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Abstract
From the analogy between the well known structures of the phasors and quatemions, it is
shown that the topological configurations improve the operational storage of recorded
Information and Signs as well as the chains of Tasks and Actions.
From the "Discrete Fourier Transformation" and the deduced "DiscreteWavelet
Transformation", we can underline the strategical role of the "Phasors'' and the
"Quaternions " in the detection and in the storage of every signal. From these dynamical
processes it is possible to use similar modifications for configurating the "Memory or
Knowledges Spaces" to reach a common convivial performative presentation.
Besides we point out the high frequent use ofcircular topologies in our behaviours: since
the automations procedures with their adjusting loops, the "Time Sharing " working of
computers and the management of sendings and receptions of messages and alike the
handling of simultaneous tasks, for reaching the present insertion of the "roundabouts"
in our vehicles traffic.
Specific advantages ofthese circularconfigurations are pointed out.
Due to the fact that the phasors, which are rotating complex planes, are well adapted for
an easy description of the rotations, they are performativè tools, for treating every circular
distributions (for recording and retrieval of "lnfo").We have to remind these ones when
we need the elaboration of operational planifications as well as for the forecasting of
rational behaviours and actions. Indeed the rotations are the most simple periodic
movements whose orthogonal projections tranlate the sinusoidal and cosinusoidal
vibrations and conseqently they constituùe the basic useful referentials for analyzing every
periodic evolution. By observing our whole surrounding we obviously state that
everything has a limited variation and conseguently cyclically behaves;what is logically
unmissing because we must live, think and work during and along linite domains. From
these previous considerations we have to deduce that every recorded phenomenon can
always be described and explained like a periodic one or for the least as a "periodisable or
pseudopedodic" one (without any repetition) and so they may be all considered as circular
isomorphic dynamics.
Besides these angular allocations allow to reach a high grade of perceptiolr for the dealt
topics because they intrinsically dispose of a set of many various directions for
graphically translating the infuences of the causal parameters.
Keywords: Phasors, Quaternions, Wavelets, Convolutions, Circular Mapping

I Introduction

At first we have to remind the essential properties of the circular components which are
largely usedfor depicting the periodic phenomena.
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1.1 Presentation of the Monoaxial Phasors
Phasors of h harmonicity grade are complex planes rotating around a common axis,
orthogonal to these ones, (therefore the monoaxial qualification) with uniform angular
speed: co6 = h roli where or1 is the speed of the fundamental harmonic (i.e. the slowest
one, for which h = 1) and h the grade of the harmonic which is a positive integer.
Indeed each of these ones is able to embed a set of moving vectors which are rotating or
oscillating at a same frequency, as pointed out by Euler's relation

exp(o6t) = cos(crht) + j sin(or6t) ; wherej is the imaginary operator. ( la)

We can assimilate every phasor (rotating complex plane) with a rotating operator:

Rot(rrlht) and consider the oscillatoring functions: cos(hcot) and sin(ho$ as the projections

of this rotation or basic vectors on the real and imaginary axes. It is also possible to give a
kinetic version for the eq. la:

Rot(trl6t) = ( lb)

In these relations ( |a,b) roh = 2hnf : the pulsation for cos(or6t) and sin(orhO

and also al1 = ZrN: the angular speed for Rot(to1$ where N is the number of rotations
per second or angular speed.
At present we deduce that exp(o6t) is the mathematical version of Ro(ro1t)
Of this way we have extended the topic of basic vectors to every arbitrary referential
signals.

