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Abstract
In previous papers, we have developed several considerations about the extension ofthe
relativist quantum theory to the domain of superluminal velocities. In the present work,
we propose a way to extend the relativist quantum theory to the framework of the
general theory of Relativity.
Obviously any use of a three dimensional space (plus the time dimension) requires a
geometry, but in usual quantum theories the space geometry is always Euclidean.
The generalization of a discrete space derivative equation from I to 3 dimensions with
the usual space operators (gradient, curl, l,aplacian) contains the implicit hlpothesis of a
Euclidean space. Thus we can explicitly propose the hypothesis of the Riemann's
geometry which leads to a generalizalion of quantum theory to the framework of the
general theory of Relativity.

Keywords : Quantum theory, general theory of Relativity, vector derivatives,
Riemann's geometry

I Introduction
It is usually considered that gravitation can be neglected in quantum transitions

(except in a few experiments trying to detect gravitation waves). It is numerically tnre in
quantum experiments on Earth, within the current paradigm. From this viewpoint most
physicists have started to think that the special theory of Relativity was suffrcious to the
quantum theory while the general theory of Relativity was reserved to cosmology. But is
not true: in the present paper we show that the relativist quantum theory can be extended
to the framework of the general theory of Relativity.

The quantum theory does not require that gravity has to be quantized [1] (section
I .4, p. I I - 12) but the conditions of a field theory of gravity have been studied:
if the graviton exists it should be massless:

frc=O (l)

so that the force proportional to lil results from the quantum interaction,
and it should have a spin 2:
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sc=2 (2)

because gravitation is a rymmetric rank-2 tensor field. Field equations of a free massless
spin-2 field have been written by very early Frunz and Pauu in 1939 [2).

R. P. Feynrrr.lN described the problems in quantizing the grovitational field l3l:
< When a field is quantized" each mode of the field possesses a zero-point energy. Since
the field is made up of an infinite number of modes, the total vacuum energy of a
quantum field is infinite ... Such a vacuum energy density appear in gravity theory as a
cosmological constant. Since the cosmological constant is quite small, there is a big
problem [4] >.

When I presented my CASYS'99 communications [5,6], I recalled the definition
of the light barrier [7,8] from the usual relativist energy equation:

- mnc'u=ffi. (3)
vc'

and Daniel DuBors rernarked that this equation is wrong because at the C limit the
particle would contain more enerry than the whole universe.

Accelerator experiments have been settled to see what particles are composed of,
but the acceleration increases the kinetic energy and thus creates an additional mass.
rilhen a mass particle is accelerated, the upper limit of its velocity is not the light
velocify in vacuum where energy becomes infinite, but a slower limit vt where the
particle would contain the energy Eu of the whole universe:

f- ,,4'r='l'ft (4)

While any accelerated mass particle increases its enerry, as if it were pumping energy
from somewhere else in the universe, it also in creases its gravitational mass. Therefore
gravitation considerations should be re-introduced in the current paradigm.

As far as the gravitational mass of a particle depends on its velocity and on the
observer, the general theory of Relativity should be considered as the required relativist
framework of quantum theory.

Some authors [9,10,11,12] have described inertial masis as the result of the
reaction of vacuum to accelerated motion, in relation to the zero-point field (ZPF) nd
other authors [3] have shown that the zitterbewegung motion in quantum theory can be
related to local geodesics and also to the gravitation mass.

Finally, gravitation appears to be more complex than a mere graviton theory:
gravitation has at least the following tlree aspects:
l. the space-time curvature,
2. the z i t t erb ew e gun g motton,
3. and the zero-point field (ZPF) reaction.

Recently a gravity experiment has been done [4] and discussed [5,16]: a beam
of ultracold neutrons moving at a velocity of 8 m/s is sent on a parabolic trajectory
througb a baffle and onto a horizontal plate which reflects the neutrons back upwards
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until gnvity saps their ascent. This experiment shows that reflected neutrons can be
detected at quantized heights. While these authors interprets the NBsvzsEVsKY
experiment as a quantum effect of gravity which produces gravitational quantum states,
the mere physical result is that neutron positions in space-time are quantized.

It just means that any particle in any physical field propagates with space-time
shifts, as it has been proposed in the work of Daniel M. Dubois [17].

He has shown that from scalar forward and backward discrete derivatives, taking
into account forward-backward space-time shifts related to a phase velocity, the KlrrN

[8], GonooN [19], and Focr [20] relativist equation can be deduced as well as the
DnAc [21] equation, the wave equation for photons and a dual ScrnÔorNceR equation.
In this paper [17] the equations were restricted to a one-dimensional space and time.

