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Abstract

Using a rewrite approach we introduce a computational path to a nilpotent form of the
Dirac equation. The system is novel in allowing new symbols to be added to the initial
alphabet and starts with just one symbol, representing ‘nothing’, and two fundamental
rules: create, a process which adds news symbols, and conserve, a process which
examines the effect of any new symbol on those that currently exist. With each step a
new sub-alphabet of an infinite universal alphabet is created. The implementation may
be iterative, where a sequence of algebraic properties is required of the emerging sub-
alphabets. The path proceeds from nothing through conjugation, complexification, and
dimensionalisation to a steady (nilpotent) state in which no fundamentally new symbol
is needed. Many simple ways of implementing the computational path exist.

Keywords. Rewrite system, substitution system, nilpotent, Dirac equation, universal
alphabet.

1 Rewrite Systems

Rewrite systems are synonymous with computing in the sense that most software is
written in a language that must be rewritten as characters for some hardware to
interpret. Formal rewrite (substitution or production) systems are pieces of software that
take an object usually represented as a string of characters and using a set of rewrite
rules (which define the system) generate a new string representing an altered state of the
object. If required, a second realisation system takes the string and produces a
visualisation or manifestation of the objects being represented.

Each step of such rewrite systems sees one or more character entities of the complex
object, defined in terms of symbols drawn from a finite alphabet £, being mapped using’
rewrite rules of the form L—R, into other character entities. Some stopping mechanism
is defined to identify the end of one step and the start of the next (for example we can
define that for each character entity or group of entities in a string, and working in a
specific order, we will apply every rule that applies). It is usual in such systems to halt
the execution of the entire system if some goal state is reached (e.g. all the character
entities are in some normal form); if no changes are generated; if changes are cycling;
or after a specified number of iterations. The objects being rewritten and differing
stopping mechanisms determine different families of rewrite system, and in each family,
alternative rules and halting conditions may result in strings representing differing
species of object. Allowing new rules to be added dynamically to the existing set and
allowing rules to be invoked in a stochastic fashion are means whereby more

International Journal of Computing Anticipatory Systems, Volume 16, 2004
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-930396-02-4




| complexity may be introduced. For examples of various types of rewrite system see:
von Koch (1905), Chomsky (1956), Naur et al (1960), Mandelbrot (1982), Wolfram
(1985), Prusinkiewicz and Lindenmayer (1990), Dershowitz and Plaisted (2001), Marti-
| Oliet and Meseguer (2002), etc.

In this paper we seek to extend the applicability and power of rewriting by
examining how rewrite systems work at a fundamental level, and by creating a rewrite
| system from which other rewrite systems may be constructed. We will show that a
| rewrite system can represent mathematics and foundational aspects of physics and can

lead to a fundamental basis for quantum computing. The application to physics is
| particularly important because it is a strong test of the worth of a fundamental idea.
| Mathematics can be structured on fundamental principles in a large variety of ways, but
physics has to survive the test of observation and experiment under many different
‘ conditions. The mathematical foundations of physics may also be expected to provide a
route to understanding principles that are important in establishing a route to quantum
computing.

Deutsch, Ekert and Lupacchini (1999) have stated that: ‘Though the truths of logic
and pure mathematics are objective and independent of any contingent facts or laws of
nature, our knowledge of these truths depends entirely on our knowledge of the laws of
physics.” According to these authors we have been forced by ‘recent progress in the
theory of computation’, ‘to abandon the classical view that computation, and hence
mathematical proof, are purely logical notions independent of that of computation as a
physical process’. Mathematical structures, however autonomous, ‘are revealed to us
only through the physical world’. We will, in fact, go further and state that that
mathematical structure which is most fundamental in understanding the physical world
is also likely to be the structure which is most fundamental to understanding
mathematics itself.

The key concepts here seem to be those of nothingness and duality. Many authors
have claimed that the physical universe presents a zero totality, at least in energy terms.
Atkins (1994), for example, writes that ‘the seemingly something is elegantly
reorganized nothing, and ... the net content of the universe is ... nothing’. According to
our reasoning, however, it is not just matter and the universe that appear to be nothing,
but the entire conceptual scheme of which these are merely components; and we believe
that the way to preserve this overall nothingness is via duality, another concept which is
widely held to be fundamental, and which, as Young (1968) points out, seemingly
‘pervades mathematics’.

