Topos for Foundations of Quantum Gravity and Spectral
Sequences induced by Non-Discrete Systems

Goro Kato
Mathematics Department
California Polytechnic State University
San Luis Obispo, CA 93407
U.S.A.
(FAX: 805-756-6537 and e-mail: gkato@calpoly.edu)

Abstract

The theory of temporal topos (or t-topos) gives a new definition for treating particle-
wave duality as one entity, i.e., as a presheaf over a Grothendieck site (generalized time
category). The theory #-topos also gives a new definition of an entanglement of particles
providing a natural explanation of the EPR-type non-locality, which is much simpler
than the well established definition of entanglement given in terms of the Hilbert space
decompositions and Hilbert space associated with the global quantum system (See, e.g.,
[AMS] for the definition.). The notion of generalized time is also discussed in [R.S].
For quantum gravity, the theory called the t.g. relativistic principles of t-topos will be
announced in [Topos’04] based on the current project, [E.P.T.T] and [P.M.S.T].
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1. Introduction

We will begin with the definition of the fundamental category of contravariant
functors from a category with a Grothendieck topology.
Definition 1.1 Let S be a site, namely, a category with a Grothendieck topology

and let S be the category of presheaves from S to the product category HCa . That is,

aeA
S = (HCa )*”, where S is the dual category of S. Then site S is said to be a
aecA

temporal site when S is used in this context. Category S is said to be a temporal topos
or simply a t-fopos. We sometimes call an object of S an entity.

Remarks 1.2

(i) See [P.M.S.T] or [G-M] for Grothendieck topologies which is sufficient for
our needs. For our earlier model of a generalized time category T , [B-G-R] (In
particular, see 9.1 and 9.2 of [B-G-R].) is better suited since a Grothendieck topology is
defined on a set.

(ii) For an object F'in S, which we writeas F e Ob(s) and for an object V'in S,
ie., V € OB(S), F(V)is an object in [ ] C, . Namely,

aelA

F) = (F0) s
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where F(¥), is the a-th component of F(¥). We also say that F(V) is the manifestation
of F during the generalized time period V.

Definition 1.3 Let F be an object of S. The ur-state of F in C, during a
generalized time period W, i.e., an object W of the temporal site S, is defined by the pair
(F, W) = F(W), i.e., F is manifested during the generalized time period W. When a
generalized time period is not given, F is said to be in a pre-state or in an unmanifested
state. When an object W of the temporal site S is not specified, F(W) is said to be in the
ur-wave state of F and sometimes denoted as {F(W )} ,.os- For a specified object V,
the object F(¥) is said to be in the ur-particle state of F over the generalized time period
V. Considering uniform quantum (sub-Planck) decompositions, (as defined in
Definitions 2.1 and 2.2 ) of F and also of a generalized time period W, when F is not

| observed by an object in $ , it is in the quantum fluctuation state, i.e., { F, (V) }.

| Definition 1.4 An observation of an object m of S by another object P of Sina
| non-discrete category C,, @€ A, over a generalized time period V is a natural
| transformation ¢ over this specified V. Namely, the morphism in C,
‘ 0,:m(V)—> P(V) (1.1)
‘ is said to be an observation of m by P during the generalized time period V. If such a
‘ natural transformation ¢ exists over a generalized time period V, then m is said to be
| observable or measurable by P during the generalized time period V. When such a
| morphism as in (1.1) does not exist, m is said to be non-observable or non-measurable
| by P during the generalized time period V. We also say that m interacts with P if there
| exists such a natural transformation from m to P over some generalized time period.
| Note 1.4.1 When an object m of S is not observed, not only m is in the ur-wave
| state, but also m is considered as the totality of decomposed objects of S which are to be
evaluated at unspecified objects of S. (See Definitions 2.1 and 2.2.) It may be most

