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Abstract
T\e theory of temporal topos (or t-topos) gives a new definition for treating particle-

wave duaiity as one entity, i.e., as a presheaf over a Grothendieck site (generalized time

category). The theory t-topos also gives a new definition of an entanglemeû of particles

proiOl"g a natural explanation of the EPR-type non-locclig which is much simpler

than the wetl estabtished definition of entanglement given in terms of the Hilbert space

decompositions and Hilbert space associated with the global quanfum system (See, e-g-'

tAMSi for the definition.). The notion of generalized time is also discussed in [R.S].
For quantum graviç the theory called the t.g. relativistic principles of t'topos will be

announced in [Topos'O4] based on the current project, [E.P.T.T] and [P.M.S'T]'
Kcywords: topos, category, sheaf, quantum gavity, spectral sequence

l.Introduction

We will begin with the definition of the fundamental category of contravariant
functors from a category with a Grothendieck topology.

Delinition 1.1 IÆt,S be a site, namely, a category with a Grothendieck topology

and let S U" tt 
" 

category of presheaves from ̂ S to the product category lfC, That is,

S : fflC")s*, where ̂ Soop is the dual catÊgoryof ̂S. Then ,it" Si ruid to be a

temporalsr'fe when ,S is used in this context. Cat€go^ry ̂S is said to be a temporal lopos

or simply a t-topos. We sometimes call an object of S an entity.
Remarks 1.2
(i) See tP.M.S.Tl or [G-M] for Grothendieck topologies which is sufficient for

our needs. For our earlier model of a generalized time category r, p-c-n1 go

particular, see 9.1 and9.2 of tB-G-Rl.) is better suited since a Grothendieck topology is

defined on a set.
(ii) For an object F in ,3 , which we write as F e Oô(S) and for an object Z in S,

i.e., Y eOà(S), F(V) isan object in flC" - Namely,
d e A

F(Y) = (F(Y) 
")".o t
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where F(V)" isthe a-thcomponent of F(It). Wealso saythatF@isthemanifestation

of Fduring the generalized time pencd Y.
Definition l3 l-et F be an object of S. The ur-state of F in C, during a

generalized time period W, i.e., an object W of the temporal site E is defined by the pair
(F, W ) = F(W ), i.e., F is manifested during the generalized time period Z. When a
generalized time period is not given, tr' is said to be in a pre-state or in an unmanifested
srate.Whenanobject Wof thetemporalsiteSis notspeciJied,F(W)is saidtobeinthe
ur-wcve state of F and sometimes denoted æ lF(W)l *.oô($. For a specified objæt Y'

the object F(V) is said to be in the ur-particle state of F over the generalized time period
l/. Considering uniform quantum (sub-Planck) decompositions, (as defined in
Definitions 2.1 and 2.2 ) of F and also of a generalized time period W , whæ F is not

observed by an object in S, it is in the quontum fluctuation state, i.e., { FxVù } .

Definition 1.4 An observationofanobject-of .S byanotherobjectPof S ina
nondiscrete catÊgory Co, a e Â, over a generalized time period V is a natural

transformation û over this specified Z. Namely, the morphism in C*

Q,:n(V)--+P(I)  ( l . l )

is said to be an observation of m by P during the generalized time period I/. If such a
natural transformation / exists over a generalized time period V,then m is said to be
observable or measurable by P during the generalized time period Z. When such a
morphism as in (1.1) does not exist, m is said tabe non-observqble or non-measurable
by P during the generalized time period Y. We also say that m interacts with P if there
exists such a natural transformation from mto P ovet some generalized time period

Note 1.4.1 When an object rz of S is not observed not only ia is in the ur-wave

state, but also rz is considered as the totality of decomposed objects of ,S which are to be
evaluated at unspecified objects of ,S. (See Definitions 2.1 and 2.2.) It may be most
appropriate to consider an unobserved object m to be simply presheaf "m," namely, such
a state of m is in the un-manifested state. Compare this notion with the notion of
quantum fluctuation in Definition 1.3.