A zero totality certainly provides a valuable constraint on the possible mathematical

‘ and physical structures that can be generated by a universal rewrite system, but we
believe that it also allows us to specify them uniquely. A key step in rewriting is the fact

‘ that there is an initial state. If we assume a string representation of 0, and begin with the

‘ idea that only 0 is unique, and that everything that is not 0 is undefined, we can begin
rewriting by denying that we have a non-0 starting-point. That is, we assume that we are

| not entitled to posit anything other than 0, and are forced to rewrite when we start from

| any other position. We can then show how a universal alphabet that encompasses
duality and nothingness can be developed using such a system.
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In the process we will stress the significance of the concept of hierarchy, and of the
difference between recursion and iteration, the two methods by which the elements of
this alphabet may be discovered. One of these methods yields an infinite number of
subset alphabets each of which has properties that can be exploited, for example using
further rewrite systems based on the subset alphabet.

2 Evolving Alphabets and the Functions Create and Conserve

Although some rewrite systems assume an infinite alphabet, e.g. of integers, it is
more usual to consider the alphabet both static and finite. To relax this constraint and
provide evolving alphabets we must consider a rewrite rule Z—X' where Z is the
original rewrite alphabet extended by the symbols in X'. Adding a rule of this form does
not restrict the other rules that comprise the rewrite system nor does it restrict addition
of rules that include symbols introduced in £'. However, for this to be a valid rewrite
system an initial state (that can be re-written) must exist as well as an alphabet
containing at least one symbol. The rule £—>Z%' may be implemented in a number of
ways but requires that ¥ appears, or is inserted at some time, in the object being
rewritten. We do not consider further the full implications of this, requiring only that the
process or processes that are invoked have the ability to determine the symbols inserted.

Given an evolving alphabet of this form we may constrain the process to ensure that
the alphabet remains balanced with respect to the previous state. Thus for example,
given ‘0’ as the symbol representing the character null, empty, or zero in the initial
alphabet we use a function create to generate the symbol ‘a’ and the function conserve
to generate a conjugate symbol ‘4’, where ‘@’ and ‘4’ together yield 0. The functions
create and conserve requires that a process such as conjugation exist that re-balances
the emerging alphabet. However, although it is possible to construct algorithms for
create and conserve (for example that select symbols from an infinite set) the
specification of the balancing process is an arbitrary one and provides, potentially, an
infinite number of balanced evolving alphabets. By selecting the processes that have
some natural progression we can either impose desirable properties as outlined below or
further constrain the evolving alphabet.

In the limit the alphabet generated will be universal in the sense that it provides all
properties and every symbol. Furthermore, the rewrite system too may be considered
universal in the different sense that all elements of the system are amenable to
reformulation.

3 A Universal Alphabet and Rewriting System

A minimal evolving rewrite system must have an initial state (usually called the -
state) that contains at least one symbol that we can use to identify that the universe is
empty. However, any symbol we choose is immediately (and simultaneously) a symbol,
a character of the final alphabet, a subset alphabet and full alphabet in its own right. It is
perfectly reasonable to choose, arbitrarily, the single symbol 0 (zero) for Z, and also to
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set it as the string representing the complex object in the w-state {0}. We are obliged to
make an arbitrary choice here because we cannot use create without the w-state — the
minimum rewrite system condition for a universal system. If we were to use conserve
now it would simply return that 0 is unique, fixed, and consistent and no change from
the w-state would be generated. We now invoke create supplying the w-state as
parameter, or source, string.

If we presume that create is an algorithm with stopping criteria, it returns a result
target string containing a new symbol. If the paradigm for the algorithm were recursive,
the resulting symbol (we use E) would represent every character of the alphabet at the
first step. To create any refining character, a specific ey, using the recursive paradigm
would be impractical because of the implied infinity and storage requirement. We may
not use an iterative paradigm at this stage because we would have to supply an upper
limit and/or need to identify which of the infinite characters we are creating. Both of
these actions require a character not yet in the character set (alphabet) so far defined.

The pair of symbols, the string {0, E} is our new object (alphabet) and is now
submitted to conserve which examines all combinations of possible symbols:

Table 1: Recursive paradigm for universal rewrite alphabet.

0 E
0 [00 OF
E | E0 EE

We note that 00, the ‘transition’ from 0 to 0, conserves 0. The combination 0F is the
transition from 0 to £ and is balanced, for all E, by its conjugate partner E0 which is the
transition back from E to 0, thereby conserving 0. The combination EE, the transition
from every symbol E to every other, is anomalous and must be returned by conserve as
unexplained or ‘inconsistent’ as it does not appear to conserve 0. However, at infinity
all transitions represented by EE will have been examined, EE will be declared
‘nilpotent’ in that it delivers 0, and we will be left with three generic combinations:

(00, OF, E0)

However, it is impractical to use the recursive version of conserve to examine further
the elements of E because of the implied infinite number of iterations.