| appropriate to consider an unobserved object m to be simply presheaf “m,” namely, such
| a state of m is in the un-manifested state. Compare this notion with the notion of
| quantum fluctuation in Definition 1.3.
| Note 1.4.2 For a morphism from ¥ to U in S, there is induced the morphism o
| from m(U) to m(V). When m is observed (or measured) by P during V, ie,
| ¢,:m(V)— P(V), the composite morphism ¢, o Py from m(U) to P(V) is obtained.
However, according to Definition 1.4, this is not an observation of m by P since the
composite morphism @, o pv is not over the same generalized time period. Namely,
even though m is observable by P over ¥, when m is in a different state, i.e., m(U), m
need not be observable by P in the sense of Definition 1.4. Morphism ¢, o Py may be
said to be an indirect observation.

Definition 1.5 Let C, be the microcosm discrete category such that elementary
particles are examples of objects of C,. Recall that a discrete category is a category
having no morphisms except identity morphisms.
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Note 1.6 For every particle in C,, there exists an associated presheaf in S. For
example, let ¢ be an elementary particle in C,, then there exists a presheaf e in S such
that we have e = ¢(¥) for some V'in S.

Remark 1.7 In C, there exists (locally) a usual linear time. Let m be any object
in C,. For example, m can be an electron in C,. When m exists in C,, the usual time 7 is
associated. We have m = m(¥) in C,, where m is an object of S and Vis an object of S.
We will denote such an object m in C, by m = m(#(V)) or m(t,) instead of m(V,). That
is, we regard the usual time 7 depending upon the generalized time period ¥ in S. Note
that in C,, not every object in S assigns z. Namely, for m in S , not every ¥V in S
corresponds to an object m(¢,) of C,. In general, we say that a state of an object F in S

in category C,, a€A, among the product category HCa, is determined when an

aeA
object in S is specified.

Definition 1.8 Let m,,m,,———m,_ be objects of S. If the r-tuple
(m,,m,,—— —,m,) can be considered as one object of S, then objects m,m,,———m,
are said to be ur-entangled (or ur-correlated). We also call (m,, m,,—— —,m,) a discrete
system consisting of entities m,, m,,———,m, of S when there exist no morphisms
among objects m,, m,,—— —,m, over any generalized time period.

Definition 1.9 Let /, n = I, 2, ---, r, be objects of S. When there exists an
object U of S such that there are morphisms among {/,(U )}, {/,} ., 1s said to be a

non-discrete entangled system of objects of &,

Section 2 Spectral Sequences for Entangled Systems

Definition 2.1 Let M be a particle in the macrocosm discrete category C,. Then

a finite sum of presheaves Zm , is said to be a uniform quantum decomposition of M
AeA

with respect to a generalized time period ¥ if each m, is an object of S so that m 2(V)is
an object of C,, and M consists of totality ZmA(V)= ( Z:m2 V)=M.

AeA Ae€A
Definition 2.2 Let m = m(¥) be an object in C,. Then a covering {V,——V'}
is said to be a uniform Planck decomposition of V' with respect to m if each V_ is an
object of S so that m(V,) is a Planck scale object. Then V, is said to be of a Planck

generalized time period with respect to m. Similarly, a finite sum Z my is said to be a
BeQ

uniform Planck decomposition of m with respect to V if each m, is an object of S so
that m(¥) is a Planck scale object, and m(¥) consists of totality Zmﬁ(V). We denote

BeQ
the Planck scale discrete category as C,,. For ur-subplanck objects in terms of inverse

limits, see [P.M.S.T].
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Remark 2.3 First note, for example, when we consider the C,-components of
m(V) and P(¥V) such a morphism as ¢, in (1.1) must belong to a non-discrete
category C,,.. However, in the following, we simply say that ¢, is an observation of m(¥)
by P(¥V) in C,. An S -theoretic interpretation of an observation of an electron by an
observer is the following. Let e be the presheaf in S corresponding to an electron ¢. Let
P be an observer, i.e., an object of S‘, and let ¥ be an generalized time period. An
observation of e by P is a natural transformation¢ from e to P over a generalized time
period. In order to give a meaning of an observation of e by P in C, during the period ¥,
first consider a quantum uniform decomposition {V,—— ¥} of V' with respect to e so
that e(V,) may be an object of the microcosm category C, for all V. Then the
observation

¢, e(V)— V) 2.1)

in C, is interpreted as {e(V,)}—— P(¥). That is, {e(V)} is the ur-wave state of e for
the generalized time period V.