1.2 Presentation of the Quaternions or Set of Three Independent Phssors
with Different Rotations Axes

Quaternions, indicated by Qt, are Complex Operators with a real component and 3
imaginary ones which correspond to 3 rotating axes.They are deduced from the usual
complex numbers by vectorializing their imaginary part into the components : i = [k, l, m1
as shown in the (Fig.2)
lndeed k is a geometric index, corresponding to the kth. unitary rotâting axis.
Practically, each imaginary component k is to be considered as a rotation axis which is
obviously orthogonal to its associated phasor plane with the angular speed rop, as shown
in (Fig.3).
By means of these quaternions it is possible to project any rotation, of any direction, into
three independent referential axes. Of this way, it was developped a numerical and
graphical tool for depicting the 3 dimensional signals and motions.
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Fig.3: Kinetic Characteritcs of the Imaginary Parts of a Quaternion

1.3 Hyperquaternions or splitting of the ReaI- and Imaginary components
Into the real component of the quaternions it is possible to store icalaiinfo., liÏe linear
translation. At thispoint, we let remark that a lot of movements like the cyclo'r'dal , helical.
spiral ones are made up of simultaneous associations between translationi and rotations.
In the usual (3D.).space, it is possible to-split any translation into 3 components along the
basic axes, what leads to 3^real parts. If necessary, we may put each translation aloig a
selected radial direction of a phasor; which adds a second synoptic use for this one,-as
showed in (F igs.4,5)
By developping this expansion-strategy, it is sometimes necessary to conceive other
hyper complex entities with N>3 real parts and also M>3 imaginari parts; what can be
useful for the multidimensional analysis and simulation of someinecÉairisms.
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1.4 VYatches and Phasors
As it was already explained by Doucet (1998), the watch,with dial and hands. is a
didactic tool to understànd the behaviour of the monoaxial phasors.
For the didactic description of the behaviour of the multiaxial phasors, we need different
directed watches in association with each axis of this phasor set.

2 Useful Applications of the Phasors

2.1 Discrete Fourier Transformation or (D.F.T.)
The (D.F.T.) is the classical convolution for tranfering every signal from the time space
into the frequencies space. in order to discover the needed frequency densities for
developing its shape. Each pair of opposite tiequencies corresponds to a specific
oscillator. as showed in (Fig.6)
Essential characteristic of each (D.F.T.): the N number of rccorded occurences of the
signal is also the number of the frequency densities of the whole spectral definition and
consequently the numbers of harmonic phasors. This N is also the number of the basic
vectors of this (D.F.T.) and defines their angular addresses in the primary phasor:
k (2n I N),with k: integer between 0 and(N- l ). as showed in (Fig. 7)

Phase interval between 2 successive basic vectors is: (2n / N)

For every harmonic of grade h. the adapted step is: h (2n I N) and of this way. every
element of the (D.F.T.) matrix can be evaluated.
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Fig.6:Fourier's picture of a
harmonic oscillator

at the frequency f6 = h f1

Fei is the ith. Fourier basic vector

with angular address: i (2nlI2)

Fig.1: Synoptic display of
the Primary Fourier's Phasor
for N = 12 equipped with the
correspondent basic phasors set

2.2 Discrete TYavelets Transformation or (D.\il.T.)
These new convolution operators were developped for improving the (D.F.T.) by

replacing the endless basic signals : exp(+ jtot) by Wavelets family (= mother and
daughters set), which have flexible narrower working zones and therefore can be suited at
the local shape of every irregular signal. With this wavelets procedure, it is possible to
accelerate the computation ànd also to spare Ram. unities because we only record the
usefull frequency tracks during their occurencing times.
For more development of these matters, see Randall (1980) and Brigham (1978) for
"Fourier analysis" and Bumrs & Gopinah ( l9!A) for "Wavelets"
The Structural procedure of the (D.W.T.) is graphically explained in the Figs. 8,9,10
We have to underline about this shape-detection-procedure that we send to each fraction
time a daughter wavelet which is oscillating in an optimized accordance with the
behaviour olthis portion of signal (= adjusting the frequencies in correlation with their
working - time). Consequently only a single wavelet is instantaneous working. Each
wavelet-family belongs to a 2-dimensional operational space (Fig.9) .with a time-
translations axis and a frequency (= scaling effect ) axis (Bumrs & Gopinas l91E).