We return to the create process and accept that we must postulate symbols A, Ap, ...
A, drawn from E such that they are in an arbitrary ordinal sequence. We note that there
is an infinite number of such sequences because choice of A, is arbitrary. However, we
may now use an iterative paradigm for create and because # is specified, an iterative (or
recursive) conserve can be constructed. However, at the end of each invocation we are
presented with a symmetrical table of transitions that represent the simplest set of
properties for the current set of n symbols (Table 2).
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Table 2: Iterative paradigm for universal rewrite alphabet.

0 A, Ay Ac . ™
0 00 0A, 0A, OA. 0A,
As A0 AA: AAy  AJA. AAn
Ap | A0 ApAs  AsAs  AsA. ApAn
Ac 1AO AA: AAy AA. AA,
An | A0 AA: AAL AA. AnAn

The A, row and A, column illustrate the conjugate pair structure observed earlier. The
remaining cells of Table 2 identify explicitly each A symbol to A symbol transition
observed generically in Table 1. Off diagonal there are symmetrical conjugate pairs, for
example when n = b there are three such cancelling pairs and six when n = c¢. The
diagonal cells of the table contain transitions from each symbol to itself and do not
cancel out in this way.

We now invoke the conserve process noting that it does not define the transition
property but merely identifies those novel transition combinations that appear not to
conserve 0. When n = a, the symbol A, is added to the alphabet and the transition 0A, is
introduced. We need A0 (and the idea that this is a conjugate form) to conserve 0.
However, this leaves the combination A,A, unexplained (novel) and to conserve 0 we
must conjecture that whatever it is, is balanced by whatever is to come — or both are
‘nilpotent’ in the sense introduced above. To discover this we invoke create to add a
new symbol to the alphabet which then defines (arbitrarily) the » = b row and column.
At n = b (in conserve) we continue to require the conjugate explanation for all off
diagonal elements in the table. In addition, we have non-0 to non-0 symbol transitions,
each of which has a cancelling conjugate, and which must ultimately yield a symbol
already in the alphabet. However, when these transitions are explained we still have
ApAp as novel, and require the method of explaining the novelty used earlier. We see
that at every invocation of conserve we define the need for an additional symbol,
delivered by create — it is inherent that both processes are obligatory. Other processes
may now be conjectured within the rewrite system that impart meaning to ‘transition’
and also to each transition from A, to A,; however, in each case all of what is to come
must balance the A,A, in the diagonal position. ‘Balance’ in this explanation assumes
that the 00 transition yields 0, however, we could consider it to yield a conjugate of
some form. Where this is the case we may consider each newly created diagonal
element as ‘balancing’ that conjugate by delivering the unconjugated form.

Finally, we note that the symbol 0, the existence of the w-state, and the processes
create and conserve are outside the rewrite system in that they must exist before the
system can function. If we can allow these assumptions, we may also presume the
existence of some natural machine that will deliver, for a set of appropriate rewrite
rules, a corresponding alphabet where the symbols themselves map to specific rules.
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4 Mathematical Properties Required

The properties and symbols required for the universal alphabet we have proposed
emerge from the application of the two rewrite rules and would have been equally valid
for any of the infinite alternative selections. Significantly, since the ultimate aim is to
recover the zero state (w-state) through an infinite series of processes, the emergence
should be seen as being of a supervenient nature, that is, without temporal connotation.
Furthermore, the symbol delivered at each step has all the properties of all the symbols
previously delivered and in a hierarchical and orthogonal fashion.

We may now adopt a dual methodology that simultaneously produces a realisation of
the universal alphabet in terms of recognised mathematical procedures and provides a
route to the fundamental structures underlying both mathematics and physics. This can
be regarded as both a symbolic description of the universal algebra and a specific
application of it. Mathematical and physical structures will be shown to effectively
rewrite themselves. Because of the fundamental nature of the rewrite approach, further
applications in such diverse fields as quantum computing and applied biology
immediately suggest themselves, though they will not be dealt with in detail in this
paper. It is significant that the process outlined here makes no prior assumption about
the existence of the concept of number or any specific mathematical structure. Numbers
and their relationships are shown rather to be a result of the more fundamental process.
Fundamental terms such as ‘ordinality’, ‘numbering’, ‘negativity’, ‘conjugation’,
‘complexity’, ‘group’, ‘category’, etc., will emerge from the evolving structure rather
than be predefined to create it. A more specific form of category theory may be applied
subsequently, but is not needed as a prior condition.