Remark 2.4 on Presheaf 7

We noted earlier that the physical time in C, depends upon generalized time.
That is, one is tempted to hypothesize that 7 is an object of S so that 7(V) is an object
of C, and 7 (V) is the physical local time in C,. On the other hand, after a uniform sub-
Planck decomposition of ¥ for 7, say ¥,, 7(¥,) may be an object of C,, where7(V,)
is a Planck scale physical time object in C,. The triviality of 7(V,) in C, together with
below Planck decompositions of objects is interpreted as a nature of quantum
Sfluctuation.

Remark 2.5 on Presheaf x
Let x be the presheaf associated with space with dimension d in C, . That is, for
an object V of S, x (V) is physical space in C, of dimension d. Then decompose x (V')
as x(V) =(x( vy, x(V)*) may be interpreted as x(V) is an object of C,, and r((V)d"3
is an object of C,,.
Remark 2.6 on Entanglement of X and 7
We may assume that associated presheaves x and 7 are entangled. Namely, the
pair (x, 7) is an object of S. That s, for an object V of S, we have
(x, )V)=(x(V), (V). (2.2)
Furthermore, another hypothesis on x and 7 is that k¥ and 7 are sheaves. See
[P.M.S.T] for details.
Note 2.7 on Entanglement and Dependency of space-time on Object
Let e and e’ be associated presheaves to electrons e and ¢’. Assume that ¢ and ¢’
are entangled. Namely, e = (e, e’) is an object of S. Then for an object ¥ of S, we have,
by Definition 1.8
e(V)=(e e)(V) =(e(V),e'(V). (23)
Suppose that e(¥) and e’(¥) are physically distant apart in C,|. For this ¥, let (x, 7)(V
) be the local space-time in a neighborhood of e(¥). Then, the same (x, 7)(V) can not
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be simultaneously the local space-time for e’(¥). Namely, the associated space-time
presheaf (x, 7) depends upon a particle (see [P.M.S.T]).

Definition 2.8 Let m” be a sheaf belonging to the subcategory S of sheaves of
the temporal topos S where p =0, 1, 2, - n. Assume that m* = {m"}_, , _, are
entangled, and that over a generalized time period W, m*(W) = {m" (W )}, ,,__, 1s a
non-discrete system. The system m* may be said to be a non-discrete entangled
network. By following composite morphisms in the system m*, a sequence of non-
discrete entangled system m" = {m"}_,,, _, associated with the non-discrete
entangled system m* is obtained. Then let Cm’ be the complexification of m” in the
sense of [Bel.’01].

Spectral Sequence Assertion 2.9 There exist doubly indexed cohomological
spectral sequences with the abutment R'T(W,Cm"):

ENY =R°T(W,H*(Cm")) = R'T(W,Cm")  (2.4.1)
and

E' =R'T(W,Cm")= R'T(W,Cm") 242)
where I'(W, - ) is the global section functor from S to the non-discrete category and
RT,i=p, q, is the i-th derived functor of T".

Remarks 2.10 (i) All the needed cohomological notions are found in [G-M],
[K]. (ii) Interpretations of (2.4.1) and (2.4.2) are that the state of the complexified
entangled system can be computed by the cohomological state of an individual object,
i.e., (2.4.1) and by the state of an individual object, i.e., (2.4.2).

Section 3 Associated Brain Sheaves (Applications)

In this section, the hypothesis is that a brain (more precisely the associated brain
sheaf) is not only a presheaf but also a sheaf. This hypothesis is based on the fact that
brain parts (subbrains) are capable of pasting local information data to obtain global
information.

