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Abstract
It is the purpos€ of this paper to study the concept of an 'brganizing structure". In the
beginning, dynanric systems with a specific substnrcture are analyse4 zuch that long-
term mdifications of the system struchre (and possibb other effects) can be athibuted
to that substructure. This analysis follows the guidelines of general system theory and
the proposed forrnalism is open to applications in various fields. In a secord sep, a
possible application to quantum theory is discussed. It will be shown that this propoml is
corryatible \À'ith the present state of qnantum theory, and that hidden wriabbs can be
regarded as a special case within the concept of a hidden organizing structure. Possible
applications to a recently proposed extension (weak quantum theory) and to the study of
anticipatory systems will be sketched.
Keywords: Quantum theory, foundations, organizing strucfiir€, hidden stnroture,
structure formation

I The two Aspects of Organizing Structures

We are accustonr.d to saying that some institution is well - or not so well -

organize{ and we assurne that there exists an underlying organizational structure, which
is perceived from the outside only by its efficiency, the conspicuous behaviour of the
systenr. This paper starts by anÙsing the rew concept of an "organizing strtrcttte"
under general systemtheoretical aspects. To this purpose, dynamical systems are studied
which permit the identification and conceptual separation of a specifc cornponent: long-
term modifications of the system structure (and possibly certain deviations ûom the
standard system behaviour) will b€ attributed just to that organizing structur€, and can be
understood and explained only on this basis.

Apart from this abstract rnathematical model (which may be of interest by itself as a
new technique within general system theory), a second aspect will be discussed. The
general concept is open for applications in various contexts. Particularly, it will be found
that this proposal is compatible with the state of the art in quantum theory, and lrcpefully
it will give a rnodest contribution to the ongoing debate on the foundations of quantum
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theory (Section 4). Also possible applications to the study of anticipatory systerns \Mill be
sketched (Section 5).

2 Systems with an Organizing Structure

An abstract mathematical concept of a system with an organizing structure has to
fulfill the following requirements:

l. Separation: The system S consists of two distinct, but interacting subsystems,
S : {O,T}, with an organizing structure O and a "target system" T; the subsystem
T assumes different states in the course of time, rnainly governed by its own internal
rules (system dynamics, "business as usual"), whereas O is able to modify the
internal rules and the structure of T, and to bias stochastic processes within T.

2. Persistency: O exists for a sufficiently long tim€ without internal changes (else it
would be impossible to identi! O).

3. Uniqueness of causation: O causes structural changes or influences stochastic
processes within T, in such a way that all this cannot be explained by internal
properties of T, but must necessarily be attributed to the effect of O.

4. Selectivity: O only acts upon selected subsystems of T, that is those which have a
specific structure (with abstraction from irrelevant features).

5. Partial visibility: There is a clear and natural distinction within the mathematical
structure of S that permits us to speak about a 'Iisible part" of S, identical with T,
and an *invisible part" of S, which can be identified with O.

3 Mathematical Treatment

3.1 Representation by Matrices and Special Matrix Products

A mathematical formalism representing such systems quite naturally is based upon
two matrices:
- a transformation matrix X describes the transition of T from one state to the next

one (normal system operation), and
- an organizing matrix Y characterizes the effect of O.
These two rnatrices (and all other rnatrices in this text) can be tinre-dependent, but this
will not be formally denoted. X and Y always occur jointly, and a transformation step
canbe written as

x' : YXx (1)
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It is presupposed here that the system states can be denoted by finite state vectors.r
In the simplest case, there is no inpact ûom O upon T (e.g., if Y: I (unit matrix)), and
eq. I becornes x' : Xx" which næans the norrnal unbiased system operation Depending
on the individual type of the organizing rnatrix Y, the effect of Y upon X - leading to the
biased operation - may belong to one of the following characteristic pattems:

l. Selector matrix: In a selector matrix S all elements of a proper non-empty subset of
the rnain diagonal elements are equal to l, with all other rnatrix elements vanishing.
The muftiplication SX will select exactly those rows and columns from X as
signalised by the nonzero entries in S.2 Selector matrices are idempotent (St : S).

2. Aggregation: E.g. Y rnay contain one row of ones, with the rest equal to 0. Then the
product matrix YX will contain one row with column sums, and zeros in all other
rows.

3. Selection or aggregation with weight factors: The ones in the matrices as above can
be replaced by different positive numbers, thus introducing unequal weights.