2.3 Osci[ating Fom of the Electromagnetic Maxwell Modetling with
the Phasors

This phasor configuration, displayed in Fig.l1, is helpfull to easily understand the
dynarirics of the electrical machines because it shows the interaction between the electrical
components and the magnetic ones.

=(ll2) [exp(ihrot) + exp(-jhtot)]

in(ho*) =(Il2j) [exp(htot) - exp(-jhrot)]
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wt) = { erry( -t') sin(wt)

Fig.E: Morphology of a simplified MotherWavelet

Fig.9: Deduction's procedure for the Daughter Wavelets from their Mother one
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Fi g.l0 : Operational Space of tlre Vy'avelets
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Electrical time phasor

Fig.l 1: Phasor topology of the oscillating Electromagnetic Maxwell modelling

2.3.1. Presentation of the electromagnetic Maxwell relations for electromagnetic devices.
The general expressions are given by:
curl(-H) =Je :where H = magnetic field and Je = electons current densitr' (.2 \

curl(E) = -D(B) : :where E = electric field and B = magnetic induction (3)

oscillating form:

curll<H e(jot)l = <Jr e(j<ot) @\

curlf<Ee(jot)l = -jot[ <B e(ox)l

where <H, <Je, <8, <E are peak values (5)

For carrying this oscillating behaviour, it seems suitable to use a time phasor and a
geometric 1=space) one because in the space. the electrical conducters are always
orthogonal to the directions of their associated magnetic cofactors.

Hopkinson 's relation: (n Ie) I = <D : where I is the magnetic perrneance (6)

and O is the magnetic flow: and (n Ie) is the number of electrical currents through the

aeria supplying by the magnetic ring.
This (6i ielation is the microscopic expression of the (4). after the application of Stokes
theorem, which is explained further.

2.4 Spherical Coordinates with Phasors
For loèating points or depicting displacements over spheres. we use angular coordinates:

ç: longitude and 0: colatitude,which may be carried by a set of 2 ortho phasors as
showed in Fig.12.
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Fi g. f 2 Biphasor Translation of the Spherical Coordinates:

The radial coordinate corresponds to the real component and allows to express the altitude
of çvery point relative to the spherical surface of reference.
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Fig.13: Symbolic Presentation of a multi movement Machining System.

2.5 Multimachining along various Translational and Rotational Axes
As we already said in the section 1.4., the hyperquaternions with N real parts and
M imaginary ones are specifically developped for the numeric modelling of these
multiaxial toolmachines. This use is presented in Fig. 13.

Table l:Vectorial Kinetic Structure of a Hyperquaternion

(v t_  l t )  e t (vt_ 12) e2 (v3_ l3)e3 (ort_ Â0t) (aZ_ô,02) (of_ ^0:)
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3 Circle: Geometrical Carrier of Many Different
Coordinates Systems

On a circle, it is possible to use different referentials according to the considered targets.
Tbis is the superior strategy of the circular distributions in front of the axial ones.

3.1 Azimutal or Phases Referential
This first system is the most natural one, because the phases-locating is the fundamental
effect of every phasor as we discover it by observing the Figs. 7, 12.
This azimutal frame is well suited for the multiparameter analysis by associating each
independantparameter(Àt ) with a particular azimut (0t) what is efficient for recording
the influence of each parameter.
Concomitant orthoprojections: cos(06) = real part and sin(Ok) = imaginary part are also

sftaightdeducedconsequentlytheEulerrelation exp(01)= cos(01)+j sin(Ot). (la)

3.2. Chords Coordinates.
This locating system allows to display the (À) parameter influences over any function

what is carried on the chords or arcs (OP)i, issuing from a fixed origin O(ÀO)

corresponding to the cancellation effect due to the cancellation of (À) paramater.
Associaûed angular coordinates: by building right-angled triangles on the chords(OP); like

hypotenuses, showed on the Fig.l4, we obtain in relation with the a3 angle, the
orthoproj ections of the chords:

(PH)j =(On)l cos(cti) (8)