It has become a standard procedure to derive mathematical structures from the
process of counting using the natural numbers, 1, 2, 3, ..., and then progress by
successively extending the set to incorporate negative, rational, algebraic, real, and
complex numbers, before proceeding to higher algebraic structures involving, say,
quaternions, vectors, Grassmann and Clifford algebras, Hilbert spaces, and even higher
structures. However, to begin mathematics with the integers, though natural to our
human perceptions, is to start from a position already beyond the beginning. The
integers are loaded with a mass of assumptions about mathematics. They are not
fundamentally simple but already contain packaged information about things beyond
the integer series itself. This makes them a convenient codification of mathematics, but
not a simple starting-point. The number 1 is not the most obvious initial step from 0
because it contains, for example, the notion of discreteness, as well as ordinality. In
addition, there is no obvious route of progression from natural numbers to reals. It
would seem to be more logical, in terms of rewrite procedures, to begin with the real
‘numbers’.

However, when we first conceive of the real ‘numbers’, they are not numbers at all.
They are not related to anything concerned with counting, because counting does not yet
exist. The set of reals (#) is simply one of things unspecified. Our starting-point must
be non-specific, and could be anything. We don’t define it at all, not even as a set, and
certainly not as numeric. In terms of the rewrite procedures we have adopted, such an
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assumption of any non-zero category must immediately lead to the return to zero,
which, in mathematical terms, becomes equivalent to supposing a ‘negative’ category or
‘conjugate’ corresponding to the original assumption. At this point we have created
ordinality, or ordering, though not yet counting, as there is no discreteness or anything
fixed involved in the procedure; and, although we will use the sign ‘', used for the
algebraic negative, our process of ‘conjugation’ is in no way limited to the concept of
algebraic subtraction, which, in our terms, does not yet exist. In terms of Table 2, this
stage is the recognition that A,A, leads to the creation of the new symbol Aj.

It is the next application of the create procedure (AsAp — A;) which leads to the
number system as we know it, for now we have an undifferentiated ‘set’ of possible
origins for the ‘negative’ ordinal category or conjugate. We describe these as complex
forms (@), and each must have its own conjugate. In mathematical terms, the complex
category remains completely undefined in respect to the real category, and has no
ordinal relation to it. There are infinitely possible or indefinitely possible systems that
are represented by the mathematical C, even for a seemingly specified real category. It
is only when we express this fact in the next creation stage that we are able to begin to
extend ordinality towards enumeration, for this stage leads to what become
mathematical ‘combinations’ of complex categories. We find here that to every

conceivable C, e.g. C', C", C', ..., there are indefinitely possible (commutative)
combinations leading to the original real category (e.g. C'C" x C'C" = $), but very
definite (anticommutative) ones leading to the conjugate (e.g. C'C" x C'C" = —%).

Again, although we use the algebraic multiplication sign to represent the process of
‘combination’, the operation of multiplication does not yet exist, and the ‘combination’
need not imply anything more definite than concatenation.

The alternative commutative and noncommutative possibilities relate to the
respective mathematical structures which we call Grassmann and Hamilton algebras.
The Grassmann algebra leads to the infinite Hilbert vector spaces, while the Hamilton
algebra is responsible for the cyclic system of quaternions. It is the cyclicity of the latter
which introduces discreteness or closure, and the concept of ‘unity’. We can choose the
default position of taking the conjugate combination to create a regular ordinal
sequence. We now find that only ‘one’ independent C-type concept (say C') is
associated with each conceivable C, and we can sequence the terms ordinally by
choosing indistinguishability between the Cs in every conceivable respect. So the
sequence, although arbitrary, becomes a series of integral binary enumerations, which
we can also apply to ordinality in the real categories. With the reals, integers, and
complexity as fundamental aspects of the system, the remaining mathematical number
categories (and higher algebras) can be defined by applying the ordinality condition in a
variety of ways, as in conventional mathematics. No new principle is required.

The key proposition at all times, as derived from the rewrite scheme, is that only a
combination of an alphabet with itself, along the diagonal of Table 2 (A,A,), will yield a
new (‘higher’) alphabet to extend the table. Any combination with a component (sub-)
alphabet (e.g. A,A,) will yield only the alphabet itself (A,). It is the application of this
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last aspect of the rewrite procedure to all possible subalphabets that determines the
composition of the new alphabet that is created by A,A,.

