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Abstract
This paper deals with a comparison from the precision and stability point of view of
different discrete algorithms for simulating differential equation systems, applied in the
case of a simple differential system: the harmonic oscillator. It points out the relation
between the classical and incursive algorithms and shows the effect of incursion on the
precision and stability.
Keywords: Recursion, incursion, difference equations, numerical simulation, precision
and stability

I Introduction

The numerical simulation of continuous systems modelled by differential equations
implies discrete tansformation that leads to discrete equations, in which numerical
integration formulas appear instead of differential derivatives.

The main issues in numerical simulation of differential systems are the stability and
the precision of the simulation results, compared to the exact solution of the considered
differential equations.

There is a wide range of numerical integration formulas (methods), of different
complexity, from the simplest one - Euler, to more complex, such as high-order
Runge-Kutta methods. The formulas complexity influences the results precision and
stability, but also the simulation time, which could become critical in case of very
complex systems, such as those encountered in hydrodynamics. This is why the analysis
of discrete systems from the precision and stability point of view is very important in
the numerical simulation process.

ln section 2 we present precision and stability considerations for several classical
numerical integration methods applied in the case of a simple differential system: the
harmonic oscillator. In section 3 we show how incursion can improve the precision and
stability, and the relation between the classical and (hyper)incursive discrete systems.
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2 Differential and Discrete Equation Systems: the Harmonic
Oscillator Case

Iæt us consider the example of the harmonic oscillator represented by the following
ordinary differential equations

where x(t) is the position and v(t) the velocity as flrnctions of the time t. The pulsation is
given by @=ZttlT, where T is the period of oscillations.
The solution is given by

x(t):trtir1rr+Bcos(a) Q)

The parameters A and B are defined by the initial conditions x(0) and v(0).
This solution is stable: the amplitudes of the oscillations (represented by A and B) are
fixed. In the phase space, given by (x(t), v(t)), the solutions are given by closed curves
(orbital stabiliry).

2.1 The Discrete Derivatives and the Concept of Time

It exists two discrete derivatives from the definition of the differential derivative
dx(tVdt : the forward and the backward derivatives defined as

&(t)/dt:v(t)
dv(t)/dt : - aJx$

dx(t)/dt=lim n..ro [x(t + h) - x(t)]k

and

dx(t)/dt1imn..-o [x(t) -x(t -h]/h

(1a)
(lb)

(3a)

(3b)

where lim 1--,,16 ln€âDS the limit for ft tanding to zero by positive or negative values, ft
being an interval of time.
The differential derivative corresponds to these limits (which are equal for continuous
derivable functions). Let us notice that these two discrete derivatives tend to different
derivative for non-derivable functions as firactal curves, for example. Moreover, the
discrete derivatives are always different for discrete equation systems !
The simulation of pure differential equations is impossible. This is only the discrete
transformation which is computable (recursive function). Thus, there is already a
difference in the representation of a system view form: differential equations or discrete
equations. In differential equations, there is no time interval, there is only the current
time. In discrete systems, there are the current time and the interval of time ft.

Let us show now how to use these derivatives for transforming the differential
equations (laù) to discrete equations.
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2,2 The Harmonic Oscillator Discrete Equations
In computer science and discrete mathematics, it is common to have a special

notation for representing the discrete equation system.
The discrete time is defined as

t* =to + kh with /r =0,1,2,... (4)

where /6 is the initial value of the time and t is the counter of the number of interval of
time à.

The discrete variables are defined as

(sa)
(5b)

The discrete equations used in the harmonic oscillator case for computing the
position and the velocity at consecutive moments have the general form

x* = x(tr)
Yk = Y(tk)

xk+t = A xp 18 vp
vk+t = Cvt,-Da2x*

where l, B, C and D are coeffrcients with values specific to
methods applied.

2.3 Precision and Stability Considerations

Since the exact solution for (lab) is

xpal : cos(ha) xp +sin(ha)/avr
v7,a1 : cos(ho) vp -sin(ha)axç

(6a)
(6b)

the numerical integration

(7a)
(7b)

it follows that the precision of different numerical solutions can be evaluated bv
comparing the values of their coeflicients with values of the exact ones. Ideallv

A = C = cos(ha) and B = D = sin(h a)/at

obviously, when numerical integration methods are applied, the precision is
influenced by the values of the time interval h, also called integration step.