(OH)j = (Onl'sin(cr3) (e)
Of this way we graphically evaluate the distribution of active and reactive powers as
projections of the complex power, for every work of an asynchronous motor. as in the
(Fig. 15). Here, the chords are rotor-current pictures which are influenced by the rotor-
slip; and the orthoprojections are the current partitions into their active and reactive
components. Due to the fact that the electrical motors are fed under a constant voltage, it
is obvious that every current is also the picture of the associated power.
Synoptic tool for the Info.analysis: it is possible to consider the chords like pictures of
incident Informations-flows whose ampltudes are inlluenced by the (À) parameter
(- quality or disturbance factor).These orthoprojections of the whole flows would be
useful for the info.partition into uncorrelated parts: like into the long-time and short-time
memories.This correlation between the vectors orthogonality and the independent signals
links the info.classification and the geometric configurations. This can lead to a synoptic
improved management of the knowÉdges .
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On the ring is lying a total graduation of

À incuding the cancellation value in O

and the infinite value in P(Àco)

Fig.14: Chords Coordinates (OP)3 and their Ortho projections (PH)j & (OH)j

The angles cr are the associated coordinates for computing the ortho projections of the

chords. This is an additional coordinates system

(PH)j = (OP)j cos(cj ) & (OH)j = (OP)j sin(aj) (7a) &(7b)

1 stoppedrotor
Radiator running = forced run
1< g< - dangerous behaviour!

g-> æ

A running = Motor
o < g < l

running = Generator
0 > g

running = no load running
O = g

Fig.15: Circular diagram of the asynchronous rotor

Meanings of the lines:
(OP)i = complex rotor power and complex or full rotor current
(PHdi = active rotor power and active rotor current
(OHJi = reactive rotor power and reactive rotor current
( PH 1 )i = ssnverted mechanical power and current part needed for mechanical effect
(H1Ho.)i = dissipated power in the rotor conductors and correspondent current .
(HooHdi = dissipated power in the rotoriron and correspondent current part
Remark: the locating in the under half circle conesponds to an inversion of the total flows

which ,then, diverge from the system.(generator running)

3.3 Diameter and its Orthopnojections for Total 'Tn flow" Constant
This way of drawing the uncorrelated components of the total power- or info.-flow may

Hg

û> g: Generator running
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be considered like the dual one of the previous chords system.
Here the total complex flows are constant, but the proportion between both uncorrelated
components may continuously evolve. The Fig. 16 displays an electrical version of this
system, for a dipole with relative variation between the active and reactive elements.
The transfer for the knowledges flows is obvious,when we consider the diameter like the
picture of the amplitude of the total constant info.-flow and the chords (APi) & (PiB) like
both uncorrelated fl ow-parts.

PZP 1

C

Preac

Fig.16: Electrical use of the ortho projections of the Dameter
wrth Q = X i R = Reactive Factor

The transition from the upper half circle to the inferior one shows an inversion of the
orientation of the info.flow at the input of the considered system.

3.4 Sectors Coordinates System (Fig.l7)
This coordinâtes system is well suited for pointing out the relative importance of each task
contributing to the execution of a whole process. It is a synoptical fractional dial for
estimating the most pxpensive or longest tasks. This is a graphic tool with a performant
natural "per unit" châracteristic and it is well suited for presenting "Time sharing"
policies.

3.5 Fractional R.adial Coordinates or Circular Layers (Fig.l8)
It is a "per unit" radial system adapted for evaluating the under and over values of a
parameter in front of its nominal level corresponding to the unitary ray. It is well adapted
for rnapping the imbrication of the multilayers learning process of Dubois ( l99O).

