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Abstract
It is shown how images can be processed, memorized, reconstructed or/and recognized
using fundamental and relatively non-artificial quantum dyna,mics, i.e. I V) :l q/)(\y I q/)
in Dirac's notation. The right-most I V) represents the output, the left-most I iV) de-
notes the input, and the central I V)(ù | represents the associative memory. No quantum
logic gates are needed, but merely a holographic procedure. Our computational model,
successfully tested on concrete data, is a quantum version of HopÊeld-based neural-net-
like associative processing which is mathematicaliy tra"nslated into wave-dynamics in a
straight-forward way. Here we discuss its most natural quantum implementation(s), i.e.
using ordinary interference of image-modulated quantum waves. The non-trivial (even, e.g.,
anticipatory) capabilities of this model arise from proper consideration of data-structure,
or pre-processing by classical systems, therefore it is the best available candidate for the
quantum kernel of (conscious) image recognition in the visual cortex.
Keywords: quantum, image recognition, holography, phase, associative memory, Hopfield

1 Introduction

Quantum mechanics, recently re-interpreted informationally, is about system experi-
menter interactions. These are actually, at least in some respect, a pattern-recognition
procedure. The model to be presented exploits this deep epistemological interpretation,
therefore it is essential for foundations of quantum theory as well as for the science of
vision (in computers and, even more, in brain) (cf.: [1 ,2]).

!'tb will present a model, a derivation of [3], and prove that it is functioning at the
quantum level also, not merely in ANN-like (artificial neural net) simulations.

The mathematics of this algorithmic model to be presented has already been successfully
computer-simulated, e.g. [a]. The next step made here is to proceed from simulations to
consideration of experimental possibilities of quantum nanotechnology. This work exploits
relations of parallel-distributed processes (PDP) in neural and quantum systems (overview
in [5]), and their relations to holography, in order to propose a quantum'image recngnition
model.

Quantum neural nets [6, 7l are abranch ofquantum computers needing no logic gates. It
will be shown that the quantum implementation of associative neural nets can be naturally
physical, i.e. no artificial classical-physical devices are necessary, except for encoding into
and decoding from quantum systems. Continuous processing of (quantum) nature has
much higher capabilities than artificial discrete processing of present-day technology. One
can with relatively no cost mobilize almost infinitely many "units / pixels / neurons",
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"being always available free" in the quantum field. One does not need to specify states
of "units" individually, but merely to shape net's attractor-configuraiions (as whtles) or
parallel-distributed dynamic structures (called order parameters in physiàs) se.,oi.rg as
information-codes.

To demonstrate quantum implementation of certain ANN, it is best to remember a
fundamental technique which has already been much experimentally tested and used
holography' Holography is a practical 3D image-storage and -reconstruction procedure [g].Its imaging is powerful and of high resolution, although the technique is relatively simple -
it uses merely reflection from the laser-illuminated object and interference of thl ,'object,,-
beam with a "reference"-beam. Early associative memories were inspired by holography
[9]. They were a version of digitalized ampiitude-information holography. Merging of ANN
and holographic approach [10, 11] continues to be very useful.

since holography 
_can be in principre realized appiying any sort of Huygens-principle-

obeying waves [8, 12], preferabry coherent waves [gj, rt is realizable also u]sing qrrurrt,r*
wâves or wave-packets. The latter are of the same type as the Gabor wavelets=uùd, 

".g.,incomputer vision [13]. I)ennis Gabor got the Nobel prize for physics fbr his invention of
holographv. The fast-developing quantum optics promises to iealize it soon in quantum
field, i.e. using quantum probability-distribution waves [14].