Usually h = T / n, with n à20. Since at = 2n / Twhere T is the period of oscillations,
it follows that

hat=2tt /n-< 0.ln

Let us consider a few well-known integration methods.
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The simplest one is the Euler method, with the use of the discrete equations

x*+t =x* *hvk

vk+t =vk -hal xr

that have the form of (6a,b) with A" = c" = I and B" =De= h'

More elaborated methods are the Runge-Kutta methods of different orders

(R=2,3,4,.-.). The general expressions for the Runge-Kutta methods applied to the

equations of the harmonic oscillator are

xk+r =xk + (Knt / c1 +"'+ Kx.P / cP)
vk+t =vk +(Ln; / ct +.'.+Ln.n/ cn)

where (l/cr +...+ l/cp) = I.

The formulas for coeflïcients in (9a'b) are given in Table l'

Table l: Coeffrcients used in

Order Ka Ln,i Ci

R=2 KzJ= h vt
Kz.z:h(vr+Lz,ù

Lz,t =-h ol xt
Lz.z=-h al6t +Kz,ù

CI =C2 =2

R=3 Ksl=h v*
Kt,z:h (vr +Lst /2)
Kts=h(vr -Ls t+2Lt .z )

LtJ: -h oJ x*

Ls,z = -h oJ-6r + Kst /2)
Ln=-h oJ(xr-Ktt+2K:,)

ct :6
cz = 6 /4

cs =6

R = 4 Kq,r=h v*

K+z=h (vv + La1 /2)

Kt,s:h (vp +L4z /2)

Kt.t=h (vr +Lq,s)

Ltt =-h oJ x*

Lqz=-hal - (xr+&t /2)
Lt,s = -h a/^(x* + Ktl /2)

Lt.t:-h oJ(xr +K+,s)

Ct  =C1 =6

C2 --Ca = 3

By making the appropriate substitutions in equations (8a,b), we obtain the specific

discrete equations for:

RK2 - second order Runge-Kutta oscillator

xk+r =xk +h (ve + v* *Lz,r) / 2 =xr +hvt -h2 aJ xr / 2
= Q  - h 2 û J  / 4 x * + h v r

vk+r =vk -h aJ 6r+xr+Kz.t)  /  2=v*-hal xr-h2al v*/  2
= (I -h2al / 4 vr -hoJ xr

(8a)
(8b)

(9a)
(eb)

( l  1a)

(r lb)
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RIC3 - third order Runge-Kutta oscillator

xk+r:xk +h (vp+ 4vp+4 Lst /  2 + vp-Lst +2 Ld /  6
-xy+hv*  -h2oJ  (xç+2(xe  + f t ,1 /2 ) /6
= x * * h v 1  - h 2 a l  6 x r +  h v ù / 6
= 0-h2 aJ / 4 xr+ 0 -h2 ai / q h vr

vk+r :vk -h al (xp+xp +4Ks.t /2 + x* -Ks.t + 2Ks) / 6
--v* -hal xt -h2 oJ fu* + 2(ve +b,r /2)) / 6
=vx-hûJ  x* -h2o l  Q vy-h  a i  x l  /  6
=e -h2ûl /1v1,-( I  -n2al tolhal  xr

