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Abstract
In the presented study it is shown how heteroscedastic normal variables with un-
known variance can tre characterized by a symmetric beta distribution of the first
kind with a known parameter. The presented variance-free characterization tech-
nique is illustrated with testing for normality the empirically observed financial re.
turn time series. We further suggest one of the possible extensions of the presented
method that can be used for statistical learning with applications in real-time ami
time-critical systems.
Keywords : Hypothesis testing; Beta distribution fa.rnily; Financial econometrics;
Realized volatility; End-of-sample instability.

1 Introduction

Suppose the following assumingly zeromean heteroscedastic serially uncorrelated
normal random variable can be observed:

C1,1 ,  .  .  ,  ,  t r y , k ,  .  .  .  , I T , l r .  .  .  , I T , k ,  ( 1 )

where rs,4 - uo (0,t') uno the variance of is unknown. Since the variable r1,;,
( t : 1 , . . . , 7 , i , : I , . . . , k ) i s s e r i a l l y u n c o r r e l a t e d , r t : L l = r r ' , 1  i s d i s t r i b u t e d a s
r, * N(O,oi). It is required to test if r1,1 is indeed normally distributed, which
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is not trivial since the variance or2 is unknown and unequal within different sub-
periods t :1,.. . , ?. In the following study a new test for heteroscedastic normality
is presented that requires none or very little knowledge about the variance of an
underlying variable. The test is illustrated on the example of testing for normality
the financial return time series, though we believe that the results of the study can
be of a practical value for a wide range of theoretical and applied disciplines.

The study is structured as follorvs. In Section 2 a non-asymptotic relationship
be,tween a normal distribution and beta distribution of the first kind is presented.
In Section 3 the indicated relationship is applied in a variance-free test for het-
eroscedastic normality, which is illustrated with an application to the empirically
observed financial return time series. Section 4 concludes with the summary of the
main results and suggests the direction for further research.

2 A Non-Asymptotic Relation Between Normal and Beta
Distributions

Having the observed sequence of variables similar to (1), it is required to test if
r t , i r ( t  -  1, . .  . ,7, i :1, . . . ,k) is aserial ly uncorrelated zero-Dtean normal var iable.
Reccgnising that the varig,nce parameter is different for different t, a traditional 'way

to start with would be the examination of standardized variables given by

T1
zt : -, (2)

O1

where rr :ILr ,rûr a.nd o1 is the underlying standard deviation of 11 within each sub-
period t. If the distribution of 16,; given bV (t) is irdeed normal, then the resulted
series 4, (t: 1,...,?) will be standard normally distributed ̂ '(0,1). However, the
standardization given bV (2) is difficult to implement since the variance is unknown
and therefore only variance estimates can be used for standardization. The following
estimator, which is known in finance as a realized volatility estimator,

is unbiased (E("7,ù : o?), consistent (o?,x - ol as k -* oo) and highly efficient
variance estimator that does not require information outside any individual sut>
period {t : 1,. ..,7) (see Andersen and Bolerslev, 1998; Andersen et al., 2001).
Note that the subscript k in ol1, indicates that it is an estimate of the true para,rneter
or2 computed by summing k squared variables trs shown bV (3). With the use of a
realized voiatility estimator, the standardization (2) takes the following form:

(3)
&

o7,*:Dc/l,,
i=1

Df:tr* 11
Z + : :" 

tlDf='*?,n 
ot'k
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Some authors (e.g. Andersen et al., 2000; Bollen and Inder, 2002; Djupsjôbaska,
2002; Kayahan et al., 2002, among others) used the standardization given by (a) in
the empirical studies expecting a resulted variable 21, (t : 1,. . . ,T) to be standard
normally distributed. However, the authors did not recognise that for finite fr, the
variable zt is no longer expected to be standard normally distributed due to the
positive correlation between the absolute of the numerator lrll and the denominator
o1,2 in (4). Intuitively, such correlation will result in shifting the random variable
z1 given bV (a) towards zero, inducing platykurto,sis. Furthermore, for finite k,
maximum and minimum of. z" are also finite. For demonstrating this, suppose the
following function is given:

D!:, rt
21" :  - - l7 ,

lLi=' '7
( r a  e  ( - o o , * o o ) ,  k  e 2 , 3 , . . . , o o ) .