In effect, the hierarchical and orthogonal mathematical structure suggested by the
rewrite mechanism is the following:

Table 3: The hierarchical mathematical structure.

n undefined A,
R -R conjugation Ap
n-70,-C complexification Ac
x5 -%0,-C, 0, -0, cC', —0C" dimensionalization A,
H,-%0,-C, 0", -C', CC',-CC', repetition A,

GH, _GH, cc”, __ccn, 0'0", _GIGH, GCIGH, _Gclcn

The subset alphabets at each step represent all those, including %, —% which are
generated by operating on themselves:

B x (=N (1)

(7, =90 x (R, -9 = (5, - %)

(%, -R C,-C)* (A -%0,-C)= (% -%0C,-C)

(#®,-%,0,-C,C,-C', CC',CC) x (R-%,0,-0, ¢, -C", 0C’", —0C")
=(%,-%,0,-C, 0", -C", CC', (", etc.

Of course, all these processes are of the form (A,A,) and will simultaneously
generate the next stage in the hierarchical structure. However, the full alphabet A, will
also be produced where the process is (AsAn), with A, a subalphabet of A,, or any
component of one, and, from the general rule that a character set operating on itself or
any set or symbol contained within it produces itself, before producing the new
alphabet, we may obtain rules between the individual characters, %, C, etc., of the form:

Rx R=-Rx—-F= N )
Hx—F=-Rx R=-R

FxC=0x R=C

Cx0=-Cx—0=-9%

Cx—0=—CxC=n

O'xC0=-L'x-0'=-
CC' x CC'=-0C'x-Q00"'=-% closed (anticommutative)
C'C"x Q' C"=-0C"x-CC"=RH unlimited (commutative)

The choice between the last two procedures is not determined by the algebra. Both are
true infinitely and an infinite number of each would be contained within E. However,
since we consider the generating mechanism to be supervenient, we can structure it to
default at the first option, and so generate an infinite number of identically closed
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systems, from which we derive an infinite integral sequence. Such a default position
additionally represents a condition of minimum use of the available options.

With this procedure, we establish for the first time the meaning of both the number 1
and the binary symbol 1 as it appears in classical Boolean logic. We identify the logical
1 as potentially a conjugation state of 0, that is, a subset alphabet defined within the
system; and we can say that 1 appears as a possibility at the point where we choose the
anticommutative option as a default.

5 Group Properties of Subset Alphabets

Once we have chosen the default which creates the integral sequence, we are free to
reinterpret the more general structures we have already created by direct application of
the sequence, although this does not retrospectively make the structures less general.
Prior to this stage, for example, we may restructure the subset alphabets as a series of
finite groups, the order of which doubles at every stage, producing an ordinal binary
enumeration. The succession, allowing for conjugation (+) within each group, becomes:

Table 4: Subset alphabets as finite groups.

order 2 real scalar

order 4 complex scalar (pseudoscalar)

order 8 quaternions

order 16  complex quaternions or multivariate vectors

order 32  double quaternions

order 64  complex double quaternions or multivariate vector quaternions

Further stages would extend to triple and higher multiple quaternions, with alternately
‘real’ and ‘complex’ coefficients.

Defining closure in terms of enumeration further allows us to understand # in terms
of the set of real numbers (defined by the Cantor continuum), with + and x now
understood as the processes of mathematical addition and multiplication. The
dimensional or constructible ‘real’ numbers represented by terms such as ¢'C" (with
countable units squaring to 1) would then be equivalent to those of Robinson’s non-
standard analysis or Skolem’s non-standard arithmetic. From this particular
interpretation, it is possible to develop new types of mathematics by combining
different aspects of the overall structure in novel ways, as has been the usual procedure
in mathematics.

There are, effectively, only three processes at work: conjugation, which produces the
alternative + and — values; complexification, which introduces a new complex factor of
the form € = i; and dimensionalization, which introduces a complementary complex
factor of the form €' = j, converting the i into an element of a quaternion set. The
sequence proceeds through an infinite series of quaternionic structures by repeated
processes of complexification and dimensionalization. (It is significant that further
applications of conjugation does not affect the structure of the elements in the groups.)
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In terms of ‘units’ (once we have established their existence), we could express the
structures in the form:

Table 5: Algebraic units for the subset alphabets.

order 2 +1
order 4 +1,+4§
order 8 t 1, i, 2, £ iy
order 16 = l,iil,i] t iy, T b, by, T iy, T by
order 32 1, iy, 2j), iy, £ b, T iy, £ iy, T iy,
t j2, L jakh,  jojt, £ a1, T joka, T ook, T jalgf, T i)
order 64 + 1 il ]1,i‘ili],i'izil,iizil,iizh,iizi]j'],
tja, 2 jalt, tjof, £ i, L bz, £ o, T Jaigfr, T by
* i3, T i3i1, T By, £ Biyh, T s, £ b, T iy, £ Bbiy,
* iy,  ajaly, iy, T iajaiyh, T iyjals, T B fobadl, £ injaiofi, £ iyjaiaii