This step was enabled by the following observation or th" parallel-di,stributed encod,,ing
of inforrnation into uJaues, i.e. into (-Are'er, A2eiez,...,Ayeicr1, in general. It has two
special cases:
o (I) encoding in amplitudes,4 only, i.e. in (A1, A2,...,A1,,), and
o (II) encoding in oscil latory phases p only, i.e. in (err' ,"nôr,...,"icl), i . : ,t_1.
These two cases enable effectiuely the same informat'ion processing as far as the foliowing
variable exchange can be made in the mathematics of lne *oaàTalgorithm: A *, si.ô.
It will be shown for our wave-model (II) with A : 7: what works foi real-ualued, cod,,ing-
numbers (A) works for s'inuso,id, encod,ing a!so. r.e., ',wave-based,'model 

(II) is equivaleit
to "intensity-based" model (I).

In sec, 2 we "translate" Hopfield's model into quantum formalism [7, 5]. In sec. 3
we "transform" Hopfield's model into wave-model (II), showing their equiualence 1or image
recognition' Sec. 4 is a quantum-physical presentation. In sec. S we present possibîe
quantum implementations of the simulated model, and in sec. 6 its benefits.

2 Hopfield model realized with quantum waves

The simplest Hopfield ANN (1982) incorporates Hebbian memory-storage ,,into,, cor_
relation matrix J, i.e. J : DL, t St (g denotes tensor/outer product), u.id u *"*ory_
influenced transformation of patterns ti-. tputput - Jl*np,"t. oach Âf p paiterns, simultanl_
ously stored in the same netlJ, is denoted by a superscript index lc: k : r, ..., p. patterns
(or, equivalently, images) u*, which become Hopfield-netl eigenstates (attractors), can be
complex-valued and can be quantum-encoded (as will be shown) into the net-staie q;. For
the quantum implementation, we will henceforth use the quantum notation, i.e. ù corre-
sponds to f, and ,ry'k corresponds to rl (: Ae if non-oscillatory). (So_called wave_function
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û describes the whole state of the quantum system/net; Ty'fr describes the lcth of its eigen-

states.) Thus, images are a-ssumed to be encoded into quantum eigen-wave-functions ry'k

(physical realization will be discussed later).

Turning from global description of the quantum PDP (using associative memory J

and net-states ù) into local one (using interaction-weights J67 and unit-states ti; i,h:
1,...,N, for .f{ units; l/ is huge), we have:

P

Joi:Drb|k,:)r

, t î 'o"t : lJniVie" '  ( .2).
j : 1

The asterisk denotes complex conjugation. Pha^se-conjugated ry'. appears here as the nat-

ural result of interference process: l r/i+ rtti l':l r/f,l' +rrf@ï- + (/rb'rltr+ l rl,l l' @t.
[15]). Inserting eq. (1) into eq. (2), we obtain:

N
ù?"tp"l _ \-' n  l r

j= r

Usually, exclusively those coefficient c&, say lo , is close to 1 which belongs to the memorized

image.r/,ko which is the most similar to'Uinwt. Consequently, all other ck, k + k0, are close

to zero. In such a case of the process of eq. (3). the quantum associative net recognizes

the input-image (analysis in sec. 4).
J is called Green-function propagator, G, in quantum theory [5. 3]. G's description

of input output transformations corresponds to statistical description of state-relations

(relations in encoded data) by the quantum probability-densitg matrir p. We will not use

p here; we merely wanted to emphasize p's role as a "quantum archive" (of all potential

input-output transformations, in contrary to G's actual ones).

Now we write eq. (2), with kernel of eq. (1) inserted [16, 17], into space-time form:

We replaced unit-indices h, j by (ri,tz), (d , tr), and discrete summation bv an integration

over the whole effectively-continuous quantum system/net (if it consists of very many

"units"). This is the Feynman (path-integral) version of the Schrôdinger equation, the

fundamental equation for quantum dynamics -- in Dirac's notation:

I  v): l  v)(v I  v) :  ( I* l , l ,u)( ' ,bo l)  |  v).
The central | û) ç1, I symbolizes the operator of projection onto eigenstate | û) , realized by

G (= J), orby p, in our case [18]. Then, I V) :1,/).