( J  :  1 , 2 , . . . , 1 c ) ,

(5)

it is required to find the minimum and maximum of the given function. In order to do
this, the partial derivatives of the firnction (5) with respect to eæh ri, (à :1, . .. , ,k)
should be taken and jointly set to zero:

r t . -  \ ,  _ |  
" i  

'Di :rr t
. t  \ r J t - - - -  

- - - - : ,

tlL!:, '? | (Lf=',7Y
(6)

(7)I  T@)' :o

l . /("0)' : o 
'

The system (7) has a multiple solution given by tr : ... : rk, (rr e (-oo,+o"))^
Therefore the function (5) has min(26) : -vE for r; < 0 and max( z1) : t/E for
1 6 ) 0 :

rnin",.s/max",>o(:*):uffi:ffi:#:*rt, (8)
( ' t : " ' - ' ù '

As a result, z* e (-JE, rÆ), *Li"h differs from (-oo, *oo) of a normal variable.
The above arguments lead to the conclusion that for finite values of k > 1, z6 given
by (a) follows a specific distribution which is not normal. Thompson (1935) and
Pearson and Chandra Sekar (1936) studied a variable given by

_  r t t .  /E  r t t . JE- " , " :  - - - :  - :

{Lf:, r7,o ot'k (e)

and concluded that it is distributed with a Pearson type II distribution, a distrib
ution that belongs to the beta family (see Devroye, 1g8o). However, the authors
did not explore the distribution of z1 given bv (a) more likely because they worked
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with a single-period T : I and examined a more general case with subtracting a
mean estimate from eàch n1,4, (i: I,...,k), which leads to ff:r(r1,i - rr) : 0,
(ir: k-tD!=rrt,n). Taking into account one additional degree of freedom ob
tained by not subtracting a meân i6 wê state that the distributions of zr given
bV (a) and 21,6 given by (9) are identical, though this result does not directly fol-
low from the analy"bical proofs given in Thompson (1935) and Pearson and Chan-
dra Sekar (1936). To justify this result we first can present any single variable
-  / -
ft j : rt,i, (r, - .nf1O, 6?),61: ?) S,"* by (1) as a sum of ft independently identi-

cally normally distributed variables ri : Df:tui,o, (ui,o- N(0, fl) 
"*arming

the same analytical manipulations with ri : Dl:tAj,n as we did with the initial
variable rt: L!:trL6 (n - N(O,of)) clea,rly will lead to the conclusion that
2, : -#: iL is distributed with the same distribution as z1 given bV ( )." 

lDi=,4, 
"''E

Since the variance of Aj,n is o] : t' by construction we have Zi : *; 
: +#,

\ , ; r /
which is equivalent to (9). On this ground, it can be concluded that the distributions
of z1 given bV (a) and 21,6 given by (9) follow the same Pearson type II probabiiity
distribution as proven by Thompson (1935) and Pearson and Chandra Sekar (1936).