RK4 - fourth order Runge-Kutta oscillator

trk+t =xk +h (vk/ 6 +(vt +La.1/ 2)/ 3 +(vp +Lt.z /2) / 3+ (vr +Lç) / 6)
= 4 i h vr - h2 oJ ( x1, / 6 + (x2 + Ka1 /2) / 6 + (xp + Ka2 /2) / 6)
=xr *hv* -h2aJ 6r/ 2 + h vr/ 12 +h (v1, +Lq /2)/ 12)
= Q - h2 aJ / 4 xx +h vr- h2 aJ ft vr, / 6 - h2 al xr / 2l)
= Q - h2 ûJ / 2 +h4 a4 / 24) xç + (t - h2 aJ / O h vr,

vk+t =vk -hal 6*/ 6 +(xp +Ka1 /2) / 3 +(xr +Ka.2 /2)/ 3 + ( xp +Ka.) / 6)
=v*-hal x*-h2û/ Qy/6 +(v1, L4,r /2)/ 6 + (vp+Lal/2) /6)
=(t -h2d / ) ve-hai x1,-h2oi ( -h al xr,/ l2 -h aJ6r,+K41/2)/ t2)
- -e  -h2a l  / l vp-e  -h2a j  /qhû]  x r -h2a j  eh  û l (hv l /  2a)
= e - h2 aJ / 2 +h4 a4 / 24) vx - e - h2 ûl / q hal xx

(r2a)

( l2b)

( l3a)

(13b)

These equations have the same form as (6a,b), with the coefficients given in table 2.

Table 2: Coetlicrents used rn harmonlc oscrllator Kutta dlscrete
Method A n = C n Bn = I)n

RK2 fl-h'ûf / 2) h
RK3 (I-h'û/ / 2) ( 1  - h " û f / û h

RK4 (l -h"(rl / 2 +h"at" / 24) l l - h ' û t / û h

If we compare these coefficients with the exact ones, it is obvious that they represent
approximations obtained by retaining I to 3 terms of the Taylor series for the sin and
cos functions:

sin(ha) = hot -h3 af / 3! - ...= hat (1 - n2 ai tA + ...1
cos(ha) = I -h2 oj / 2! +ha roa / 4! - .'.

The stability analysis for discrete systems of the general form (6a,b) can be
performed by using the unilateral Z-transform, defined as

Z{x(n)\ = X(z)=l*,_ox(n)z-' (14)

where n is an integer and z is a complex variable.
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For obtaining the Z-transform of the equations (6a,b), we apply its shift property
Z{x(n+I)}:zX(z) -zxo

and obtain:
zX(z) -zxs:AX(z) +BV(z) > (z -A)X(z) :2xs +BV(z)
z Y(z) -z vo:C Ir(z) -D oJ xO > Q -C) V(z) -z vo -D o] Xe)
=> (z -A)(z - C) X(z) =z (z*A) x6 *B z v6 - B D al X(z)
+ X(z) =P(z) / (/ -(A +c)z +(A c +B D ûj ))
This Z-transform has two poles:
21.2=(A +C) t y'(l +c)t - 4(AC +BD al D / 2

-- ((A +C) t i y'-@ +C)2 +4(AC +BD 0J D / 2
which are complex when
(A +C)2 < 4(AC +AD al )

(15)

(16a)
The position of the Z-transform poles relative to the unit circle defines the system
stability: a system is stable if the poles lie inside the unit circlg is unstable if the poles
lie outside the unit circle and at the limit of stability if the poles lie on the unit circle.
It follows that the condition for stability is:
((A +C)2 -(A +C)2 +4(AC +BD ûi, / 4 sI
AC +BD al <t
and the orbital stability must satisfy the strict equality

(16b)

AC +BD aJ : t (16c)
So, for the harmonic oscillator, the conditions for obtaining an orbital

stability are given by relations 16a and l6c, rewritten as

(A +C)2 <4 ( l7a)
AC +BD a] : t (l7b)

in using the equality (from the relation l6c), BD aJ = I -AC,inthe relation l6a.

Let us veriff the stability condition for Euler and Runge-Kutta oscillators:

- Euler:
A C + B D a J = I  + h 2 a j >  t
Consequently this discrete system is unstable.

- RK2:
AC +BD al= 0 -h2ûl / )2 +h2al = 1-h2oJ +h4ûf / 4 +h2aJ= I+h4al >I
This system is also unstable.