Usually, of course, ijj; would be written k;, but no new independent unit is created
by this notation. An alternative expression could be in terms of multiplying factors:

Table 6: Multiplying factors for the subset alphabets.

order 2 (1,-1

order 4 (1,-Dx(,i)

order 8 (1,-Dx (1, §) x(,j1)

order 16  (1,-1) x (1, &) x (1, /1) x (1, i2)

order32  (1,-1) x (1, i) x (1, /1) x (1, &2) x (1, j)

order 64  (1,-1) x (1, 41) x (1,j1) x (1, &2) x (1, j2) x (1, i5) ,

with the series repeating for an endless succession of indistinguishable i, and ji, values.
It is the potentially infinite sequence of i, values, with commutativity between i, and i,
or j, (m # n), which creates the possibility of a Grassmann or infinite-dimensional
vector algebra, while the anticommutativity between i, and j, ensures the finite- and,
specifically, three-dimensionality of each of the quaternion systems. The commutativity
of i,, and i, is equivalent to defining (imis) (imix) as 1, while the anticommutativity of i,
and j, defines (i) (i) as the conjugate, or —1. It is notable from this that there is no
such thing, in principle, as a pure complex number, only an incomplete representation
of a quaternion set.

The order 16 group is of special interest as creating what is effectively a ‘real’
dimensional structure of the kind observed in normal 3-dimensional vector space. The
components, + 1, + i1, * ji, + iy, £ b2, £ b1, T iyf1, b2y, could be more conveniently
rearranged and written in the form + 1, £ 4, £1i, £ j, + k, £ ii, £ ij, + ik, where + 1, + i
become the respective scalar and pseudoscalar, and i, j, k, and ii, ij, ik the respective
vector and pseudovector terms of the multivariate algebra, explored by Hestenes and
others (Hestenes 1966, Gough 1990), and applied by them to the algebra of physical
space and time, to generate electron spin as a natural consequence of spatial three-
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dimensionality. This is the algebra of Pauli matrices, in which the ‘total’ product of two
multivariate vectors a and b is of the form a.b + ia x b, and the ‘total’ products of the
vector units becomes ii = jj = kk = 1; and ij = —ji = ik; jk = —kj = ii; and ki = —ik = jj.

The order 16 group also (if we are to retain the maximum indistinguishability by
avoiding octonion-type nonassociativity) is the point at which the extension of the
sequence becomes one of repetition, and so a complete specification of an interative
procedure could be made by using the groups of order 2, 4, 8 and 16. Taken as
independent entities, these may be combined in the group of order 64, using the
symbols + 1, + i, £ i, +j, + k, t i, + j, £ K, to represent the respective units required by
the scalar, pseudoscalar, quaternion and multivariate vector groups. This takes on
physical significance when we realize that the algebra of this group is that of the gamma
matrices used in the Dirac equation — the quantum equation determining the behaviour
of the most fundamental components of matter — and that these matrices may be
represented as the terms ik, ii, ij, ik, j, whose binomial combinations are sufficient to
generate the entire group (Rowlands 1998, Rowlands and Cullerne 2001).

It would appear that the minimal mathematical structure which most closely
corresponds to the ‘unit’ required to generate the iterative procedure of our rewrite
mechanism is significant to physics at the foundational level. Mathematical analysis
also shows that the reduction of the group elements to a smaller number of composite
generating units is only possible in a pentad or S5-fold form either identical or
isomorphic to Dirac matrices in the Rowlands formulation. It is significant for physics
that this creates a naturally broken symmetry.

6 The Creation of the Dirac State

Each of the processes involved in the generation of the sequence of mathematical
structures by the rewrite mechanism — conjugation, complexification, and
dimensionalization — would appear to have a realization in physics, which seemingly
contrives to use the minimum possible structure for returning to zero without
privileging any of the component processes. A structure previously proposed as
foundational to physics suggests that the only truly fundamental parameters are space,
time, mass(-energy) and charge, which are respectively represented as multivariate
vector, pseudoscalar, real scalar and quaternion (see Rowlands 1983, 1997, 2001 and
Rowlands et al 2001). The quaternion nature of charge is indicated by its existence in
three types (electric, strong and weak), and the fact that interactions between identical
charges are of opposite sign to those between identical charges. The parameters also
have an internal group symmetry, which, for the purposes of this discussion, can be
expressed in the following form (Table 7):