3.6 Sectors and Rings Combined System
This is a superposition of both (3.4.) and (3"5) systems; what produces subdivision of
each sector of (3.4.) by the number of the rings of (3.5.).Over each of these twofold
divisions, it is possible to display the conjugated inJluence of the sector parameters and
the ring ones. To win this related graphical tool, we have only to superpose the (Figs. 17,
l8) over slides.

upper halfcircle

fnductive
underhalfcircle
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TaskN'7 TaskN"l

TaskN'6

TaskN"5
TaskN"2

\

Fi g. I 7:Tasks wheel: showing the relative lasting or importance of the
different tasks constituting a whole process

The division of the N'i sector angle by 2r gives the relative importance of the N"i

task what expresses the "Per unit" characteristic of this system, as showed by eq.(10)

AFl = (a; p2\ I (zr p2\ = ai l2x (10)

xk( <Dout)r - It(tDidt = In(sources)n - Xm(sinks)m

Fig.lE : Radial Scale for relative or (per unit) evaluation
and layers Rings Scale

4 Physical Applications of the Circular Topologies
By meàns of these-vârious multi coordinates referentials, the circles may naturally supply
didactic methods for translating a lot of different physical laws or processes.

4.1 Circular or Spherical Configuration of Ostrogradski's Theorem
This theorem settles, for every bordered domain, the balance between the "in" and "out"

flows 1=Oio &@sû),with the amplitudes of internal sources and/or sinks .It is analogous
to the "Fint Thermodynamic hinciple". Ostrogadski's rclation:

TaskN'4 TaskNo3
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The (Fig.20) shows the Ostrogradski structure into knowledge's management .This direct
extension over various domains proves the universality of this radial flows balance as the
resultant effect of the (sources & sinks) set.

Diffuser or "out" circle
supplier of external info.

Fig. 19: Spherical displayof
Ostrogndski's tieorem

(of - Ê) points out the discordance between
the info.kind and the mind resonance

Fig.20: Memo double circle orcylinder
didactic modelling of info.management

4.2 Cincular or Cylindrical Configuration of Stokes' Theorem
The discrete expression of Stokes theorem (12) shows the whiding behaviour of a vector
field Hg related with the ortho axial vector flow V2:

XO(HO) ÂLO -t Vz+l curl (H6)l where 0 is the azimutal angle (12)

This basic law gives the effect of the ring- circulation Xg(Hg) ÂI4 of the (H) vectorfield

over the cons€quent axial "through flow" \U2 , (= which goes through the "ring internal
area") or inversely, showed in (Fig. 21). The H vector field has to come from a vector
potential to give a not canceled effect along a closed curve.
There is also a geometric similarity between this process and the operational action of the
vectorial multiplication of a radial vector with an azimutal one (Frg.22)
This law is useful for analyzing or simulating avalanches- and storages-proc€sses
during the working sequence of any operational loop, as showed in (Fig. 23).
The polynomial Taylor's expansion ofa signal s(z) over a circular neighbourhood of the
point a, in the complex plane, is also similar to Stokes law as it is showed by the eq.(13)

s(z) = !ç {(1/k!) (z - a)k ozk.ts(a)l} (13)
To elaborate this right member, it is possible to use an operational loop with the
operational rxio (1/k!) (z - a) D2.(.). It is the loops operator.

@out
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Axial "ThroughFlow"

xn(In) C2 a--,torAcz

Fig.. 2 1: circular Topol_ogY :l _ ̂ -^, _, ̂ -_., F ig.22 zCylindrical structure of
theelectromagnetic venion (Ampere's law) the Vecbrial producc
of the Stoke's theorem

Â,  k=0

<uF^o
0 < k < < k

!) (z - a) Dl.

> = :dod.(s)l
n = nktOpk.(s)l

s(z) = Xk {(l/k!) (z - a)k Ohr.ts(a)l}

Fig. 23:Operationall.oopforcomputing Fig. 24:Operationall-oopfor
simultaneously the addition = ! and computing the Taylor Serie in a

the multiplication = fI of the ûerms of the 
complex space

geometrical progression of ratio = Op.

Besides, every feed back action is mathematically described by the addition of ærms of
an operational progression, which is a geometric one with an operatoras ratio.