The Hopfield computational model, incorporating coupled eqs. (1) & (2) with real-

valued variables, has been used in very many different applications of numerous authors.

Based on [9], it is a historical prototype-model, out from which so many other models,

(1 )
k : 1

P  \  P  / N  . \  P

Lv'f,t h.l*T*': t (I(,/ 'f ).ù1"""'lof :Lr*vf (3)
k:r , /  n:t  \ ; : t  /  k=l

v(ù,tz): I I ( i,r-to,t,)(,tk(ù,r,;;-) v1,i, t ')dr,ù, (4)
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more applicable for particular problems, have been developed. Using it, the first author
has computationally recognized patterns of approximated 3D structures of proteins using
a huge memorized data-base (from the Brookhaven protein data bank) [4]. 

1 However,
for quantum implementation of associative PDP, we should first turn to this model, eqs.
(1) & (2), again using it as a "Rosetta stone". This might then enable subsequent fantas-
tic improvements which are promised by possibly-entangled [23] quantum field dynamics
manipulated by so-called classical--quantum interactions. So, the quantum breakthrough
for AltùN-implementations can best be made with the prototypical associative content-
addressable memory of eqs. (i) & (2), because its dynamics is relatiuelg s,imilar to natural
processesl mainly in spin systems (i.e., spin glass) [2a] and quantum fields [3j.

3 Equivalence of the real-valued and sinusoid models

Quantum wave-functions ty'É can have many forms. For our purposes) (quantum-optical)
plain-waves ,ltk(i,t) : Ak(r',t)etvk{r't) are the most appropriate. An advanced alternative,
Ieft for our future work, are quantum wave-packets nearly-identical to Gabor wavelets [13].

Holography shows, at least for non-quantum lvaves, how one can parallel-distributiveiy
encode images k into a web of waves (Afe'ri,4\stvâ,..., Afueivkl. The amplitude Af and
the oscillatory phase W! ltave the same lower index j (j :1,...,iy'; .À/ huge), since they
belong to the same "waving" point, which is our "unit" (encoding a point of the image).

We can use plain-waves (sinusoids) with the same constant amplitude, say A : l;
so, Af :1for ali /c,j. This is functioning for few decades, known as phase-iriformation
holography. We thus replace all ty'-variables (: u) in eqs. (1), (2), (3) and (4), with eiv,
instea.d of Hopfield's A. We are allowed to do this - it's a usual mathematical exchange
of variables. The essential observation is that with this legal variable-exchange, A .. eie,
gr"i"g 4 

: eotf iostead of $f : ,\, a\l the simulation-tested mathematics remains valid
for sinusoid-encoded images also. Thus, we can claim that the Hopfield algorithm, i.e.
eqs. (1) k (2), works uith compler-ualued s'inuso'id-'inputs at least as much as with real-
aalued inputsl Performance of the wave-phase model (II) with eigenimages ,bk : e,rr ,
Ak : l, is equal to performance of the amplitude model (I) with ,l,k : Ak, AÈ real number.
However, when using both - dlfrercnt amplitudes ond different phases - performance might
be (much) improved, as practically proved by HNeT [t0]. Much better results arise using
HNeT's preprocessing method [10] where inputs uf are sigmoidalty mappedinto phases p] to

obtain a convenient symmetric (uniform) data-distribution: p! : Zn (t+ 
""e(*#))

To prove quantum-wave image-recognition with the system of eqs. 0) e. Q), it suffices
to execute the exchang",rbf * siei, first in the Hebbian eq. (1), using (eiv)* - e-ic:

rBecause inter-image orthogonality increases with increasing N (which can be huge), success usually
also increases with N. Therefore, resolution can be freely increased. The final 3D graphics of "proteins"
proved that as well as our uery recent image-processing simulations [note before press].