Table 7: Group properties of the fundamental physical parameters.

space nonconjugated real dimensional
time nonconjugated complex nondimensional
mass conjugated real nondimensional
charge conjugated complex dimensional
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Conjugated here is equivalent to conserved, so a positive charge (or source of mass-
energy) cannot be created without also creating a negative one. Significantly, only the
(3-)dimensional quantities, space and charge, are countable, and, physically, one cannot
imagine a mechanism for dividing the units in a single dimension. (This is why time is
physically irreversible and mass-energy is physically unipolar; neither quantity allows a
discontinuity or zero state.) In addition, the mathematical processes which allow for the
continual recreation of new non-integral structures in I-to-1 correspondence with the
integers would be inconceivable in a system without dimensionality. As in conventional
mathematics, two versions of the ‘real’ numbers are required: the uncountable ones of
the Cantor continuum and standard analysis (for mass), and the countable ones of the

| Lowenheim-Skolem arithmetic and Robinson’s non-standard analysis (for space).

In terms of the structures produced by the rewrite mechanism, the algebras required

| by the four fundamental parameters occur at the first four levels:

| Table 8: Algebras of the fundamental parameters.

| order2 real scalar mass
‘ order 4 complex scalar (pseudoscalar) time
order 8 quaternions charge

| order 16 complex quaternions or multivariate vectors space

| Empirically, it appears that these four parameters are all that are required to construct a

physical universe, and that, in order to conceive them as such, we need to package the
| information in such a way as to produce repetition, exactly as we obtain in the rewrite
| procedure at order 64 with the four mathematical involved.

Now, if the combination of these parameters, or of the real scalar, pseudoscalar,
| multivariate vector, and quaternion units by which they are realized, is to become itself
| a ‘unit’ of the rewrite procedure, we should expect to find some degree of ‘closure’ or

cyclicity, parallel to that which produces the pure quaternion system. However, a
| fundamental aspect of the quaternion algebra, which, in our system, introduces
discreteness, enumeration, or countability, is that it is anticommutative, and it is this
\ very anticommutativity which causes the cyclicity which leads to discreteness. It is
significant, in this context, that the presence of anticommutativity allows physics to
create a more direct route to the zeroing or conjugation of an act of ‘creation’, at the
level of the 64-element Dirac algebra.
By packaging the algebraic units of mass (1), time (i), charge (&, i, j) and space (i, j,
k) into Dirac pentads we create units of the form ik, ii, ij, ik, j, whose physical
manifestations are derived from combinations of the three units of charge with,
respectively, the unit of time, the three units of space and the unit of space. Because
charge is a conserved and quantized (discrete or dimensional) quantity, the new
composite quantities are conserved and quantized, but they also retain the respective
characteristics of their other parent quantities, time, space, and mass, which are,
respectively pseudoscalar, vector and scalar. The new composite pseudoscalar quantity
is described as Dirac energy (iE); the new vector quantity is Dirac momentum (p); and
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the new scalar quantity is Dirac rest mass (). Since the original time, space and mass
have the full range of real number values (with those of space being of the Lowenheim-
Skolem type and those of time and mass being Cantorian), then it is possible to find
values of E, p and m, after collecting the vector components of p, such that

(t ikE * ip + jm) (£ ikE £ ip +jm) =0 . 3)

Also, if we allow the nonconserved parameters space and time to take the full range
of possible values for a free particle, while conserving E and p, then we can recover the
‘eigenvalue’ or ‘amplitude’ (x ikE * ip + jm) by the action of a differential operator
(F k0 /0t + iV + jm) on a ‘phase term’, exp i(—Et + p.r), which, for a free fermion, or
fundamental particle state, simply expresses the full set of space-time translations and
rotations. This version of (3) is the nilpotent Dirac equation:

(F k0 /0t + iV + jm) (£ ikE * ip + jm) exp i(—Et + p.r) =0, o)

which, in principle, is nothing more than a definition of a nilpotent state with specific
incorporation of space and time ‘nonconjugation’.