Note 1.4.2 For a morphism from V to U inS, there is induced the morphism p/

from m(U) to m(V). When m is observed (or measured) by P during V, i.e.,

Q;m(V)-+ P(V) , the composite morphism Q, " pu, from m(U) to P(V) is obtained.

However, according to Definition 1.4, this is not an observation of m by P since the

composite morphism 0, " pI is not over the same generalized time period. Nannely,

even though rz is observable by P over V, when rz is in a different state, i.e., ra(U), m
need not be observabl e by P in the sense of Definition I .4. Morphis m ûn " PI may be

said to be an indirect observation.
Definition 1.5 Let Ç be the microcosm discrete category such that elementary

particles are examples of objects of C,. Recall that a discrete category is a category
having no morphisms exce,pt identity morphisms.
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Note 1.6 For every particle in Ç, there exists an associated presheaf in

example, let 9 be an elementary particle in Ç , then there exists a presheaf e in
that we have g = e(U) for some Y in S.

Remark 1.7 In Ç there exists (locally) a usual linear time. Let m be any object
in Ç. For example, m canbe an electron in Ç. When m exists in C,the usual time I is

associated. We have m = m(Y) in Ç , where m is an object of ^S and Z is an object of S.
We will denote such an object m in Ç by m: m(t(U) or m(tr) instead of m(V,). That

is, we regard tlre usual time r depending upon the generalized time period' T in,S. Note

that in Ç, not every object in S assigns t. Namely, for m in ,S, not every Z in ,S

corresponds to an object m(t ) of q . In general, we say that a state of an object F in ^S

in category Co, ae\, among the product category 17C", is determined when an

object in.S is specified
Definition 1.8 l-et mt,m2,-- -,m, be objects of ,S. If the r-tuple

(m,n4,-- -,m,) can be considered as one object of ,S, then objects mt,m2,-- -,m,

are said to be ur-entangled (or ur-correlated). We also call (m,ttz,- - -,m,) î discrete

system consisting of entities r/tpt7t2;--*,m, of S when there exist no morphisms
among objects mt,rn2,-- -)mr over any generalized time period.

Defïnition 1.9 Let ln,n: 1,2, ---, r,be objects of .S. Whenthere exists an

object U of .S such that there are morphisms among {/,(U )}, U,\ rn,r, is said to be a

non-discrete entangled systerr of objects of S.

Section 2 Spectral Sequences for Entangled Systems

Definition 2.1 Let M be a particle in the macrocosm discrete category Cr. Then

a finite sum of presheaves Iz, is said to be a uniforw quontum decomposition of M

with respect to a generali t:;;^"period V if each m ̂  is anobject of S so that m ̂ (Y) is

an object of Ç, and M consists of totality L^^(n= (|*^Xf ) : M.

Definition 2.2 Lete: m(V)b" uiio.;"", i" c,. rh* a covering IV,---+VI
is said to be a unifurm Planck decomposition of I/ wilh respect to m if each Z, is an

objectof ,ssothat m(l / , )  isaPlanckscaleobject.  Then[/ ,  issaidtobeof aPlonck

generalized time period with respect to m. Simllarly, a finite .um f ltt, is said to be a
f e Q

undorm Plonck decomposition of m with respect to T if each mU is an object of S so

thar mB(V) is a Planck scale object, and,m(V) consists of totality lmp$. We denote
B e a

Ihe Planck scale discrete category as C",. For ur-subplanck objects in terms of inverse

limits, see [P.M.S.T].

,3. r'ot
^S such
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Remark 23 Fint note, for example, when we consider the Ç-components of

n(Y) and P(I) such a morphism as 0v in (1.1) must belong to a non-discrete

categoryCo.However,inthefollowing,wesimplysaythat Qn isanobsenation of m(V)

by P(V) in Cr. An ,3+heoretic interpretation of an observation of an electron by an

observer is the following. Let e be the presheaf in ,3 corresponding to an electron e. Let

P be an observer, i.e., an object of S, and let V be an generalized time period. An
observation of e by P is a natural transformation/ from e to P over a generalized time

period. In order to give a meaning of an observation of e by P in C, during the period Z'

first consider a quantum uniform decomposition {V,+Y\ of V with respect to e so

that e(V) may be an object of the microcosm category C, for all V,. Then the

observation
Q,:e(Y)--+ P(Y) (2.1)

in C, is interpreted as le(V,)\ ---è Nn. That is, {e(,Y,\\ is the ur-wave state of e for

the generalized time period Z.
Remark 2.4 on Presheaf e
We noted earlier that the physical time in Ç depenfs upon generalized time.

