=10.01 00092 0.8544 0.1089 0.0277 0.0349 0.3262 0.9997
0.05 0.0437 0.9607 0.2752 0.1152 0.1489  0.7087 1.0000
0.10 0.0873 0.9867 0.4115 0.2078 0.2683  0.8711 1.0000
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As can be seen from Table 1, the simple test has asymptotically correct size and
keeps the substantial power even with a Student #(6) distribution, which is fairly
close to a normal. The size of the composite variance-free test is slightly distorted, as
can be seen from the column of Table 2 corresponding to N(0,0?). The distortion of
size is due to the use of estimates in the testing procedure. Further, the distorted size
results on a lower power of the composite test with respect to its simple alternative
as also demonstrated by Table 2. See Lloyd (2005) for the exposition of testing size
and power issues.

For performing the actual empirical test, the characteristic variables given by
(18) have been calculated and tested if they are distributed as 3 (ﬁ;—l) = 6(1)
with an application of the Kolmogorov-Smirnov (KS) test. The estimates of weights
and p-values obtained from the KS test are given in the table below. According to

Table 3: The test for the symmetric 3;(1) distribution of the empirical character-
istic series calculated as shown by (18). The failure to reject 5;(1) distribution of
the characteristic series is equivalent to the failure to reject heteroscedastic serially
uncorrelated normality of the initial return series.

wy Wy w3 p-value
AUD/USD 0.5148 1.5474 2.4318 0.0290
JPY/USD 0.5188 1.5582 2.3209 0.0649

Table 3, Hy given by (17) cannot be rejected at 99 and 95% confidence levels for
AUD/USD and JPY/USD series respectively. These results provide the objective
evidence in favour of the EMH and MDH since the test requires intradaily returns
to be uncorrelated zero-mean normal variables.

4 Conclusion and Suggestion for Further Research

In the presented study it has been demonstrated that a random variable z; given by
(4) follows a specific platykurtic distribution with one parameter which is found to be
identical to a Pearson type II distribution obtained in Thompson (1935) and Pearson
and Chandra Sekar (1936). It has been proven by (6), (7) and (9) that the minimum
and maximum of z given by (4) correspond to —vk and vk respectively. This
result suggested the transformation given by (10) that leads to a new variable Z; €
(0,1). It has been confirmed by (12) that Z, follows a symmetric beta distribution
of the first kind with a known parameter @ This property has been used in a
variance-free test for heteroscedastic normality. Two versions of the test, simple and
composite, have been suggested. The composite version of the test given by (17)
and (18) with k = 3 has been applied to the empirically observed AUD/USD and
JPY/USD returns on futures contracts. The null could not be rejected at 99 and
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95% confidence levels for AUD/USD and JPY/USD series respectively, providing
additional objective evidence in favour of the widely debated normality of financial
returns.

We would like to note that the property given by (11) can be used in a group
of alternative statistical procedures. For example, under the null, a heteroscedastic
normal variable can first be characterized by a symmetric beta distribution with
a known parameter, next with the use of a beta cumulative distribution function
transformed to a probability integral distributed as U(0,1), and finally through
a normal inverse function transformed to an invariant standard normal variable.
Then the end-of-sample instability testing techniques suggested in Nechval (1988),
Andrews (2003) and Moldovan (2003, pp. 40-50 and 69-71) can be applied for antic-
ipation and detection of breaks in a random process. Such end-of-sample instability
procedures can be used for statistical learning in real-time and time-critical systems.
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