
Examining Stability of Second-Order Slave Systems

Jiff Kaderka" Vladislav Musil

Departnent of Microelectronics,
Technical University of Brno, Ûaoni 53,602 00 Brno,

Czech Republic
E-mail: kaderka@st.mcs.cz, musil@umel.fee.vutbr.cz

Abstract
Dynamical behavior of any second-order linear system is described by a couple of
stable and unstable attractors. The same attractors describe behavior of the linearized
part of the piecewise-linear (PWL) systems. Using PWL analyses we examine each
region separately. In paper there are considered stable and unstable trajectories and
Poincare maps.
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1 Introduction
Considering the Pecora-Carroll drive concept of synchronization of chaos [1], we

have analyzed second-order PV/L circuits as basic synchronized subsystems. The
second-order PWL system is described by two ordinary differential piecewise-linear
equations which general form is given by

i  =  Àx+b.&(* t . r ) ,

where A e9''*', b efr2, w efr2 andthefirnction /r(wr.x)isgivenby

ft(wr. x) = ](p"'.* * rl - lwrx - rl) . (1 .2)

The function â(wÎ.x) is the continuous and odd-symmetric memoryless PWL

feedback frrnction partitioning E' by trvo parallel lines U., and U-, into an inner
region Do and two outer regions

2 LinearAnalysis
The piecewiseJinear analysis is a mean by which the state space of a nonlinear

dynamical system is divided into a set of separate affine regions that may be studied in
isolation and then ,,glued together" along their boundaries. The state equations (1.1)
consist of the linear part that characterizes the inner region and the affine part that
characterizes the outer regions. The dynamical behavior of this PWL system is
determined by two sets of eigenvalues representing two characteristic polynomials
associated with the corresponding regions. The characteristic polynomials are contained
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in state matrices Ao and A, where Ao belongs to the inner region and A belongs to

the outer region. The matrix Au is defined to be Ao = A + b.wr.

Considering the vector w ns w = [1,0], the state maûices are defined to be

a, " f
" l

I
anJ

(2.r)

The dynamical behavior of any second-order linear system is described by a
couple of stable and unstable attractors [2]. The same attactors describe the behavior of
the linear and affrne parts of the PWL system as well. Using the piecewise-linear
analysis, we examine each region separately and then glue the pieces together.

We have observed that the second-order PWL circuit synchronizes if it spimls
toward either the origin or the limit cycle. The behavior of this circuit is described by
either the stable focus or the stable limit cycle. Due to analysis of the state matrices
Au and A, the stable PWL circuit synchronizes if eigenvalues of some part are of
complex conjugate values. It ensures a spiral motion.

Consider the state matrices (2.1), the preposition of a spiral motion is
mathematically expressed in this way that coefficients of the linear part are given by

(ou * o,,)' . 4ou.ou + an.hr)

and coefficients ofthe affine pafi are given by

n,=v,:,1?,
,q.=fo', o"f

lqzt anJ

Q.3)

Because the vector field is separated into three regions, a general solution ofthe
second-order PWL system consists of particular solutions which are determined into
each parts separately.

A solution of the linear vector field is

)ct = cT 't\ + ci '2x,

xz = Ci .txz + Ci .2xr,

where

(a' * 4) *"r)' . 4(^, * 4). o' * q*(q, * 4)) .

tx, = eR{'r'r(rlr.co{m(u).r)-'lr.si(tqrl.d) [t = rp)

' x, -- ewt' (r/r. co{m(u). r)+'1, . sin(tm1 uy. r)) (; = r,z)

(2.2\

(2.4)

(2.s)
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are generic solutions of a second-order linear system. Parameters tl, and 2/, are equal

to 
tkj=tl j+i.2 lPor2kr=tl -t.2 l, and parameters ,k, 

are solutions of the matrix

equation (l-q.f).t=O. Constants C{,Ci are set up by a point, where the
trajectory of the PWL system crosses the lines U*, or u_, from the outer region to the
inner region.

A general solution of the affine vector field is

xt = CI" .'x, + Clu' .2 x, + xo.1

xz = Cl"' 't x, + Clu' .2 x, + xo,2'

where 'x, 
are equal to Equations (2.5). Constants Clu', Ci'' are set up by a point

where the trajectory crosses the lines u*., or U-, from the inner region to the outer
region. An equilibrium point Xn in the outer region is given by

Xo =  -A - t ' b (2.7)

if A-t exists.