4. Other special matrix products: Tlre concept of pattem handling can be easily
recognised in the Kronecker product; for this and further transformations see e.g.
Graham (1981) and Lùtkepohl (1996).'

All matrices considered here are nxn-nmtrices over C (the field of complex
numbers). Any such nratrix permits a unique decomposition into a real and an intagfttar,'
part. Hence the matrices in eq. I canbe rewritten: Y : A + iB and X : C * iD, where
A, B, C, D are real. The matrix product in eq. I becomes

(A + iBXC + iD) = AC - BD + (AD + BC) (2)

This equation can be interpreted in such a way that the real part, R : AC - BD,
represents ttre manifest system behaviour, and at the same time mirrors the effect of the
organizing structure O. The following special cases rnay illustrate this:

l . A + iB = I: Under this assunptiorl it follows that B = O (zero matrix), A: I, and
R: C; eq. I is reduced to x' = Cx. Here we have the ordinary system operatiorl
without any influence from 0.

BD : O: In this case R = AC, and the inpact of A upon C must be analysed. E.g.,
A can be one of several'lresebctor matrices" which express the fact that different
experimental settings can be applied to the same physical object (Gernert 2000a).

I In the continuous case the matrix prrducts can be replaced by integral transformations in a well-known
manner.
2 Fc an applicaticr ofselecto matrices and the Kronecker product see Gernert (2000a).
3 This listing is not exhaustive. Craigen (1993) defines an op€ration called'tnatrix næaving", wlrictr e.g.
includes the Kronecker product and the direc{ sum as special cases. An alternative to matrix operations
is given by gaph grammarc (see e.g. Gernert 1997), where the structural transformations are clearly
evident.

2.
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3. BD * O: With the simpliSing assumption A = I we get R: C - BD, which means
that the system operation is *disturbed" due to the term BD; this leads to a rnore
detailed study in the next section

3.2 Mathematics of the Key-Lock Principle

Considering the important case R: C - BD with BD :r O, it must be found out
urder which circumstances BD + O can hold, or at least BD will not take on too low
numerical values, zuch that the effect of disturbing the system operation cannot be
neglected. This is not trivial, because two nonnegative matrices with tlreir nonzero
entries in a'trcrmal" numerical range c.ul have a rather diminished product (0 < a b < I
irrylies ab < min(ab)). The question of a non-negligible rnagnitude of BD stimulates the
metaphor of a "key-lock mechanism": if and only if B and D fit together - in a sense still
to be made precise - the effect of BD will be significant.

The required rnathenratical tool is zupplied by a general method which permits the
definition of adissimilarityfunction d(a,zx) on a set {2t,h,...,2^l of objects, which
are also allowed to have a complicated intemal structure. This dissimilarity firnction has
the properties of a metric as defined by the usual ar<ioms, ard takes the internal structure
of the objects into account.u A low nunrcrical value of d(z,z+) nrcans that there is a
ruurow relationship between a atf, za, whilst a high value of d(z-i,a) indicates that the
two objects have not so much in cornlnon.s The mathernatics for defining a dissimilarity
function can be based either upon graph gramrnars (including directed graphs, edge- and
vertex-labelled graphs, and hierarchical graphs) or upon block rnatrices (including
bierarchically structured block matrices;.6 Both styles are essentially equivalent, because
any real matrix can be rewritten as a labelled graptl and vice versa.

The practical inrportance of the dissimilarity function lies in the frct that features of
O, represented by B, rnay activate specific properties of T, as modelled by D, in a
sebctive rnanner, controlbd just by a low value of dissimilarity. An *ideal fitting"
between key and lock (d(a,a) : 0) may exist in pure mathematics; the real hmdware will
be subject to wear and ternporal fluctuations, but the key-lock prirrciple works on the
basis of a sufficient correspondeme between tlrc two involved parts of O and T.

4. Possible Applications - Quantum Theory and Beyond

a Fo daailq examples, and references see Gernert (2000a).
5 lhfortunaæty, the term ,,similar mahices" is alrady used ditrerently. A distinctiqr behveen internal
and æterrul similarity has been proposed (Gemert 2000b). Inûernal similarity induces a decunposition
into equivalence classes. External similarity is defined mirru-qmrmetrically to the dissimilarity function
as above: it involves an intransitive relation such that there may b zFzj and zça M -244.
6 Cf the remarks ur ,dher spocial matrix products" in Section 3.1.
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4.1 General System Theory and Quantun Theory

The relationship between general system theory and quantum theory is closer than

one might expect. The validity of quantum theory is not restricted to microphysics.