(5 ) ,
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and secondly in eq. (2). So, instead of eq. (2), when irnerting now expression (5) into J6,
of eq. (2), we obtain the following equivalent of eq. (3):

e'9n

In the next section rve enter the formalism of quantum physics to study the enormous
process of phase (mis)matching of eq. (6), i.e. constructive or destructive interferences,

and precise conditions for clear image'recall. The right-most expression of eq. (6) gives an

image-bearing output, i.e. e'pio , only if the same conditions are valid as described below eq.
(3): If the input wave has a similar phase to one of the memorized waves, say k : ,be, then
those wave will be reconstructed -- the image it is carrying, ke, will be recogn'ized. If those
conditions are not satisfied by the data correlation-structure, interferences ("cross-talk")
lead to a mixed or averaged output (details in [ ]).

So, instead of a long series of products (correlations) of real-villed information-coding
numbers, ,4, as in the Hopfield model, we have here a long series of complex-valued erpo-
nentials (waves) with differences of information-coding phases, g, in each exponent. These

phase-d,'ifferences (peak d,elays) encode d,'iscrepanci,es in d,ata- Our wave output etoio is the
sarne as Hopfield's Af!. ln srm, input-output transformations are the same in the wave
case as it were in our simulated real-number (intensity) case [4]. All this proves the image-
recognition capabilities of the wave model (II) with phase-encoding of image-points à. The
memory is "represented" by the hologram, i.e. wave-interference pattern, of eq. (5).

Performance is at least preserved if also amplitudes ,4 are input-dependent. Because
nothing essential changes from the,4 : 1 case (used in our "proof'), we can infer: Since the
phase- and amplitude-encodings give equivalent results, the use of. both of them (combined)

merely emphas'izes the results of the use of phase-encoding exclusively, or of the amplitude-
encoding exclusively. Specifically, the output in the combined case is Aperp(i4|") pllm

small residual. In generalization of eq. (6), the weighting factors Af more or less magnify
the individual response-terms in exp(igf,'wt), especially near k : &0, thus increasing the
pixel-contrasts (cf., [10] for computational evidence). We can also separate (filter) the
phase and the amplitude outputs one from another, and manipulate them separately (al-
though leaving them to support each other) to achieve more informative results.

4 Our model in quantum formalism

4.1 Informational perturbation of the Schrôdinger propagation

Let's write quantum equations explicitly. Note that in all of them, the pha^se rp (now
quantum, as the presence of the Planck constant à indicates) is hidden in the exponent of
the wave.function iU which describes the (oscillatory) state of the quantum system:

ù(fl,t) : A(F,t)erpfi(Ér'-c.,t)l : A(r',t)erplf,l@'- Et)l: A(i,t)ereffief,t)l

: 
Ë 

(É "n'i"-no!) 
ei|'o": 

É 
(,Ë"'v'i"'"'"-t';) "t'ei 

: eiçlo (c)
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A is the amplitude, k is the wave-vector, c,,r is the angular frequency, E (: àar) is the
energy, f e frÉ) is the momentum (of the photon).

The Hopfield neural-net model can be mathematically translated into quantum for-
malism while preserving all information-processing capabilities [7]. In [5] we have shown
that this is because the collectiue dyna,mics in neural and quantum complex systems are
similar, in spite of different nature of neurons Qi and their connections /,; on one hand,
and quantum "points" ilr(fl and their "interactions" described by G(ir,r-2) on the other.

What follows is presentation for physics-oriented readers. The Quantum Assoczat'iue
Networlc model [3] combines the usual dynamical equation for the quantum state [22]

f l

V( i2 , t z ) :  I  I  G (û ,h , i z , t 2 )  V (ù , t 1 )  dù  d t l
t t

or V(r2) : G il/(rl) (8)

and the expression for the parallel-distributed interactive transformation of the quantum
system [22]

G (ir, tr, û, tz) : l ri,o tfr, tr)- rl,k (ir, tr)
,t:1

or G(Fr,ir): Drl,r(ù)" ,hk(ir) (9)
lc=l

Note that expression (9), i.e. f.or G(4)k(ù,tt), ' , lrk(ù,t2)), presents the kernel of eq. (g).
The system (8) and (9) is just the usual Schrôdinger propagation reinterpreted for asso-
ciative processing and measurement-like readout (cf., [17]). However, t]re readout (final
stage) is done taking into account our knowledge on the state we prepared. Moreover, our
storage procedure (preparation stage) introduces a significant perturbation to the quantum
system which cannot be treated as closed here.