Speaking sheaf-theoretically, a (physical) brain B in category C, is regarded as
the 2™ -component of the associated sheaf B with B evaluated at a generalized time
period V. This sheaf B is said to be the associated brain sheaf (See [Ro.’01], [Bel.’01],
[Kol.’02] for the definition of an associated sheaf)). That is, since category C, is
discrete, there exists an equality rather than an isomorphism. Namely we have

B= B(V),(3.)
where B,(¥) indicates the second component of B(¥) in the product category H C,.

aeTl

We will focus on the category C, or C,, where current imaging techniques in
neuroscience take place and also on a non-discrete category C,, where communication
between local objects and global objects take place. We assume that objects of C, are
sets. As in [Kol.’02] and [Bel.’01], all the manifested, i.e., existing objects in the
categories C, (or C,) and C, are the 2™~ (or the 1”-) and @”- components of the
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object in the product category HCa . We will simplify our notation as follows. Let

aeTl

B(V) be the associated sheaf evaluated at a generalized time period ¥ which is an object
in H C, . We will use the same notation B(¥) for the 2™ -component object in C, and

ael

also for the " -component object in the non-discrete category C, where information is
taking place, rather

than writing them in the component forms B,(V) and B, (V). We will fix this category
C,. (It is a different issue to consider a functor from a non-discrete category to another
non-discrete category. Such a functor is called an interpretation functor in [Tokyo *99].)
In the sense of (3.1), B(¥) is the usual physical brain in C, existing over the generalized
time period ¥V, and B(¥) is the object possessing information in C, during the
generalized time period V. Various brain imaging methods for brain B are interpreted as

measuring the images of the images of functor B over generalized time periods.

We write the brain sheaf B as a direct sum of subsheaves of B: B = ZB/ ,Jis

jeJ
a finite index set. An example of such a subdivision can be much finer than the well
known subdivisions of a brain into frontal lobes, parietal lobes, temporal lobes, occipital
lobes, e.g., into neurons in macro-level or even micro-level C, as entities. We consider a

covering family of the generalized time period V ie., {f:¥V,—— V}. Global
information is an element of B(¥) = ( ZB/ Y{f:V,—— V}). (See [K] or [P.M.S.T] for

jelJ
the notion of a covering family. Note that we are assuming that an object is a set in
categoryC,.) One of the main goals is to formulate the mechanism for obtaining global
information from local data as elements of {B/(V )}, ., ; ., in category C,.

Remark 3. 1 Before we state our main assertion, we will make general remarks
on two kinds of functorial (restriction) morphisms. Let D’ be an associated brain
subsheaf of a brain sheaf D and let W'—£— W be a morphism in the site S. Then we
have the functorial morphism from D(W) —2%— D(W’). On the other hand, the
restriction morphism from D(W) to D’(W) is defined as the assignment from an element
t, of D(W), which is a local datum, to the element ¢,,, of D (W) that is the restricted
bram activity to the sub-brain sheaf D’ induced by #,,

Let us return to our earlier situation. For ie I and je J, consider an element s/
of B,(V,) in the category C,.

Definition 3.2 The family of the subsheaves { B} is said to paste well with
respect to V; if the following condition is satisfied.

(Condition): the images of the restriction maps for s in B (V,) and s/ in

B,(V,), kandj € J, coincide as an element of B, (V,)x B,(V)), then there exists a

130




def
unique element s, in B(V,)= UBJ.(V,.) such that the induced element of s, on B;(V))
jeJ
equals s/ for all je J, where the induced morphism is as defined in Remark 3.1. For
sheaf B, by the definition of a sheaf, the covering family {f;:V,—— ¥} always pastes
well with respect to B, in the sense as in [K], [P.M.S.T]. We are ready to state the

main assertion showing the
mechanism of a brain function as a sheaf: from given local data to global information.
First, we will state the case where { B, },_; is not entangled or partially entangled.