Further. knowing the upper a,nd lower limits of the variable zl glven by (4), it is
straightforward to perform the following normalization:

(10)

Noticing that zt Ç (-JE, t/tt), it is easy to show that 2t€ (0, 1). Moreover, it has
been found that 2l given by (10) is distributed with a syrnmetric beta distribution
of the first kind with a knowa parameter:

/ .  . -
tlzt - 4-

(  11)

which is a well studied theoretical distribution (see Jambunathan, 1954, among
others). This result is confirmed by the following equality:

{E -7. (r, - o.b) zr t/Ti1

tlt - "7
The left-hand side of (12) is a well known transform of symmetric beta of the fust
kind distributed variables to Student f distributed variables (see Dewoye, 1986). The
right-hand side of (12), after taking into account one additional degree of freedom,
is given by Thompson (1935) as a transforrn of variables 4 give\ by (a) b Student I
distributed variables. In fact, both sides of (12) give a variable distributed a"s Student
I with (k - 1) degrees of freedom, which is consistent with Thompson (1935) and

(12)
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Pearson and Chandra Sekar (1936) and enough for drawing the conclusion that 21
given by (10) is distributed with a s5,'rnmetric beta distribution of the first kind.

To summarise the section, we have demonstrated how normally distributed vari-
ables given by (1) can be transformed to symmetric beta of the first kind distributed
variables by the strict mathematical manipulations given by (a) and (10). The in-
dicated relation is non-asymptotic, in contrast to the asymptotic convergence of a
symmetric beta of the first kind towards normal when a parameter of beta goes to
infinity, and this enables the use of the presented relation for real-world finite-sample
problems.

3 A Variance-Flee Test for Heteroscedastic Normality

In the following section we demonstrate how bhe property given by (11) can be

used in a m,riance-free test for heteroscedastic normality. We illustrate the test

with an application to the empirically observed financial return time series, which

according to the Efficient Market Hypothesis (EMH) by Fama (1970) and Mixture

of Distributions Hypothesis (MDH) by Clark (1973) are expected to be zero-mean

serially uncorrelated normally distributed. Considering the series r1.a given by (1)

and 11 : Ll:tr4,. as intradaily and daily continuously cornpounded financial returns

respectively, the test can be stated in the form of the following hypothesis:

(13)

is tested against

H4: \ is not I/(0, af ), (r4)

.I/o should not be rejected if the rariable z1 given by (10) is distributed with a
symmetric beta distribution of the first kind given by (11). It should be noted that
this test is simple, as opposed to composite, because we do not treat or2,o given by
(3) as a variance estimate when calculate a characteristic variable 21 in (10). Thus,
the suggested test is variance-free. The obvious weakness of the test is the required
equality of variances of. 11,6, (i : I, . . . , k) within each day t. However, the empirical
evidence suggest that the variance of intradaily financial returns, in general, has the
same pattern within each day, though it is not necessary equal for different days (see
Andersen and Bolerslev, 1997; Areal and Taylor, 2002). Relying on this empirical
observation, we use the weighting procedure suggested by Areal and Taylor (2002)
for maximizing the efficiency of the estimator given by (3):

k

o1,x:Du&?,r,
i :1

Hs i 11- l/(0, oï, (rr:t-rr.n, rt.t - N (t,f)

C o u ( r i , r i ) : A , i * j )

/ k / * 2 \
{  r-  :  J- r+;.  r+, , -  . fy '  lo.  : l  I  .
\ ' ,  

L * " . "  * ' . '  -  
\ " '  k  /  

'

C o u ( r i , r  j )  : 0 ,  i  +  j ) .
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rvhere ur.: *,,following Taylor and Xu (1997) t, : 
t{ffi; 

and !f:1 Àiw4:

zt* {E_-Ê_.
2 . \ / k  

' k :2 , r ,  , * )

(16)

(17)

(18)

1. Now a test for normality of 11 takes the form of the following hypothesis:

Hs:  . ,1-  N(0,  o ï ,  ( r r :  
É" , , , ,  

ï t , r  -  N (0,#)  ,

Cou(ra, r ) :0 ,  i  *  j )

is tested against

H.a'. rt is not N(0, oï, (rr: f  ,r,n, rt ,r - N (o,t#) ,
\ c-:i 

cou((ri,"r) \ o, i r'r,
As before, ,FIs should not be rejected if the variable given by