4.2 Interference-based memory storage

The foliowing holography-like twestage procedure reflects correspondence between
quantum and network processing/measurement: So-called system-preparalion corresponds
to learn'ing / data-storage, and system-uerif,cation (measurement) to output-retrieaal The
latter would in quantum proper (statistical) case need m,o,ny measurements (on ensembles)
for a reliable output.

We want to encode some'informat'ionin eigenfunctions ?bk. Then t[k would become
quantum codes of images not necessarily geometrically isomorphic to some external
images, although encoding them. It ma7, not be possible to encode information in wave-
functions V, or r[k, in the same sense (by the same directly decodable way, respectively)
that information is encoded in neural-net state-vectors (, or ûk, for two rea.sons. First, any
natural (non-urodel) network may initially be in some "natural" state, i.e. eigenstate, of
its own. Second, f, or # , are in principle directly observable, but ilr, or tlk , are not - not
even in principle, as long as they remain quanturn. Therefore, we act as follows.

By a classical interaction or perturbation on an appropriate quantum system, we force
the quantum network into a state V which "implicitly reflects" our external influences
(inputs), i.e. it is input-modulated [21]. As soon as such a state ilr stabilizes, becoming an
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eigenstate, ,b* (k:1), we can continue to "insert" (simultaneously or sequentially) other

iniormation-encoding states (k :2,...,p). All these eigenstates (images) r/'e interfere as

prescribed by eq (9) and get th:us storedin G. Quantum holographg $al is an example

which demonstrates how this could be realized, with plain waves V : / si'v or wavelets

(wave packets) [13], without extensive artificiat effords. Moreover, fast-developing specially-

à"rignàa encoding / decoding (measurement) devices 125,20,21]' including active control

and measurement of quantum phases [25], enable enormous additional possibilities-

If eigenfunctions Ty'É implicitly encode images, then the matrix G (: J) describes the

quantum associatiue rnemory. The propagator expression G in eq. (9), which acts as a

projector during_the image-recall_(measurement) process, is related to the usually-used

Green function G [16] bY G : -iG.

If we, in eq. (01 *5i.ir looks Hebbian, expose the phases g explicitly, using Ù :

Aerp(i,g), we get an expression which is the quantum phase-.Élebb learning rule:

GlAk( i r , t r ) ,  Ak( f2, t r ) ;ço(ù, t r ) ,pk( i r , r r ) ]  :  É Ak(r -1,  t1) .Ae (ù, t r )e-otno ' t2)-e(r -1 ' t ' ) )
k : l (eô)

This clescribes the memory encoding which is two-fold: it is both in amplitude-correiations

DL, Ao(t-r, t)Ak(û,t2) (Hebb rule) and in phase-difierences 69v : qv(i l t2) - tpl(r-1, t1) '

One of the two encodings is sufficient (as is in the amplitude.information and phase-

information, i.e. type I and II, versions of holography), but the combined encoding brings

optimal performance, as the usual holography demonstrates [8]'
The difference between the rule (9b) and a non-quantum phase-Hebb rule is that in eq.

(9b) phases rp are quantum p.hases i.e., Planck's constant à is hidden in the exponent

(but the usual notation T, : *: 1 is used norv).

4.3 Image recognition by collapse-based selective \lr-reconstruction

The retrieual from quanturn associat'iue lnernory (v*tput: Gv') is most-directly real-

ized by the input-triggered, non-unitary waue-function "collapse":

ù'(r-1 , t1) dr-1 :v(iz,tz: rr * 6ù : I G(il, i2)v'(i,, t ') ai ' : | (Ë u-tt, l.t-tt l)

+ (l v' trrl*ù'(r-', tt)dit)',!P ?'2) :

: (l ,t't rl*!!'("-,, tr)ar'r){'Vr) + (l ,t"trrl*v'(r-', tt)dir)4,2(û) + ..