Main Assertion A As in the above, let decompose B as brain subsheaves as

follows: B = ZBJ as objects of S and let us consider a covering family of V :
jeJ

{/:V;—— V}. Suppose that {B,},_, (and {V},, paste well with respect to every V,

(and every B,). Then for given local data {s{ }in Bi(V)), i€ I and je J, there exists a

global element s in B(¥) whose restrictions to subsheaves and generalized time

subperiods coincide with given local data.

Sketch of Proof We are given local data with respect to generalized time periods
and with respect to brain subsheaves. That is, {s;} in B,(V,), ie Iand je J, are given.
In the diagram below, first we will paste for subsheaves at ¥,. For local data {s’} in
B,(V,) and {sf}in B.(V,) in the third row, we get an element s, in B(¥,) which is the
second object in the second row. Next, we will paste generalized time subperiods at B;.
For local data {s]} inB,(V;) and {s,} in B,(V,), we get an element s’ of B (V). The
restrictions from B,(V, xV,) and from B, (V, XV}) to B,(V, xV)NB.(V, XV,) give
an element s,, in B(V,xV;). The restrictions from B,(V,)NB(V,) and
fromB, (V)N B (V) to B(V,,nV)NB,(V,NV,) give an element of B, (V)N B, (V).
Since {s,} and {s’} restrict well, we get a unique element s in B(¥).

B(V)
B(,) B() B,(V) B.(V)
B, xV) B,(V,) B,(V}) B,(V)) B,(")"B,(V)
B,V )nB(V,) B,{¥,xV) B,V)NB,(V)) BV, xV)
B,(V,, xV,) "B, (V,, xV,)

where the induced morphisms are not indicated in the above diagram.
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Main Assertion B When { B}, , is totally entangled. The above commutative
diagram becomes as simple as

B(V)

BV B,(V)
B(NNB(Y)

where the induced morphisms are not indicated in the above diagram. If the image of
the induced morphism of s, from B,(V)to B, (V) B, (V) coincides with the image of

the induced morphism of s, from B, (V) to B,(V)N B,(V), then there exists a global
element s in B(V) whose restrictions to B;(V) and B,(V) are s; and s, , respectively.

Remarks 3.3 (i) The statement of Main Assertion B is the dual statement of a
presheaf to be a sheaf.

(ii) In our above discussion, we wrote a brain sheaf as a direct sum of
subsheaves so that each subsheaf evaluated at a generalized time period is an object of
macro category C,. By considering the notions of quantum, or even Planck, uniform
decomposition of a brain sheaf (See [E.P.T.T] for the definition of the decompositions.),
one can carry out the similar construction as above where each object obtained by a
subsheaf evaluated at a generalized time period is an object in micro categoryC, .

Remark 3.4 For the case of Main Assertion B where entangled { B}, , are

entangled, there are spectral sequences (2.4.1) and (2.4.2):
Er* =R'T(V,H'(CB™))=R"(V,CB")
and
EM'=FR¥,CB")=>R'(V,CB")
where B, = B’ is used in the above. The above spectral sequences indicate that an

entangled system (the complex of associated entangled brain sheaves) may be computed
from an individual part. Namely, an individual local state over ¥ of an associated brain
governs the global state over V.

4. Conclusion

By introducing the notion of a (pre-)sheaf, fundamental concepts and results in
quantum physics are reformulated in terms of t-topos theory, especially those of non-
locality and entanglement. While t-topos theory being developed in Section 1 and
Section 2 as a possible quantum gravity theory, in Section 3, t-topos notion is applied to
brain functions where a brain is regarded as a macro object component of the associated
(brain) sheaf evaluated at a generalized time period of the temporal site. In this last
section, the sub-brains’ ability to paste given local data to get global information is
phrased in terms of sheaf-category notions, i.e., t-topos theory.
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