That is, one is tempted to hypothesize that z is an object of S so that t @ is an object
of C, andc (V) is the physical local time in q. On the other hand, after a uniform sub-

Planckdecomposition of Y for l,say I/€, t(V,)may beanobject of C,wheter(Y")

is a Planck scale physical time object in Ç . Th" tiviality of r(Y,) in Ç together with

below Planck decompositions of objecrc is interpreted as a nature of quantum

fluctuation.
Remark 2.5 on Presheaf r
I-et r be the presheaf associated with space with dimension d in Ç . That is, for

an object Y of S, r(Z) is physical space in Ç of dimension d. Then decompose r(I/)

æ 4V) = (4V)3, 4I/)'-') *uy be interpreted as r(Z)3 is an object of Ç, and K(V)ou
is an object of Cr,.

Remark 2.6 on Entanglement of r and c
We may assume that associated presheaves r and ? are entangled. Namely, the

pair ( r, r) is an object of S. That is, for an object Zof S, we have
(x ,  t ) (V) : (x (V) ,  t ( I / ) ) .  (2 .2 )

Furthermore, another hypothesis on r and r is that x and r are sheaves. See

lP.M.S.Tl for details.
Note 2.7 on Entanglement and Dependency of spacetime on Object
l-et e ande'be associated presheaves to electrons e and e'. Assume that e and g'

are entangled. Namely, e = (e, e) is an object of S. fn* for an object Vof S, we have,
byDefinition 1.8

eA= @, e')(V): (e(V), e'(V)L Q.3)
Suppose thate(V)ande'(V)arephysicallydistantapartin@. fotthis Z, let(r, r)(V

) be the local space-time in a neighborhood of e(V). Then, the same ( r , î)(I/ ) can not

t28



be simultaneously the local space-time for e'(Y). Namely, the associated space-time
presheaf ( r, e) depends upon a particle (see [P.M.S.T]).

Definition 2.8 Let mp be a sheaf belonging to the subcategory S of sheaves of

the temporal topos S where p : 0, I, 2, ---, n. Assume that m* : {mo },=0,,,r,-,o il€

entangled, and that over a generalized time period W, m*(W) : {*o (W )\r{,r,2,-,, is a

non-discrete system. The system m* may be said to be a non-discrete entangled
network. By following composite morphisms in the system m*, a sequence of non-
discrete entangled system m' = {moli4,'.-, associated with the non-discrete

entangled systemn* is obtained. Then let Cm' be the complexification of z' in the
sense of [Bel.'01].

Spectral Sequence Assertion 2.9 There exist doubly indexed cohomological
spectral sequences with the abutment R'f(W,Cm'):

Elr'o = R'f(W,flq (Cm')) + R'f:(ll',Cm') (2.4.1)
and

El' = Rol(W,Cmo)> R"l(ll,Cm') (2-4.2)

where f (lI{ - ) is the global section fi,rnctor from ,i to the non-discrete category and
Rf ,i:p,4 isthe i-thdeivedfunctorof f .

Remarks 2.10 (i) All the needed cohomological notions are found in [G-M],
tKl. (ii) Interpretations of (2.4.1) nd (2.4.2) are that the state of the complexified
entangled system can be computed by the cohomological state of an individual object,
i.e., (2.4.1\ and by the state of an individual object, i.e., (2.4.2).

Section 3 Associated Brain Sheaves (AppHcations)

In this section, the hlpothesis is that a brain (more precisely the associated brain
sheaf) is not only a presheafbut also a sheaf. This hypothesis is based on the fact that
b,rain parts (subbrains) are capable of pasting local information data to obtain global
information.