- t -

follows a symmetric beta distribution of the first kind given by (11). Although the
transformed test is no longer simple, since estimates of weights w;, (i : 1,. . . , k)
a,re used for testing, it still does not require estimates of daily return lariance of
and thus is variance-free. F\rrther we give the empirical illustration of a test assum-
ing that only three intradaily observations are available: open (r1,1), middle-day
(c42) and closing (r13) continuously compounded returus. Tlre hypothesis given
by (17) and (18) has been tested with two financial return time series. The re.
turn series have been computed from the foreign futures exchange rates between
the Australian dollar and US dolla,r (AUD/USD) and between the Japanese yen
and US dollar (JPY/USD). The data has been initially provided by Tick Data, Inc
(www.tickdata.com) and covers the period from 02 January 1990 to 31 March 2000
(T : 2586 trading days). The duration of each trading day t is 400 minutes. Tbading
is open Monday to Fliday from 7.20 a.m. to 2.([ p.m. r1,1 is the last return recorded
before 8.L0 a.m. snd 8.00 a.m. for AUD/USD and JPY/USD series respectively.
The middle-.day return c1,2 is the last return recorded before 10.40 a.m. for both
series. The closing return 243 is the last return recorded before 2.00 p.m. for both
series within a day t. The days when at least one intradaily return rtj, (i: 1, 2,3)
could not be observed, have been excluded from the series. As a result, we have left
with 2394 and2436 daily observations (2394.3 :7182 and 2436.3 : 7308 intradaily
observations) for AUD/USD and JPY/USD return series respectively.

Before proceeding with the empirical test, we report some characteristics of size
and power for the simple test given by (14) and (15) and its composite alternative
given by (17) and (18) for k : 3, though we should note that the power can be
greater for values of & other than 3.
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Table l: The size and power of a simple test for normality given try (i ) and (1b)
with k : 3. The power is measured against Student t distributions with 2, 4 and G
degrees of freedom and autocorrelated nonnal with autocorrelation coefficients (a.c.)
equal to 0.05, 0.10 and 0.20. The number of Monte Carlo trials M : 10000.

N(0, r(6 Autocorrelated Normal
a.c.:0.05 0.10 0.20?:  1000

a : 0.01 0.0088
0.05 0.0465
0.10 0.0965

0.2242 0.0328 0.0177
0.5116 0.1229 A.0792
0.6983 0.2136 0.1445

0.0360 0.2322 0.9770
4.1452 0.5488 0.9990
0.2542 0.7255 1.0000

T:25ff i
c : 0.01 0.0093 0.7560 0.0927 0.0377

0.05 0.0488 0.9626 0.2671 0.1273
0.10 0.0957 0.9938 0.4164 0.2222

0.1L74 0.8010 1.00ff)
0.3548 0.9704 1.0000
4.5241 0.9933 1.0000

7: 5000
c : 0.01 0.0102

0.05 0.0508
0.10 0.0988

0.9990 0.2481 0.0749
1.0000 0.5513 0.2228
1.0000 0.7294 0.3628

1.0000 1.0û00
1.0000 1.0000
1.0000 i.0000

1.0000
1.0000
1.0000

Table 2: The size aurd power of a composite test for normality given by (12) and
(18) with k : 3. The power is measured against Student t distributions with 2, 4
and 6 degrees of freedom and autocorrelated normal with autocorrelation coefficients
(a.c.) equal to 0.05, 0.10 and 0.20. The number of Monte Carlo trials M: 10000.