It is known that the second-order PV/L circuit can synchronize if it is stable. The
PWL system will be stable if real parts of eigenvalues of the linear and affrne parts are
negative. If all real parts are positive, the system will be unstable. In the case of
different signs of real parts' values, the second-order PWL circuits can exhibit stable or
unstable behavior and a decision about the stability must be made numerically.

3 Examining Stability with Using Characteristic Multipliers and
Poincare Maps

The very common method of examining the stability of PWL and any other
nonlinear systems is the method based on characteristic multipliers. The characteristic
multipliers are determined by eigenvalues of a fundamental matrix of variational
equations. Consider the nonlinear dynamical system described by n first-order
nonlinear differential equations

ff = f,(',,"',*,)

*  
=  f ' ( " ' " ' ' ' n ) '

where /(x) are Cr functions. We can write 
ff 

= ,Ul in short.

(2.6)

(3 .1 )
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Variational equations ofthe system (3.1) are defined to be

dr df?)
d t=T ' "

âf(x\
where the matrix ry is evaluated in points of a trajectory x(r) of the system (3.1).

ox
The fundamental matrix of variational equations is defined to be

u,,o,Q)= [tttll (3.3)

and its initial conditions are rr(0)= 6r.

Because eigenvalues of the fundamental matrix Urrorfut), where a is a period,

are just characteristic multipliers c.11...taas we try to get solutiots rr(r); i =1,..,n of

variational equations (3.2).

Theorem: Let us denote ot,...,o as the characteristic multipliers of the system (3.1).

The nonlinear dynamical system will be Lyapunov stable if the characteristic multipliers

satisff conditions lql<t; i:1,...,n. The nonlinear dynamical system will be

asymptotically stable if the characteristic multipliers satis$ conditions

lq l .r ;  i :1,. . . ,n [4].
To obtain characteristic multipliers and points x(r) of a trajectory, the period ar

and the fundamental matrix U,ror(ot) must be known. There have been proposed a lot of

methods for determining trajectories and their periods. In our research we have used the
Poincare map method. The Poincare map method allows finding a point of a trajectory
in the transversal plane [4].

In theory, if the second-order system is stable and starts from any point in the state
space, its trajectory will go to either an equilibrium point or a limit cycle. You can get a
closed set of crossing points in the Poincare map. If the system is unstable, the
trajectory can go away in infinity and you can get an open set ofcrossing points.

3.1 The Algorithm for Computing Crossing Points in the Poincare'Map

Consider the upper-plane

S(x , , . . . , r , )=  o

which defines a Poincare map and a new variable

x*, = .S(x,,...,rn)

that introduces a ne\ r differential equation

(3.2)

(3.4)

(3.5)
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&:: '  
= f ,u(*r , . . . , r , ) ,  (3.6)

d t  
J n +

ê^rslvhere f,*r = 
àJ, do.

Then the system (3.1) is enlarged by the equation (3.6) and the new system is
given by

! 
= r,(*,'"'''.)

(3.7)
&:: '  = .f*,(*,, . . . ,r,  ).dt 

r i+l

To obtain a tajectory of the system (3.7), we have to use the one-step integration
method [a]. While the system (3.7) is being evaluated the variable Jcn*, is being traced.
If the variable x,., changes its sign, the evaluation will be intemrpted and we will solve
new equations given by

&t f,
e* r=  f * ,

dx, f,
&r*r .fr*r

d t l

e*, 
= 

f*,

(3.8)

that determine a point in the Poincare map. Differential equations (3.8) are evaluated in
a reverse direction by one numerical step .r,*r = -S [4]. The solution of Equations (3.8)

/
is the set \x1,...,xn,tpn,",,) ana the point (r,,...,r,) fits into the Poincare map. The
period of the trajectory is equal to o) = t p,"*t - t t^t, where l,^, has been stored.

Equations (3.7) and variational equations (3.2) must be computed numerically in
common. After getting the crossing points, the characteristic multipliers are obtained
from the matrix (3.3) with linear algebra rules.

4 Conclusion

Second-order PIWL systems play a key role in designing synchronizing systems
and synchronized chaotic signals. It is known a controlled system has to be stable. ln the
Pecora-Carroll drive concept the second-order PWL system should be a part of the
third-order PIWL system as well as it should be stable. We have used the theory in this
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paper in examining stability of second-order PWL systems. Algorithms in this paper
follow designing rules of the synchronizing chaotic systems.
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