Daniel M. Dubois l22l has proposed a usual generalization to the 3-dimensional
Euclidean space with the classical introduction of the gradient V and the Laplacian V'V,
then Daniel M. Dubois and G. NteARI [23] have emphasized that space shift l, is a
vector and have shown that in quantum theory the"plane wave propagation is the cause
of mass, in relation to the time shift" r.

As a consequence of this new concept of mass, any v/ave propagation causing
mass would locally stress the space which could no longer be Euclidean. Thus a
generalization to a 3-dimensional space should be done in consideration of the space
geometry.

The present work proposes a way to extend the relativist quantum theory to the
framework of the general theory of Relativity

2 The Problem of the Generalization to a 3 Dimensional Space

2.1 LClassicsl Generalization to a 3 Dimensional Space

In a previous work"Computational Derivation of Quantum and Relativist Systems
with Forward-Bockword Space-Time Shifts" [17], Daniel M. Dubois has introduced a
fonrard and a backward, time discrete derivative of any function F, such as :

n rF _fQ+UYfQ\
NN

ad-lkL*-N)
N N

where Â is the discrete operator, and he has deduced a generalized complex continuous

time derivative of a complex function @, such as :

490-4q0 lr.ûgù
N  d t - 2  d f

where eAt is the time shift, or with an additional space coordinate :

(5)

(6)

(7)

(8)

"From a similar reasoning as for the time derivative" (section 1.3.2 of ref. l7), Daniel
M. Dubois has obtained the following space derivative :
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(e)

where l=Âx is the space shift. Then the author indicates a way of genaalization to 3
space dimensions with the following remark : "in a two or three dimensional space, the
partial space derivative is replaced by a gradient V, and the second order derivative by
the Laplacian V.V=Â".

In a next paper 122f, Daniel M. Dubois applied this principle to generalize the
derivative equations to a tbree dimensional space, with time. The generalized complex
continuous time derivative is then :

where Â is still the discrete operator, and r is a radius vector which replaces the scalar
position x. Thus "From a similar reasoning as for the time derivative" (section 1.3.2 of
ref.22), Daniel M. Dubois computed forward and backward space derivatives in the two
opposite directions

and then he obtained the following 3D space derivative :
o*''=oq"r!*r'qrt) (r2)

2.2 The Problems of VectorDerivatives

If we write the equation (12) with the school vector notation below :

,*,

(10)

( l  l )

o*t'=o*G rgSv'qtr1

df .. Lf
;=llml4roË

d^iot"l^',-*#

( t3)

it clearly brinç out that a variation of the complex function AtD has been divided by a
vector Âr.
Can we divide a scalar or complex function by a vector ? Can we divide a vector
function by a vector ? Such a division by a vector should be defined-

Iæt us consider the usual continuous scalar derivative of the scalar firnction/of a
scalar variable x :

(14)

a symbolic generalization from a scalar function/to a vector function V, and from a
scalar variable x to a point M in an affine space would lead to the derivative of a vector
function V(U) of a point M in an affrne space.
So we would need the following vector derivative definition :

(15)
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The vector rpu"" {aû} is deduced from the 3D alfine space where any particle

position is defined as a point M, and the vector .p""" {V} may be any studied firnction

(i.e. electric field, magnetic field, ...etc). This vector derivative is a symbolic notation
which is usually interpreted as a gradient in the 3D affine space.

23 The Geometric Restriction due to the Usual Vector Derivative Operators

To avoid these problems the usual way is to compute a differential instead of a
derivative, with the introduction of "vector" derivative operators such as the gradient V,
and the Laplacian V.V:^.

ln this way, the differential of the vector function V is usually expressed as

av=*ar&ar,dJ a,
d x  d y -  o z

dfu=d,flr+drill+d,rrl
and the components of dM along the x,y, z axis are :

d,frr4,&
drlr,/Éérdl

d"û=êdz

the equation 16 can then be expressedas 
_ \_

dV=lV.dNrN

(16)

using a gradient operator V such as :

nJ{.+.+l ,,,,
\dx'dy'dz )

which is defined with the coordinates r , y, z of a particular referential frame.
So the vector function V(M) of a point M in an afftne space is usually considered

as a function Y(x,y, z) of three independent scalar coordinates. In the affrne space the
differential of the point M is ,

(18)

( le)

(20)

(21)

(22)

So we clearly see that the usual way of vector differentiation which uses a gradient
defined with three scalar components (related to a particular referential frame)

introduces a scalar product of the gradient vector V and the point differential

dlVI (related to an affrne space). It means that the usual differentiation operator which is
applied to the vector function V, is a scalar product

v aû4**La&a,
d x  d y -  d z

which contains no cross terms of x, y, z, such as
d d à--6N.'--Ct,...-=-AV

d x  
' ' d v  

d z  
'

the gradient identity (equation 23) implies that the following scalar products of unity
vectors are null :

(23',)

Q4)
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ê,q4
êyq{

é"'e,4

(2s)

(26)

Q7)

(31)

(32)

(33)

(34)

(35)

(36)

the afiine space is

and so the referential frame is orttrogonal.

