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Abstract
This paper deals with the Euler and Incursive algorithms of the nonlinear pendulum.
The Euler algorithm is unstable. The incursive algorithms show a stable solution as an
orbital stabilify for small values of the time step. For larger values of the time step, the
incursive algorithms show an orbital stability for small values of the initial conditions
and a chaotic sea for larger initial conditions.
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I Introduction

The classical algorithms, like the most used Euler and Runge-Kutta algorithms, show
unstable solutions for systems with orbital stability.

The well-known incursive algorithms are able to give the good orbital stability
property of such systems. This was already shown for the harmonic oscillator.

The Incursive algorithms were already applied to the nonlinear Lotka-Volterra
equation systems. The simulations showed an orbital stability and a chaotic sea
depending of the parameters.

This paper wants to show that the incursive algorithms are also able to give an orbital
stability, and the emergence of a chaotic sea, for the nonlinear pendulum.

kt this paper, the numerical simulations of the nonlinear pendulum give an orbital
stability for a wide range of values of the time step in the discrete incursive algorithms.

But due to the nonlinearity of the pendulum, it is shown that chaos, as a chaotic sea,
can emerge for large values of the time step or of the initial conditions.

This paper is organized as follows. Firstly, the differential equation of the pendulum
is presented. Secondly, the discrete Euler and Incursive algorithms of the pendulum are
derived. Thirdly, numerical simulations are perfiormed with these algorithms for
different initial conditions and different time steps. The Euler algorithm is unstable and
the Incursive algorithms show the good orbital stability or a chaotic sea depending on
the values of the initial condition and the time step.

The mathematical study of the stability properties of the Incursive algorithms for
nonlinear systems will be presented in a forthcoming paper.
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2 Differential Equation of the Nonlinear Pendulum

The differential equation of the nonlinear pendulum is given by

dm/=-(g/t)sin(x)

where g is the gravitational constant, / is the length of the pendulum, r the time and the
variable x(l) corresponds to the angle that the pendulum makes with the verticaln
measured in radians.

In making the change of variable

612 = gll (2\

eq. 1 is rewritten as

dxlal =- atz sin(x) (3)

The analytical solution of eq. 3 is well-known and is given by oscillations.
For small amplitudes oscillations, x << 2rr, the sin function can be developed in

Taylor's series as

s in (x )=v  -x3 l3 t  +x5 l5 t  - . . .

Including the first term of relation 4 in eq. 3, the linear harmonic oscillator is obtained

Srlal =- û)2 x (5)

the solution of which being given by

r=ros in  (a t+  gS (6 )

which is an oscillation with a constant amplitude.
The second order differential eq. 3 can be transformed to two first order differential

equations as

ù/dt=v
dv/dt =- ar2 sin(-r)

where v(r) is the angular velocity.

Let us now derived the incursive algorithms from the nonlinear differential equations
7ab of the pendulum.

( l )

(4)

(7a)
(7b)



This Euler algorithm gives unstable numerical solutions.
In view of obtaining a stable algorithm, let us use the incursive algorithms as

follows.
The first incursive algorithm is given by

3 The Euler and Incursive Algorithms of the Pendulum

The well-known Euler algorithm of these eqs. 7ab is given by

x( t+N)=r ( t )+  Nv( t )
v(t + N) = v(t) - Lt otz sin(x(t))

{ t+Àt)={t)+ Ltvt t)
v(t + N) = v(t) - N at2 sin(xQ +N))

and the second incursive algorithm is the following one

v( + N)= v(t) - N a2 sin(x(t))
.r(t+ Al) =t(t) + ̂ / y(t+^t)

.r(/+^t)=r(l)+ Ltt4t)
v( + Lt) = v(t) - Âr a;2 sin(x(t) + N v(t\)

for the eqs. 9ab, and, for eqs. lOab,

v( + N)= v(t) - N ot2 sin(x(t))
r(r + Âr) = {t) + & Iy(t) - N a2 sin(.r(t))l

(8a)
(8b)

(ea)
(eb)

(l0a)
(l0b)

( l  1a)
(1 lb)

(l2a\
(12b)

In the first incursive algorithm 9ab, the value of the up-dated angle, x(/ + ^t), of eq.
9a is propagated to the second eq. 9b.