Speaking sheaf-theoretically, a (physical) brain B in category C, is regarded as

the 2d-component of the associated sheaf I with B evaluated at a generalized time
period Z. This sheaf B is said to be the associated brain sheaf (See [Ro.'01], [Bel.'01],
[Kol.'02] for the definition of an associated sheaf.). That is, since category C" is

discrete, there exists an equality rath- tf;1îËi:,1llism. Namely we have

where Br(V) indicates the second component of B(V) in the product category fI9"
a e f

We will focus on the category C, or C, where current imaging techniques in

neuroscience take place and also on a non-discrete category Co, where communication

between local objects and global objects take place. We assume that objects of Co are

sets. As in [Kol.'02] and [Bel.'01], all the manifested, i.e., existing objects in the
categories Cr(or Ç)and Coarethe2d- (orthe 1"-;and 4"-componantsof the
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object in the product category flC". We will simpli$ our notation as follows. Iæt

B(V) bethe associated ,t 
"uf "lri*f"O 

at a generalized time p€riod Zwhich is an object
io IIC" . We will use the same notation B(Y) for the 2d-component object rn C, and

a e l

also for the aû -conrponent object in the non-discrete category Co where information is
taking place, rather
than writing them in the component forms Br(V) and B"(n. We will fix this category
C". (It is a different issue to consider a functor from a non-discrete category to another
non-discrete category. Such a functor is called an interpretation functor in [Tokyo 

'99].)

In the sense of (3.1), B(V) is the usual physical brain in C, existing over the generalûed
time period V, and B(Y) is the object possessing inforrration in Co during the
generalized time period Z. Various brain imaging methods for brain B are interpreted as

measuring the images af the images offunctor B over generalized time periods.

we write the brain sheaf B as a direct sum of subsheaves of B: B : l{ , J is
j e J

a finite index sel An example of such a suMivision can be much finer than the well
known subdivisions ofa brain into frontal lobes, parietal lobes, ternporal lobes, occipital
lobes, e.g, into neurons in macro-level or even micro-level Ç as entities. We consider a
covering family of the generalized time period V i.e., Nf,:V,-> Z]. Global
information is an element of B(V) : (ZB)(Nf ,:Y,+ Z)). (See [K] or [P.M.S.T] for

j  e J

the notion of a covering family. Note that we are assuming that an object is a set in
categoryCo.) Onr of the main goals is to formulate the mechanism for obtaining global
information from local data as elements of {Bi(V,)); e r, i e r in category C,.

Remark 3. 1 Before we state our main assertion, we will make general remarks
on two kinds of functorial (restriction) morphisms. I-et D'be an associated brain
subsheaf of a brain sheaf D and let W'J+ W be a morphism in the site S. Then we
have the functorial morphism from D(llr)
restriction morphism from D(W) to D'(\t/) is defined as the assignment from an elernent
to of D(W), which is a local datum, to the element t", of D'(W) that is the restricted
brain activity to the sub-brain sheaf D' induced by t r.

Let us retum to our earlier situation. For ie l and je ./, consider an element sj
of B,(V,) in the category C,.

Definition 3.2 The family of the subsheaves { B, } is said to paste well with
respect to Z, if the following condition is satisfied.

(Condition): the images of the restriction maps for 
"f 

in 4(() and .{ in

4(I/,), k and j e ./, coincide as an element of Br(Ir|Sx Bj(I/,'), then there exists a
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unique element s, in B(V,1Y l)n,Ur,\ such that the induced element of s, on Bj(y,)
j e J

equals sf for all je J, where the induced morphism is as defined in Remark 3.1. For
sheaf B' by the definition of a sheaf, the covering family lf ,:V,---> Vj alvrays pastes
well with respect to B, inthe sense as in [K], [P.M.S.T]. We are ready to state the
main assertion showing the
mechanism of a brain function as a sheaf: from given local data to global information.
First, we will state the case where { B, };., is not entangled or partially entangled,

Main Assertion A As in the above, let decompose B as brain subsheaves as
follows: ,B : la, as objects of .i and tet us consider a covering family of V :

j  e J

{1[,:V,----+ Z]. Suppose that {,Br};.., (and {V,l,n paste well with respect to every V,

(and every Br). Then for given local data {si } in Bj(V,), ie /and je -/, there exists a
global element s in B(V) whose restrictions to subsheaves and generalized time
subperiods coincide with given local data.