Moreover the components of the vector ù associated to a point M in an affine
space can be expressed as :

Mr=rê"

frrr=!é,
fr''=zê"

so the components differentials should generally be :

d,frr4,&+x&,
drfrr€rdy+y&,

d,fr4dz+z&,
and in the equations 19,20,21 we have

æ,4
&r4

&,4
so all basis vectors are invariant in a parallel translation. Thus
Euclidean (not curvilinear).

Consequently any space vector differentiation with such a gradient operator
intoduces the implicit hlpothesis of a Euclidean orthogonal afftne space. And in the
special theory of Relativity, the 4dimensional gradient operator introduces the
hypothesis of a pseudo-Euclidean space-time.

We can then conclude that any space-time vector differentiation with the usual
gradient operator introduces a restriction of the quantum theory to the framework of the
special theory of Relativity.

2.4 The Generalization to a 3 Dimensional Culilinear Space

In a curvilinear space or better in a Riemann's manifold, as it is well known, the
geometric properties are much different from the Euclidean's.

The scalar products of basis vectors in equations 25, 26, 27 ne not null and they
define a metric tensor :

ë,.êt=gl, (37)

where the indices i andj vary from I to 3 only for comparison with space equations 25,
26,27.

Remark : Further in this development all indices, such as i, j or 11 v will vary
from 0 to 3 to describe the relativist space-time.

(28)

(2e)

(30)
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The differential ofbasis vectors in equations 34, 35, 36 are not null, because basis
vectors are not bound to be invariant in a translation. The differential ofany basis vector
is exprçssed as :

æf-o!êj (3s)

with the usual notation cd of the contra-variant components of dei, which are

differential forms. They can be related to the metric tensor with :
(Dij+oji4gij

and expressed with differentials of the coordinates, as :
al=f:todxr

or
, k(t)jft 

6,6tx

where 1-1,;i are af;fine connexion coefficients of the curvilinear space or the
manifold.

Now we recall that any vector V defrned with its components as:

Y=V'êi

has a differential dÛ which can be expressed as :

di=dYtê,+vtdê,

or

dV4v'ô;vr olrê, (M)

so the true components of dV are not the dl,bulthe Dl which are such as :

DV'-47'+aiuV' (45)

and introducing the partial derivatives ô* we get from the equation 40 defining the

differential form a! :

Dvt-âLI/i&r+fuvn&r (46)

Now dividingby the space-time differential dh* and using the notation:

D.--4- Dx^
we get the following space-time derivative :

Dkyt4kl/'+f',I/h (4s)

which is the covariant derivative of the vecbr V.
It is very currently used in curvilinear affine spaces or Riemann's manifolds,

mainly for the general theory of Relativity. And some authors [24] use the nabla
notâtion for the space-time derivative operator

V rlttârlt'+iult^ (4e)

because the covariant derivative of the vector Z is considered as the gradient of the
vector /in a curvilinear afline space or a Riemann's manifold.

(3e)

(40)

(41)

Riemann's

(42)

(43)

(47)
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Therefore the gradient in equation 17 is a Euclidean gradient which has been
sligbtly generalized to a pseudo-Euclidean gradient in the Relativity :

r{+*,*,&"L) (50)
although the gradient in equation 49 is a non-Euclidean gradient which is to be used in
the fi:amework of the general theory of Relativity.

Consequently we can simply transpose usual relativist quantum equations to the
frarnework of the general theory of Relativity, by replacing the pseudo-Euclidean partial

derivative operators with the non-Euclidean covariant derivative operators of eq. 49.

3 Generalized Relativist Quantum Equations
Relativist quantum equations of first quantization can be gæeralized to the

framework of the general theory of Relativity, as explained in the section 2.4 above.

3.1 The Schrôdinger Quantum Equation

The Schrôdinger quantum equation is not a relativist equation. Non-relativist
particle moving in a physical field can be described with the Schrôdinger quantum
equation.

To represent a space-time curvaûlre, the Schrôdinger quantum equation can be
adapted with a simple change of the space geometry, but doing so it is not transposed to
the fi:amework of the general theory of Relativity.