. RK3:
AC +BD aJ = e - h2 ûJ / )2 + (I-h2 al t o1th2 al
= t -hzal +haal /4 + (I -n2al ts +n4af tsoln2al
= I +h2al g+n2al tl +l -n2aJ /s +n4af tsol
=t +haaf (n2aJ -rtso



The stability condition for this case becomes : (h2 al - il s0 + ha 313
condition that can be satisfied by an appropriate choice ofthe integration step à.
The orbital stability is obtained for hat = 13, b:ut this gives a very small number
integration steps, n = 2t / hrq byperiod

- RK4:
AC +BD aJ=0 -h2ûJ /2 +haata /24)2 +(I  -h2oJ /q2h2ûJ
= t +haaJ / 4 +h8aJ / 242 -n2al +Éaf t t2 - h6a6 / 24 +

+h2aJ -h4&l /3 +h6af/36
= I +h6 at6(ht oJ - s)

In this case the stability condition is (h2 oi - q s 0 + ha S 2{2
and imposes the upper limit of the integration step r.
The orbital stability is obtained lor hat=2y'2, but the condition l7a for an oscillatory
solution is no more satisfied. Indeed, we must have hat < 2 (for hat:2, (A + C)2 > 1).

3 The Incursive Oscillators

Rather recently, Daniel Dubois proposed a new schema for simulating differential
equation systems in using both the fonvard and backward discrete derivatives (3a,b).

The following discrete equation system uses the forward derivative for the first
equation and the backward derivative for the second equation.

The order in which the equations are computed is important (if no transformation is
made as in the implicit schema of Euler).

Compute firstly the first equation to obtain xpa1, àrrd then compute the second
equation in using the just computed xr+r.

Daniel Dubois called such a system, an incursive system, for inclusive or implicit
recursive system.

A second possibility occurs if we use the backward derivative for the first equation
and the forward derivative for the second equation as follows

X1ça1 :xp *hvp

vk+t:vk -h al xp*1

xk+t :xk +h v*e
vk+r =vk -h al x*

In this second incursive schema, it is necessary to compute firstly the
equation to obtain vr+r which is then transmitted to the first equation.

In both cases the Z-transform poles lie on the unit circle, which means
applying incwsion the system shows an orbital stability.

( l8a)
(l8b)

(leb)
(l9a)

second

that by
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An important difference between the classical schemas and the incunive schema is
the fact that in the incursive schema, the order in which the computations are made is
important, this is a sequential computation of equations. At the contraq/, in the classical
schemas, the order in which the computations are made is without importance: this is a
parallel computation of equations.

The order of computations is not relevant if we
follows:

vk+r:vk -h al6r +h vl = 0-h2 ol) v*-h ai x*
xk+r:xk +h (v1, -h ûl xe1= Q-h2 ai) x**h v*

modiff equations 18a and 19b as

Thus we obtain the Incursive on y (Incv) and the Incursive on x (Incx) algorithms

(l8b')
( l9b')

x*+t :x**hvk
v1,*1 : Q - h2 al) vr - h a| xr

x1,a1 = (I - h2 a]) xt+ h vr,
vk+r=vk-h aJ xt

Table 3 gives the coefftcients of these incursive algorithms.

(20a)
(20b)

(2ra)
(21b)

(22a)
(22b)

Table 3: Coefficients of incursive
Algorithms A B=D c

Incv I h I - h'(r,
lncx I - h'û, h I

From the orbital stability conditions lTab we have, in both cases,

(A +C)2=(2-h2ûh2 <4, for ha < 2
AC +BD aJ =1-h2al +h2oJ =I

which gives to the discrete harmonic oscillator an orbital stability for ha<2.
Both incursive algorithms insure better than the Euler and Rung-Kutta algorithms.