N ( 0 , o t(6 Autocorrelated Normal
7:  1000 a.c.:0.05 0.1 4.20
o :  0.01 0.0062 0.4271 0.0343 0.0100 0.0107 0.0295 0.2240

0.0579 0.1289 0.5610
0.1135 0.2346 0.7500

0.05 0.0398 0.5815 0.1081 0.0500
0.10 0.0822 0.6773 0.1861 0.1032

7. :2500
cr : 0.01 0.0090

0.05 0.0400
0.10 0.0853

0.6496 0.0591 0.0197
0.8094 0.1697 0.074r
0.8841 0.2739 0.1434

0.0218 0.1005 0.8404
0.0981 0.3256 0.9868
0.1845 0.5138 0.9989

7 :5000
a : 0.01 0.0092

0.05 0.0437
0.10 0.0873

0.8544 0.1089 0.0277
0.9607 0.2752 0.1152
0.9867 0.4115 0.2078

0.0349 0.3262 A.9997
0.1489 0.7087 1.0000
0.2683 0.8711 1.0000
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As can be seen from Table 1, the simple test has asymptotically correct size and
keeps the substantial power even with a Student t(6) distribution, which is fairly
close to a normal. The size of the composite varia,ncefree test is slightly distorted, as
can be seen from the column of Table 2 corresponding to N(0, or2). The distortion of
size is due to the use ofestimates in the testing procedure. F\rrther, the distorted size
results on a lower power of the composite test with respect to its simple alternative
as also demonstrated by Table 2. See Lloyd (2005) for the exposition of testing size
and power issues.

For performing the actual empirical test, the characteristic lariables given by
(18) have been calculated and tested if they are distributed as Pt (+) = 0t0)
with an application of the Kolmogorov-Smirnov (KS) test. The estimates of weights
and pvalues obtained from the KS test are given in the table below. According to

Table 3: The test for the symmetric r3r(1) distribution of the empirical character-
istic series calculated as shown by (18). The failure to reject p1(1) distribution of
the characteristic series is equivalent to the failure to reject heteroscedastic serially
uncorrelated normality of the initial return series.

pvalueW1

AUD/USD
JPY/USD

0.5148 1.5474 2.4318 0.0290
0.5188 1.5582 2.3209 0.0649

Table 3, flo given bV (17) cannot be rejected at 99 and 95% confidence levels for
AUD/USD and JPY/USD series respectively. These results provide the objective
evidence in favour of the EMH and MDH since the test requires intradaily returns
to be uncorrelated ze.rcFmea,n normal variables.

4 Conclusion and Suggestion for F\rrther Research

In the presented stud5'it has been demonstrated that a random variable z1 given try
(4) follows a specifrc platykurtic distribution with one parameter which is found to be
identical to a Pearson type II distribution obtained in Thompson (1935) and Pearson
and Cha.ndra Sekar (1936). It has been proven by (6), (7) and (9) that the minimum
and maximum of zl given by (4) correspond to -{k and t/E respectively. This
result suggested the transformation given by (10) that leads to a new variable 21 €
(0,1). It has been confirmed bV (12) that / follows a symmetric beta distribution

of the first kind with a known parameter it/. This property has been used in a
variance-free test for heteroscedastic normality. Two versions of the tesi, simple and
composite, have been suggested. The composite version of the test given by (17)
and (18) with k : 3 has been applied to the empirically observed AUDIUSD and
JPY/USD returns on futures contracts. The null could not be rejected at 99 and
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95% confidence levels for AUD/USD and JPY/USD series respectively, providing
additional objective evidence in favour of the wide.ly debated normality of financial
returns.

We would like to note that the property given by (11) can be used in a group
of alternative statistical procedures. For example, under the null, a heteroscedastic
normal variable can first be characterized by a symmetric beta distribution with
a known paxarneter, next with the use of a beta cumulative distribution function
tra.nsformed to a probability integral distributed as [/(0,1). and finally through
a normal inverse function transformed to an invariant standard normal variable.
Then the end-of-sa,mple instability testing techniques suggested in Nechval (1988),
Andrews (2003) and Moldovan (2003, pp. 4G50 and 6$71) can be applied for antic-
ipation and detection of breaks in a random process. Such eud-of-sa,mple instability
procedures can be used for statistical learning in leal-time and time-critical systerrs.
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