4.3, Translators correlated with the Circular Topologies.
The translators or generalized Z transformations are the convolutions which allow
exploration and structuration of their spaces.They play like inærnal locomotives or lorries
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fordistribution and detection ofsignals .
4.3.1. Cylindrical Spaces

Cylindrical coordinates: p: radial one, 0: azimutal one, z: ortho axial one
In parallelisme with these coordinates. we have also 3 displacements- possibilities:

a) radial translator forthe transition from p; to p(i +k)

b) azimutal or tangential one for the transition from 01 to 0( +k)
c) axial one forthe transition from z6 to 4m +k)

4.3.2 Spherical Spaces

Spherical coordinates: p: radial one.O: colatitude. g longitude
In parallelisme with these coordinates, we have also 3 displacements- possibilities:

a) radial translator for the transition from p; to p(i +kl

b) colatitude-translator for the transition from Oi to 06 +k)

c) longitude-translator for the transition from ç6 to cftm +k)

5 Derived Topologies from Circular Configuration
5.1 Homeomorphisms of Circular Topologies
Both configurations are homeomorphic when it is possible to transform the first one into
the second one by continuous deformation without any cut or break. Consequently every
ellipse is homeomorphic with circle and every ellipsoïd is homeomorphic with sphere.
These elliptic structures may show propagations through anisotropic spaces.

5.2 Expanded Circular Topologies
Various curves show azimutal pseudoperiods in adjonction with some stretching or
drifting actions.We have collected their main characteristcs in the Table 2:

Table2: Presentation of the kinetic characteristics of Helical and Spiral Topologies

ParticularTopologies Spiral Helix

Kinetic actions Rotation and Radial Expansion.
Planar displacemenl.
Double convolution.

Rotation and
OrthoAxial Slip.
3Dim. displacement.
Double convolution.

Specific uses laplace's
Transformations and
the associated space.

Stokes'Law.
Accumulations [-oops.
Feed back Actions.

Vectorial
Presentation vp (ep) & wzbz) vzGù & wzûz)

Remark about Laplace-Transformation: (Lp.)-Space is embedded on spiral trajectories,
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asymptotically converging to the origin because the Op.{exp [-(o + jw)t]] has to carry the
dealed signal to the origin along a convergent spiral trajectory.

5.3 From Linear to Circular Topologies
For transfering the linear distibutions into the circular ones, we have to consider this
useful conyolution: similar to an Isomorphism, because it exists a bireciprocal
correspondance between every point of both sets as in (Fig.25)

The correspondant transfer relation is : 0 .- (u I L) 211 (14)

Circularto' S O O S L
Linear

"/< til"ït:i y/ o' azimutatcoordinateorss

Fig.25: Presentation of the bireciprocal "Linear to Circular" Convolution

5.4 Roundabouts and Space Phasors
The present insertion of the many "Roundabouts" in the road nets, with a view of
reducing the vehicles collisions and the traffic-congestions. brings a neguentropical
increasing in the traffic.These azimutal collectors and diffusers play like space phasors
because the movement of any vehicle may be described by exp[j( ain- Fout)|. where cril

is the angular coordinate of the "in"-road and pegl is the angular coordinate of the "out"-
road of this vehicle.

5.5 Circular Modelling of the Operational Behaviour of a Neuron
We try to give a circular mapping of the neurc,n picture from Dubois D.( 1990) in Fig.25.
We have splitted the neuronal behaviour into two parts:
a)the peripheral zone (dendrites connections) for info. collecting, assimilated to
Ostrogradski's acti on ;
b)the central zone(axonal axes) for response sending off, assimilated to Stoke's topology.
This circular structure allows a partition of the behaviour of the neuron to distinguish the
functions and positions ofdendrites from the axones ones .
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Integrators ring
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Xlinçt

:i(Vout)j alongthe
axonal axes: neuronal

structure

.( DendntesSupply

InternalAzimutal Op.