It is interesting to remark that by mediating the equations of the two incursive
systems l(20a+ 2Ia)/2 and(20b+ 2Ib)/21

x*+t = ( xr + h vp + (I - ttt oJ ) xk + h vk) )/2 = ( I - h2 û] / 4 x* + h vt
vp1:( l -h2oJ)vt -h al  x1,+up-h oJ xe)/2=(l  -h2ûj /  )v1,-h al  x1,

we obtain the RK2 system, which looks more precise, but is unstable.
Nevertheless, stability can be achieved if "half-step incunion" is applied on (22a,b)
rewritten as follows:
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xk+t : xk + h (vr - t/2 aî xp) -- xp * h vp12
vk+r =vk -nal 6*+h/2 vç)=v1-hal xr*tn

where

xk+t/2= x*+h/2 vt
vk+u2= vr -h/2al xr

Applying "half-step incursion" implies the use of the backward derivative either for
the first or for the second half-step equation and transform again the full-step equations
and leads to:

HSIx.
xk+r/2= xr+h/2 v*+t/z * x*+h/2 (v* -h/2al xr) = (t -h2 ûJ / 0 xr+h/2 vr

xr+t= (I -h2 aJ / 4 xr+h vr
v**t = v*-hoJ xk+r/2: v*-nalft -h2 ûJ / Q x2+h/2 ve)

=e -h2oJ /4vr-he -h2al  /0 oJ xr

HSIv.
vk+r/2 = v* - h/2 aJ xt+r/2 : vk - h/2 al 6r + M2 vv)

= Q -h2 ûl / 0 vx -h/2aJ xr

xk+i: xk*h vpa112= x1+h((1 -h2 oJ / 4 v* -h/2oJ xr)
:  Q -h2&J /4x*+h(1 -h2aJ /qvr

v*+t =Q -n2 al t z1 v*-h al x*

Table 4: Coefficients of half-

Let us compare the coefficients in table 4 with those in RK2 and RK3 (table 2).
White A and C are identical, the situation is different for B and D.

Bnst,=Bnxz=h- h3aJ /6+h3aJ /6= Bnrc+h3aJ ta
DHs"=h- h3ûJ /4=Dnxz-h3ol /4=Dnxs-n3aJ t  tz

Similarly

Bnsn= Bnxz -h3 ûJ / 4 = Bpxs -n3 al t tz
Dnsu = Dnxz= Dnxs + h3 ûl / 6

(23a)

(23b)

Qaa)
Q4b)
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From the conditions lTabwe have, in both cases,

(A +ç12: (2-h2 oh2 < 4, lor hot < 2
AC +BD a]=e -n2aJtD2 +tt27t -n2ai /0ûj

= I -h2ol +nlaltl +h2ol -haa/ /4= I

which means that both systems show an orbital stability for ha<2.
If we combine in the same way the equations (18a,b) with (19a,b) the result is

xk+t = (x* +hvp+ xr *hwa ) / 2 = xr +h (vp+ vs ) / 2
vr+r=(vr-h aJ x**t+ vk-h al  x)/2=vp-h &l 6r+ x*+r)/2

which is in fact the classical Trapeze integration method.
There are two ways to mnsfonn these equations in order to obtain executable

variants: either replace v1,.7 in the first equation (Tv) or replace x*t h the second
equation (Tx), and then rewrite both equations, as follows.

Tv.
rk+r =xk +h (vç+ (vç -h al 6r+ xr+t ) / 4 ) / 2

= Q - h2 ûl/ 4) x* + h v* - h2 al / 4 xr,*t

'ù/ith the notation, E = (t + h2 all41, the discrete equations become

xça1 = (l - h2 aJ I l)n xr + h/E v1,
vk+r =vk - n aJ 6r + 1l - n2 al I 4)/E xr +tr/E vp ) I 2

= (E - h2 ûl / 2)/Evr - hal xr (E + (t - h2 aJ / 4)/E/ 2
= ( + h2 al / 4 - h2 al / ?/E vt - hal xr e + h2 aJ t a + t - n2 aj t n)nt z
= ( - h2 ol / q/Evr - ldE aJ xr

For Tx the resulting equations are exactly the same, with

A=C= (t-h2ûJ/4)/E
B = D = h / E

and the conditions lTab give

(A +C12:(2q-h'za]/4/E)t <4, fo hat> 0
AC +BD aJ = g-n2 olt qt/É +h2 aJ tÉ= e +h2 ûl/ 02/ (t +nt olt 4)2 = t

which means that both systems show an orbital stability for any values of ha > O.
From the above it follows that incursion is very useful approach, since by applying it

the unstable systems (Euler and Runge-Kutta) were brought at the limit of stability.
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4 Simulations with the Euler, Runge-Kutta and Incursive Algorithms

Let us give a few simulations with the Euler, Runge-Kutta and lncursive algorithms.