Sketch of Proof We are given local data with respect to generalized time periods
and with respect to brain subsheaves. That is, {s/ } in Bj(V,), ie I and je J, are given.

In the diagram below, first we will paste for subsheaves at V,. For local data {sf } in

Bj(I/,) and {si I in Br(V,) in the third row, we get an element s, in B(I/,) which is the

second object in the second row. Next, we will paste generalized time subperiods at Br.

For local data {sj ) inB,(V) and {s', \ in B,(V^), we get an element sr of B, (Z) . The
restr ict ions from B,(V,xV,) andfrom Bo(It^xY,) to B,(Y^xV,)nBr(Y^xV,) give

an element s..i in B(V^xV,). The restrictions from Bj(I/_)nBr(V^) and
from8r(Zr)n Bo(Y,) to B,(v.al t , )nBo(V^nV,) give an element of B,(V)aBr0.

Since {s, } and {si } restrict well, we get a unique element s in B(V).
BV)

B(V.)

B(lt^xY,)

B(t/,)

B j(Y_) B j(Y,)

B j(y)

Bo(V,)

Bo(V)

Bj(ï/)^Bk(n

n,(It^\ n Bt(v.) Bj(V^xv) B,(v,)aBt(v,) Bo(v^xv,)

B,(Y.xv,)nBr(v.xY,)

where the induced morohisms are not indicated in the above diasram.
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Main Assertion B When {\Iw is totally entangled. The above commutative

diagram becomes as simple as

B(V)

Bj(n Bk(,n

B,(V)o Br(Y)

where the induced morphisms are not indicated in the above diagram. If the image of

the induced morphism of s, from B,(l)to B,(V)oBo(Z) coincides with the image of

the induced morphism of s* from Bo(Y) to Br(V)aBr(V), then there exists a global

element s n B(l/) whose restrictions to Br(V) and Br(V) are s, and s* , respectively.

Remarks 3.3 (i) The statement of Main Assertion B is the dual statement of a
presheafto be a sheaf.

(ii) In our above discussion, we wrote a brain sheaf as a direct sum of
subsheaves so that each subsheafevaluated at a generalized time period is an object of
macro category C, By considering the notions of quantum, or even Planclq unifonn
decomposition of a brain sheaf (See [E.P.T.T] for the definition of the decompositions.),
one can carry out the similar construction as above where each object obtained by a
subsheaf evaluated at a generalized time period is an object in micro categoryÇ .

Remark 3.4 For the case of Main Assertion B where entangled {4},..r tre

entangled there are spectral sequences (2.4.1) and'(2.4.2\:
El' = Rol(Y,Hq (cB'))+ R'(v,cl')

and

4'o = N(Y,CB-P\+ R'(V,CE')

where ,8, = B-' is used in the above. The above spectral sequences indicate that an

entangled system (the complex of associated entangled brain sheaves) may be computed
from an individual part. Namely, an individual local stâte over V of an associated brain
governs the global state over ,/.

4. Conclusion

By introducing the notion of a (pre-)sheaf, fundamental concepts and results in
quantum physics are reformulated in terms of t-topos theory, especially those of non-
locality and entanglement. While t-topos theory being developed in Section I and
Section 2 as a possible quantum gravity theory, in Section 3, t-topos notion is applied to
brain functions where a brain is regarded as a macro object component of the associated
(brain) sheaf evaluated at a generalized time period of the temporal site. In this last
section, the sub-brains' ability to paste given local data to get global information is
phrased in terms of sheaÊcategory notions, i.e., t-topos theory.
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