\ 
t*tn*^

\ Dendrites Supply

Fig.26 Circular modelling of a simplified neuron splittg{ -- 
in a peripheral Ostrogradski zone and in a kernel Stokes one

5.6 Some Particular Use of the Polar Mapping
A few of these ones are presented on the (Fig. n,?829).By looking at these pictures, it
is obvious to discover their additional didactic benefits.
The Fig. Z7 displays a particular phasor adapted for mapping numbers in any numeric
basis. The radius ôf eaôh circle indicates the power of the chosen basis and the angular

division of (?nlB) corresponds to the number (B) of elements in this basis. Each black

point depicts the ærm (6ri BP ) The same topology is also suited for the map of polynoms.

where B is their variable. When an element is a complex quantity it is possible to open a

local phasor at this point to map this one, as indicated in a5 of (fi9. 27)
In the Fig.28 is presented the start of a cascade of circular windows for the amplifications
ofany quadrant. This procedure can act as a scaling vector.
The firsi circle lC in the first quadrant splits this one into 4 underquadrants [lcl, lcll,

lCtU, lClvl.This splitting procedure can be continued by dividing the underquadrant
lctt in 4 other underquadrants t2cll-t, 4ll-ll, 2cil m, 2ctt tvl and as far as

necessary.
The Fig. 29 shows a circular topology to enlight the neighbourhqod of a notion and the
transitiôn to the (diametrally) opposiæ one throughout the intermediary subjects.
The introduction of the circulàr topology relates algorithms for hypertexts with the
geometric symmetries of phasors, what is a powerful synoptic gain and a neguentropic
rncrease.
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2c [_rn]
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ainplification:

\ZtlD)-->2n hereD=4

Fig.27 : Polar display of a Number
o f b a s e = B = 8

N = c r 2 + c r 1  B  + a 1  û

Verb(-C->B)
to freeze

connector with other
related notions. -)

Fig. 28: Windows cascade or inside
sector zooms for expanding

the precursor arc

{--*
connectorwith other
related notions.

Ver(+ç-tO,
to warm up
to heat

Iig. ?q Topic wheel: synoptic mapping for classifying the knowledges
It supplies an aid-tool for building a logical sFuctured net ofknowledges.

Verb(A->-C) ,/
ro cool O"Yr,

Synonimic
vicinity

A: maintopic
(warm)

'C: intermedi
topic between
A&B(tepid)

+C: intermediary
between
(tepid)

Synonimic
vicinity

B: opposite topic
contrary (cold
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6 Conclusions
The objective of this communication underlines the power of circular reference systems
for the storing and computing of the knowledges in many domains.
Here is shown the extensive use of the phasors in many technical and scientific areas.
Indeed the phasors can govern the synoptic distributions of the periodic structures. They
are worthwhile tools to help in the analysis of the systems behaviours by means of
"Fouri er transformations" and " Wavel ets transformations".
In the part 3 we showed the different coordinates sets in phasors alike azimutal, radial ,
sectors. chords and their projections which supply a large flexible analysis tool for any
periodic behaviour. Besides, for i l lustrating the particularit ies of these polar
configurations, we can continuously and everywhere dispose of the "watch dials" which
constitute cheap didactic and synoptical isomorphisms. .
Consequently thesç circular mappings are advisable for improving the efficacities of the
learning and teaching procedures.The choice ofa well suited referential for storing infos.
may favourably influence their management: because it exists a complementary duality
between the referential (= covariant component) and the embedded subjects (=
contravariant components ).
By recording the structural similaritics between the various treated domains, this paper
can contribute to improve the learning procedures and to save understanding time, what
can promote didactic prognesses.
At this point t can underline the use of the Infos.transfer into the circular topology.
explained in the (5.3) part. By studying a lot of situations, it is the basic convolution,
easy to make and helpful for detecting the causal parametric influences-
Due to the search of structural similarities over different domains for winning new
common sight, we hope to bring an additional brick in the new universe of the
"Anticipativity".
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