: C ûr(ù) + B where C + r ('signal'), B : 0 ('noise')

or in another description

t(r-,t) : f ,'k(t)r1,0 (û : i f t ,bk(t.'v'(i, tla) ,tk (t :
h : l  l c : l  

\ "

(10)
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:([rt ' | f l -ù'(r-,r)di) rt ' rrt+( [rb'(û.v'(r ' , t)aÀ1,'n+...*( [rbP(F).,v'(r ' , t)d,ÀrhP.i, :
\ J  "  ' "  / ' . ,  \ J  . -  /  \ J  / '

:  C t h r ( t +  B  w h e r e C  + l  ( ' s ' i g n a l ' ) , 8  = 0  ( ' n o ' i s e ' )  ( 1 1 ) .

In eq. (10) and eq. (11) we had to choose such an "input" V'that is more s'imilarto $1 ,
for example, than to any othen|tk,k + 1. At the same time, the "input" \Ir'should be
almost orthogonal to all the other ry'k, k + L In this case, Ù converges to the quantum

"pattern-qua-attractor" tll , as it is shown in the last row of eq. (10) and in the last row of
eq. (11). Thus, the memory-pattern / -image ty'r is recalled (measured). If the condition,
well known from the Hopfield model simulations [ ] and from holography, that "input"
must be similar to one stored image (at least more than to other stored images) is not
satisfied, then there is no single-image recall.

Almost-orthogonality [26] is essential for "real-life" data-processing. Exact orthogonal-
ity of the stiff pre-computer era of quantum mechanics should not be taken loo seriously any
more. Recognizing that quantum eigenstates are orthogonal merely in the limit ly' ---+ oo,
our fuzzy interpretation of quantum algebra, i.e. allowing nearly-orthogonal eigenvectors,
brings not merely information-processing benefits, as simulations show, but is probably

more physical also (see arguments in [3]).

4.4 How is the image extraction possible

In our quantum-net model we are not interested in Ù, like we are not interested in
q-in our neural-net model. Our final result will directly be a single "post-measurement"
information-encoding eigenstate ty'k (say k : 1), or d, respectively. We cannot observe
!trr (except in net-simulations by stopping the program) and we need not observe Ù (or ql,

but we wait until the "measurement" (i.e., image-recall which is equivalent to the wave-
function "collapse") is triggered by our fina,l new input Ù'or q-'. Then, the sta,ndard
qua.ntum observables O (corresponding to: Orlt : Àor!), e.g. spin states, can reveal the
reconstructed image-encoding quantum eigenstate Ib* (k: 1). Narnely, since the output
is similar to the input (that we know!), the eigenvalue (Ào) information can be sufficient
for knowing the output.

Moreover, z/ the final V : {tk (k : 1) is / becomes classical-physlcol (like the input-
images may well be), then obtaining complete knowledge about the output-image, encoded
inrlk (k:1), is at least in some cases (e.g., optical) relat'iuely straight-forward (e.g., like
seeing the image reconstructed from a hologram). E.g., qua,ntum coherent states behave
on average (most probably) as classical ones and a,re robust to noise.

Beside quantum holography, an alternative fast-developing technique for reconstruction
of eigenstates ry'ft is quantum tomography [27]. (Some auxiliary options related to potential

implementations see in [28].)
So, our information-processing result can be ertracted from ry'l using new quantum-

optical (and computer-aided) techniques for measurement of observables or for quantum-

holographic-(Iike) wavefront reconstruction. Their keywords are, e.g., quantum-phase en-
gineering, waue-paclcet sculpting, (coherent) quantum control / manipulation l2l].
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5 Quantum implementation oPtions