Daniel M. Dubois has shown [22] that from forward and backward discrete
derivatives the following Schrôdinger quantum equation can be deduced:

'o y)=ffiv'{,r.tYr,alrù)-rçrWrl (sr)
where Z(r,t) is the potential in a fiel{ and Y6 is a reference potential depending on the
space shift I and the mass:

v"-4 (s2)u 2ml
Vs might be related to the quantum relativist vacuum, i.e. to the ZPF as defined by

HArscH, Rueon and Purrropr [9,10,11,12].
Y(r,t\ is the potential of any field, which depends only on space-time coordinates.
Therefore in this Schrôdinger quantum equation the gravitationnal field may be also
considered.

To adapt the Schrôdinger quantum equation to a curvilinear space-time, the time
or space derivatives will be replaced by the corresponding << covariant > derivatives, and
the usual wave function /will be replaced by the complex vector Vl.So we have:

no,yt!fi o*tX-r,v'l-nrt (53)
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where Do with cr:1,2,3 are the space (( covariant >> derivatives and D6 is
<< covariant >> derivative, as it is formally defined in equation 48. However I
this equation is not a relativist invariant equation.

3.2 The Klein, Gordon and Fock Relativist Quantum Equation

The equation of Kmn [25], GonooN [26], and Focr l27lis usually written as :

D{=fV (54)

where q4is the wave function of a boson and 26 is related to the rest mass with

r+ (55)
and where the Dalernbertian operator E is defined as :

Èv'-4L (56)
c'dt'

in a pseudo-Euclidean space-time.
The equation 54 can be generalized to ttre framework of the general theory of

Relativity by innoducing the generalized Dalembertian operator û defined as :

GDoDo (57)

where Dpis the covariant derivativ-e, i.e.

ft.gP'DoD, (58)

where 3lu is the metric tensor.
So we obtain the newKLen, GonooN and Focr equation which is still linear in P'

(re'ooo,)v=fv

the time
recall that

(5e)

It shows that the boson wave tyin a gravitation field has to be represented with a second
order spinor.

33 The Dirac Equation

The spinor Dirac equation is usually written as :
/ \

lr*zVq
\ / r )

f arethe Dirac matrix and 2g is related to the rest mass with :
fflnc

r=-n

(60)

(61)

and where the fermion wave function rgis a bispinor, it can be represented as a complex
vector ywith the vector components yf.

Replacing the derivative operator, we obtain the Dirac equation in the framework
of the general theory of Relativity

lf o,-ùya $2)
where Drz is the covariant derivative, i.e. :
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,'Ç-orox*+/lzxa
and the new Dirac equation is still linear in |z

4 Conclusion
We have shown that in the usual generalization to 3D space with classical gradient

and Iaplacian operators, an implicit hlpothesis is involved which has imposed the
Euclidean geometry to the space, i.e. a pseudo-Euclidean geometry to the space-time.
An other choice may be the Riemann's geomeûry which leads to the quantum theory in
the framework ofthe general theory of Relativity.

If the primary energy propagation in the big-bang had been done with a unique
and absolutely spherical wave, energy would have been diluted homogeneously in every
directions, thus nothing would exist today but a quite homogeneous fluid of unquantized
energy : an omnipresent light.
In fact the initial spherical wave must have split at a high scale into many individual
rlvaves which are no more spherical. Thus the production of matter in the universe
requires a condensation of energy in the locality, at a high scale with galaxies and at the
smallest scale with energy quanta.
Furthennore to have a quantum stability, the quantum energy must not be diluted
through its propagation, so the conservative properties of any quantum within a time
window requires a plane wave propagation in a privileged direction.

While the standard quantum theory uses a plane waves superposition principle to
build linear equations of particles, plane waves are directly responsible for the stability
of energy within particles and might correspond to an intemal gravitation field within
each particle. Thus such a high level condensation of energy within each quantum
should produce both a curvature of space-time at a Fermi scale and a discretization of
space-time.

In the framework of the general theory of Relativity, general relativist quantum
equatons include the metric tensor and its related affine connexion coefficients. Such

$umtum equations are still linear in 14 Therefore the superposition principle of
quantum theory still hold in the framework of the general theory of Relativity.

From this viewpoint, Vadim Krorov [28] has proposed an extended principle of
general covariance which leads to a discussion of the foundations of quantum mechanics
: 'the linearity of the wave equation is a necessary condition for the validity of the
principle of superposition".

In strong gravitation fields the space curvature cannot be neglected thrx general
relativist quantum equations should be used instead ofthe usual quantum equations. So
the production of matter within any star nucleus and even at big-bang should be
described with general relativist quantum equations. Consequently the standard model
of the nucleo-slmthesis should be revised.

(63)
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