Figure I gives the simulation in the phase space (x(t), v(t)) of the exact algorithm
7ab, for at: l, h: 0.3, with the initial conditions x(0): 2 and v(0) : 0.
The orbital stability is well-shown in the phase spaee as a closed curve.

Figure 2 gives the simulation in the phase space (x(r), v(t)) of the Euler
8ab, for at: l, h:0.3, with the initial conditions {0) : 0.2 and v(0) = 0.
The simulation shows the strong instability of this algorithm: the amplitude
drastically with the time steps.

algorithm

increases

Figures 3abcd give the simulation in the phase space (x(t), v(t)) of the Runge-Kutta
algorithms 9ab, for o: 1, h:0.3.

Figure 3a gives the simulation of the Runge-Kutta-2 algoithm, with the initial
conditions {0) : 1.5 and v(0) : 0, with 500 time steps.
The simulation shows the instability of this algorithm: the amplitude increases

Figure 3b gives the simulation of the Runge-Kutta-3 algorithm with the initial
conditions.x(0) : 2 and v(0) : 0. with 500 time steps.
The simulation shows the instability of this algorithm: the amplitude decreases.

Figure 3c gives the simulation of the Runge-Kutta-4 algorithm with the initial
conditions x(0): 2 and v(0) : 0, with 500 time steps.
The simulation seems to show an orbital stability, but with more time steps (see figure
3d), this algorithm is also unstable: the amplitude decreases more slowly than in the
Runge-Kutta-3 algorithm.

Figure 3d gives the simulation of the Runge-Kutta-4 algorithm with the initial
conditions r(0) : 2 and v(0) : 0, with 20000 time steps.
The simulation shows clearly that this algorithm is also unstable: the amplitude
decreases with the time steps.

Figures 4ab give the simulation in the phase space (.rO, v(l)) of the Incursive
algorithms l8ab and 19ab, for @: l, h:0.3, with the initial conditions r(0) :2 and
u(0) = 0, with 20000 time steps.
The simulations show a perfect orbital stability for both the two incursive algorithms.

Remark 1: The integration stç, ft:0.3, is chosen with a rather large value in view
of seeing more clearly the stability of each algorithms. This gives the simulation of one
period with about 2l steps. In practice, smaller integrations steps are chosen for
assuring a better stability of the algorithms, but this increases the number of time steps.

Remark 2: For the Euler and the Runge-Kutta-2 algorithms, the initial value is taken
smaller than in the other algorithms, because they are unstable with an increases of the
amplitude. So the simulation results remain within the same coordinates scale.
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Figure 1: Simulation of the exact algorithm for the harmonic oscillator.

Figure 2: Simulation of the Euler algorithm for the harmonic oscillator.
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Figure 3a: Simulation of the Runge-Kutta-2 algorithm for the harmonic oscillator.

Figure 3b: Simulation of the Runge-Kutta-3 algorithm for the harmonic oscillator.



Figure 3c: Simulation of the Runge-Kutta4 algorithm for the harmonic oscillator, with
500 time steps.

Figure 3d: Simulation of the Runge-Kutta4 algorithm for the harmonic oscillator, with
20000 time steps.



Figure 4a: Simulation of the lncursive-v algorithm for the harmonic oscillator, with
20000 time steps.

Figure 4b: Simulation of the Incursive-x algorithm for the harmonic oscillator, with
20000 time steps.



5 Conclusion

The paper presented precision and stability considerations for a few discrete models
of the hamronic oscillator - classical and incursive.

From this analysis, it results that incursive systems insure better precision than the
ones fiom which they were derived. The latter were unstable, thus unsuitable for
simulation, while their incursive venions turned to the orbital stability limit.

Even if the analysis was applied only to the simple case of the harmonic oscillator
and only to a few numerical integration methods, it represents a solid argument in
favour of incursive computing systems.
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