Implementation of our model is most appropriate using quantum-wave holography [14,
25,23|1. Several applied techniques, which are at least partially quantum-holography-based,

are also already functioning, e.g. some sorts of tomography (flMzu and PET scanning) [27].
Holography is a fundamental and universal procedure in the sense that, in principle, any

sort of coherent waves can be applied for interference-based simultaneous recording of

many objects into (and for selective reconstruction from) various hoiogram-media. Apart

of classical optical and acoustical holography, microwave-, X-ray-, atom- and electron-

holography were realized [8]. There is just a step further to quantum-wave holography

functioning as described here - for our purPoses, not merely for others'

This attempt is supported by the following reports: According to [29], universal quan-

tum computation is realized using only projective measurement, like ours of eq. (3) or eq-

(6), quantum memory, like ours of eq. (1) or eq. (5), and preparation of the initial state

(the laser-wave in our case). Information-storage and -retrieval through quantum phase

[20], including imprinting phase'patterns into quantum-states, and measurements of quan-

turn relative phase [30] have been experimentally demonstrated. Quantum encodings in

spin systems and coupled harmonic oscillators, with a possibility for computation in terms

of number- and phase-operators, are possible [24]. This enables HopfieldJike image'sborage

and -recognition in such nets, including spin-wave holographic ones. In general, quantum

computing, including its mainstream using quantum logic gates, is realizable using linear

(quantum) optics exclusively [19].
However, if nanotechnology could not (which is highly unlikely) realize quantunt-hologra-

phic image.recognition as proposed here, something like this is hypothesized to be hap

pening in the (visual) brain [1, 15]. Not only brain, the whole quantum Nature itself

almost certainly incorporates such processes, at least in interaction with our quantum-

measurement devices [2] (cf. [3t]). In worst case, it does merely not let us to collaborate

with until tomorrow?

6 Benefits of our model

Recently, we found similar quantum image-recognition proposals [32]. Tbugenberger's

one is relatecl to the fact that "simple.Hebbian" u* I u* with bipolar states (1 and -1

only) is equivalent to quantum-implementable NOT XOR gate. This makes a link between

ANN-like and logic-gate'based branches of quantum image recognition-

The benefits of the first branch, i.e. quantum neural-net approach, are the following:

We avoid the devastating role of quantum, decoherence, characteristic for the main-stream

quantum cornputers, by usefully harness'ing " collapse of the waue-function" for irnage recog-

nition. No special mechanisms are needed for quantum error-correction, since it is done

spontaneousty by the net's self-organizing process (as in ANN). Initialization problems are

not as serious [33] as in logic-gate quantum computers, at least not when an object is

holographed. In this case, reflection from its surface determines the phases, and fluctua-
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tions do not destroy the modulation (cf., experimental quantum-phase storage and retrieval
[20]). Finally, as it is characteristic for quantum computers, quantum associative net is
exponentially superior to its classical counterparts in memory capacity, processing speed
and in miniaturization [6]. This brings improvements in computational capacity and effi-
ciency. Quantum ANN promise to outperform logic-gate quantum computing in associative
tasks like discussed here, and in flexibility (fuzzy processing) [3], where also classical ANN
outperforur sequential computing. Finally, our net presented [3] is relatively inexpensive,
because it is reiatively natural, and is of huge theoretical importance at least.

7 Conclusions

1\'{athematically and computationally [4], we have proued the associatiue memory-storage
and image-recognition perforrnance of PeruÈ's model named Quantum Assoc,iat'iue Networlc
[3]. It remains to prove it in quantum-physical experimental practice, i.e. with real quan-
tnm image-encoding wavesl not merely with digital simulated ones (complex sinusoids). It
is cruciai that our model [3] is fundamental, optimized and relatively natural, i.e. almost
no artificial devices are really necessary (even iaser is avoidable), in contrary to all other
models.

Discussion on incursive anticipatory dynamics of our Quantum Associative Net, as in
ch. 7 of [4]. is valid for our present implementation and purposes also.
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