In parameterizing the physical world using the nilpotent algebra, then, we create a
structure which zeros itself by being a nilpotent or square root of zero, so producing a
cyclicity at a higher level which incorporates the whole range of procedures required for
the rewrite mechanism. This, in fact, appears to be the packaged structure on which
physics is based, for it describes the fermionic or antifermionic state, whether free or
bound, and whether pure or existing in bosonic combination. The next stage is then
simply to make infinitely or indefinitely many applications of this closed system or
‘unit’ structure to construct the entire physical universe, as a kind of ‘fermionic space’,
in the same way as we iterate applications of the quaternion system to construct a
system of mathematics. Here, the remaining terms in the rewrite algebra form an infinite
number of undefined coefficients for individual nilpotents, ya, ys, us, ..., which are
commutative with the nilpotent algebra. That is, they create an infinite-dimensional
Grassmann algebra (equivalent to Hilbert space), with successive outer products defined
by the Slater determinant, and so requiring w1 » y4 =0and y1 * Yo =— Yo * y, etc.,
and an immediate and nonlocal algebraic superposition of all fermionic states. It is only
in this form that they will be accessible from within the nilpotent system. Any inner
structure such terms have with respect to each other will remain completely unknown,
and only those terms compatible with preserving the infinite nilpotent system will be
‘naturally selected’.

An interesting observation to be made in this connection is that the nilpotent algebra
introduced here and used in the Dirac formalism provides a mathematics of uniqueness
previously unexplored. The formalism is only possible because the terms E, p and m,
like the original parameters time, space and mass, from which they were derived, have
the full range of real number values. In principle, then, each individual nilpotent can be
unique; and must be if, as we believe, the entire universe can be structured as a
superposition of fermionic states, with any nonuniqueness in the components producing
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immediate zeroing (manifested physically as Pauli exclusion). The algebra that provides
this, which we have created by our rewrite mechanism, can be extended to infinity,
through the physical property of fermionic wavefunctions being nonlocally connected
throughout the entire universe. In principle, it is the mathematical interconnectedness of
the nilpotent operators that allows us to group its components as a ‘unit’ of the even
higher (Grassmann) algebra, which may be in the form of the conventional complex
Hilbert space or the equivalent geometric algebra as demonstrated by Matzke (or even a
complex version of the latter) (Matzke 2002). It is also the principle that allows us to
return to the fundamental connection between recursive and iterative expressions of the
universal rewrite alphabet, in a classic realization of the possibility of an anticipatory
system. The recursive nature is shown by the immediate mathematical connection
between the infinity of fermionic states, while the iterative nature is apparent in the
uniqueness of each. In effect, as soon as we define one finite fermionic state, we have
immediate and specific knowledge about the infinite totality of other states.

7 Conclusion

We believe that much of mathematics can be shown to be constructible using the
rewrite mechanism outlined in this paper, with an order which is more coherent than
one produced by starting with integers. By rejecting the ‘loaded information® that the
integers represent, and by basing our mathematics on an immediate zero totality, we
believe that we are able to produce a mathematical structure that has the potential of
avoiding incompleteness in the Gddel sense. (Conventional approaches, based on the
primacy of the number system, have necessarily led to the discovery that a more
primitive structure cannot be recovered than the one initially assumed.)

The structure may be found relevant also to many aspects of theoretical computation
especially abstract machine specification where notation and the needs of rewriting
(substitution) languages are explicitly required (Abrial 1996). The universal rewrite
system proposed may be mapped to a Turing machine, very close to Turing’s original
assumptions where every operation ‘consists of some change in the physical system
consisting of the computer and his tape’ (Turing 1936), and every subset alphabet can
be used in such an environment. For example at a simple level the subset alphabet with
just conjugation when appropriately wrapped provides an exact mapping to a Boolean
encoding. Similarly, when a symbolism for the conjugate character is added the
alphabet maps to a ternary encoding similar to Booth encoding of two’s complement
numbers as used in floating point processors for speeding up multiplication (Booth,
1951).

A physical universe composed of a potentially infinite series of unique (but
changeable) nilpotents, originating in the supervenient dualistic processes needed to
maintain the zero total state, has itself all the characteristics of a Turing machine. The
description of physical systems in these terms allows a mapping of Turing systems to
other physical processes and suggests a novel approach to investigating such systems.
Here the algebraic and rewrite structure that underlies the mapping can be used to
simulate and demonstrate such systems.
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We believe that the approach has possible practical application in parallel
computation; this is especially the case when cast as parallel agents having autonomous
actions mediated by message passing within a well defined spatial and temporal set of
constraints. The required properties of this processing environment are captured by the
concept of a subset alphabet, and process steps and communication mechanisms are
represented as rewrite rules. It is likely that this sort of parallel processing environment
will provide a metaphor that has application to our understanding of the complexity of
biological and biotechnological systems. And, because such systems are easily
implemented will allow direct simulation of complex natural and synthetic biological
processes.
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