In the second incursive algorithm, the value of the velocity is firstly calculated in eq.
l0a, and this up-dated velocity, v(t + Lt), is propagated to the second equation lOb.

This means that the simulations depend on the order in which the calculations of the
equations are performed. Each up-dated variable is propagated to the following ordered
equation. I-et us recall that in the Euler algorithm 8ab, the order in which the equations
are calculated is without importance.

It is possible to include explicitly the up-dated variables as follows

The difference with the Euler algorithm, in comparing eq. 8a with l2b, deals with a
supplementary term in Atz inthe incursive algorithm. This term leads to the stability of
the incursive algorithm.

Let us now show the results of the numerical simulations of these algorithms for the
nonlinear pendulum.



4 Numerical Simulations of the Nonlinear Pendulum with the Euler
and the two Incursive Algorithms

When the angular amplitude is small, the sin(x(t)) can be replaced by x(t), and it was
already shown that the Euler algorithm is unstable, and the two incursive algorithms,
give the good orôital stability of the harmonic oscillator.

This section deals with the numerical simulations of the algorithms given in the
preceding section for the nonlinearpendulum.

Without lack of generality, for the simulations, the value of the frequenry will be
taken equal to one, as

a = l (13)

lndeed, it is sufficient to make a re-scaling of the time in eq. 3, as dt= atdt, that gives
the following adimensional differential equation of the pendulum

d2x/dt2=-sin(r) (3')

Figures lab, 2ab, and 3ab, give the simulations of the Euler and the two Incursive
algorithms of the nonlinear pendulum, with Ât = 0.025, and with the following initial
conditions: x(t):2tt/3 and v(0) = 0 .

Figures lab give the simulation of the Euler algorithm 8ab, respectively, for.r(r) and
v(t) versus time step t, and in the phase space (r(l), v(t)).

The simulation given in the phase space in Fig. lb shows cleady the unstable
solution instead of the orbital stability.

Figures 2ab gve the simulation of the first incursive algorithm 9ab, respectively, for
.r(r) and v(r) versus time step t, and in the phase space (.r(t), v(t)).
The simulation given in the phase space in Fig. 2b shows clearly the stable solution
given by an orbital stability.

Figures 3ab give the simulation of the second incursive algorittim 10ab, respectively,
for x(t) and v(r) versus time step r, and in the phase space (x(t), v().
The simulation given in the phase space in Fig. 3b shows clearly the stable solution
given by an orbital stability.

Figures 3cd give the simulation of the second incursive algorithm lOab, respectively,
for x(t) and v(4 versus time step r, and in the phase space (x(r), v(r)); with N = 0-025,
and with the following initial conditions: {t) : 9td10 and (0) = 0. With this initial
condition, the pendulum is practically at the vertical.
The simulations show the strong effect of the nonlinearity of the pendulum and the
orbital stabilitv.



Figure la: Simulation of pendulum with the Euler algorithm.

Figure lb: The Euler algorithm for the pendulum is unstable.



Figure 2a: Simulation of the pendulum with the first incursive algorithm.

Figure 2b: The first lncursive algorithm for the pendulum shows an orbital stability.



Figure 3a: Simulation of the pendulum with the second incursive algorithm.

Figure 3b: The second Incursive algorithm for the pendulum shows an orbital stability.



Figure 3c: Simulation of the pendulum with the second incursive algorithm, with an
initial condition practically at the vertical. The sfiong nonlinearity effect is well-seen.

Figure 3d: The second Incursive algorithm for the pendulum shows an oôital stability
with an initial condition practically at the vertical. The oôibl stability is well-seen.



Let us show that the incursive algorithms
space, for a set of initial conditions.

give the orbital stability, in the phase

Figure 4a gives the simulations of the pendulum, in the phase space, of the first
incursive algorithm 9ab,
fo rase to f in i t ia lcond i t ions : r (0 )=( r /50) rad ians , r=0 ,1 ,2 , . . . ,50 ;v (0)=0;and,
for the following time step: Lt = 0.025.
This simulation shows the orbital stability for all the set of initial conditions.

Figure 4b gives the simulations of the pendulum, in the phase space, of the second
incursive algorithm lOab,
for a set of initial conditions: x(0) = (r/50) radians,r=0 ,1,2, ...,50; v(0) =0; and,
for the following time step: N = 0.025.
This simulation shows the orbital stability for all the set of initial conditions.

Let us give now the simulation of the second Incursive algorithm lOab in the phase
space for the same set of initial conditions, but with larger values of the time step.
Let us point out that the simulations with the first lncursive algorithm 9ab give similar
results.

Figures Sabcde give the simulations of the pendulum, in the phase space, of the
second incursive algorithm 10ab,
for a set ofinitial conditions: x(0) = (r/50) radians, r= 0 , l, 2, ... ,50; v(0) = 0; and,
for the following set of time steps: ̂t = 0.2, 0.8, 1.1, 1.5

Figure 5a shows the result of the simulation for the time step ̂ t = 0.2. The orbital
stability is well-seen.

Figure 5b shows the result of the simulation for the time step Ât = 0.8. The orbital
stability is well-seen, and chaos appears for the large values of the initial conditions.

Figure 5c shows the result of the simulation for the time step Àr = l.l. There is an
orbital stability zone for the smaller values of the initial conditions. With larger values
of the initial conditions, chaos emerges as a chaotic sea.

Figure 5d shows the result of the simulation forthe time step ̂ t= 1.5. The orbital
stability zone decreases and the pattern shows a sophisticated pattem with four isles.

Figure 5e shows the result of the simulation for the time step Ar = 1.55. The pattem
shows chaos between the orbital curves and the four isles.

As the interesting patterns diminish with the increase of the time step, the following
figures will be enlarged by a factor 2.

Figures 6a and 6b are enlargements ofFig. 5d and 5e, respectively.
Figure 6b (continuation), give an enlargement of an isle pattem.
Figure 6c shows the result of the enlarged simulation for the time step Lt = 1.6.

The pattem shows chaos between the orbital curves and the four isles which go away.
Figure 6c (continuation), give an enlargement of an isle pattem.
Figure 6d gives the result of the enlarged simulation for the time step At = 1.9.

The pattern shows a few orbital curves and the four isles which have disappeared.

l l



Figure 4a: Simulation of the orbital stability of the first Incursive algorithm
of the pendulum for a set of initial conditions.

Figure 4b: Simulation of the orbital stability of the second Incursive algorithm
of the pendulum for a set of initial conditions.
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Figure 5a: Simulation of the pendulum with the second Incursive algorithm
forasetofinitialconditionsandthetimestep Lt=0.2.Theorbitalstabilityiswell-seen.

Figure 5b: simulation of the pendulum with the second Incursive algorithm
for a set of initial conditions and the time step At = 0.8.
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with the time step
Figure 5e: Simulation of the pendulum

Figure 6a: Enlarged Fig. 5d. simulation of the pendulum with the second Incursive
algorithm for a set of initial conditions and the time step Âl = 1.5.
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Figure 6b: Enlarged Fig. 5e. Simulation of the pendulum with the second Incursive
ithm for a set of initial conditions and the time step ̂t = 1.55.
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Figure 6b (continuation): Enlargement of the isle at the right.
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Figure 6d: Ènhrged simulation of the pendulum with the second Incursive algorithm

for a set of initial conditions and the time step Âl = 1.9'

All these simulations have shown the complex behavior of the nonlinear pendulum

with the incursive algorithms depending on the time steps and initial conditions.

5 Conclusion

This paper showed that the classical Euler algorithm is unstable and that the

incursive algorithms are stable for ailt < 2. For small values of the initial conditions,
the nonlinear pendulum is similar to the orbital stability of the harmonic oscillator. The

simulations showed an orbital stabilify and a chaotic sea depending on the time step and

on the initial conditions. These incursive algorithms are appropriate for simulating all

types of linear and nonlinear systems.
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