Rather, tlrere are rnacroscopic quantum effects, that is rnacroscopic phenorrelr4 like

superconductivity or superfluidity, which can be explained and understood only on the

Usis of quantgm phenomena. Already in early years, some of the founders, such as N.

Boln, E. 
-SchOdinger, 

W. Pauli and P. Jordan, discussed the idea that quantum theory

might have sorne relevance for biology and psycbolog, too.'

General system theory is a 'lormal science" (Formalwissenschaft, just as

mathernatics, forrnal logic, etc.), which describes and analyses structures and processes

without taking account of their material carriers or irrytenrcntation and independently

from the requirerrents of an individual scientific disciplfuF. Thus, the general theory is

distinguished from the nunrerous special system theories, which apply the rnethods and

instruments in one or another individual field of application (from biology and

psychology to electrical engineering), and therefore belong to the'teal-world scierres"

(Realwissenschaften).
Quantum theory can be defined æ<iornatically. The a:<ioms "seem to be of a very

general nature since they do not contain information about physics itself' (Iil. v.

Lucadou 1991). The properties of physical observables are not specified in the axioms,

but in the rnathematical forrrulation of tbe corresponding operators. Hence, in the omet

quantum tlreory can be regarded as an instance ofgeneral system tbeory which by a

consecutive act of interpretatiorU will be converted into a physical theory. To sum up,

quantum theory can be understood as a specific interpretation ofgeneral syston theory'

4.2 Reasons for the Use of Complex Numbers

Why do we need complex numbers to describe real things? Since essential use of C

is rnade here (eq. I and its interpretation) this question seems to be worthwhile. Complex

numbers are well established in down-to-earth disciplines like electrical engineering

(analysis of ac. circuits). In quantum theory there is no clnnce to circumvent them; a

short argument for this is given by Mohrhoff (2002). Even in.textbooks with a htgh

priority io easiness of learning no author thought it advisable to start with a sinplified

version based on real numbers. An attenrpt was made by Stueckelberg ard coworkers" to

formulate a quantum theory over R (the field of real numbers). To this purpose, the

authors had to introduce a special operator J with the strange property J2 = -1; so the

use of G is only camouflaged.

7 For daails and reÈrences see W. v. Lucadou (1991).
E Stueckelberg (1960); fm firttrer remarks, and references to three other papers of the series see himas

( 1983, p. 2l l -213, 431).
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In additiorl there is even an abundant literature demonstrating that not only G, but
also two other algebraic fields, quaternions and octonionso are, in a similar rntuurcr as
before, inevitable or at least usefirl in special b,ranches of physics - in quantum theory or
elsewhere (see e.g. Dixon 1994, Okubo 1995). Complications can occur due to the
noncommutativity of the product of two quaternions, but exactly this property may
become advantageous in dealing with systems in which noncommutativity plays a central
role (see Section 4.4). After a[ it would be quite disturbing rf a forrnalization of the
concept of organizing structures were possible without complex numbers.

4.3 Hidden Organizing Stmctures and the Present State of Quantum TheoIy

The search of hidden parameters can be traced back to a long history. It belongs to
the indispensable core of theoretical physics that the realm of visible phenomena is
founded upon and explained by invisible structures (Kanitscheider 1979, p. 288). Of
course, any formulation of a hidden structure requires an interpretatioru that is "a set of
normative regulative principles which can neither be deduced nor be refuted on the basis
of the mathernatical codification" (Primas 1994, p. l72f); rt must be stated how the
physical efficacy or inefficacy (and hence the existence or non-existence) of the alleged
structure can be empirically tested.

In giving such an interpretation, it is not necessary, however, to assign a meaning to
each isolated term of the forrnalism - rather, the alleged structure as a whole must be
accessible to proof or refutation. In arguing against an undue use of the word
'lrnobservable" Hiley (2002, p. la3) remarks:'0... the wave fi.rnction is'unobservable',
but I never hear anybody calling it meaningless. The wave function, according to Bohr,'
is simply a term in an algorithm from which the probable outcome of any given
experiment can be calculated."

Under these aspects it is proposed to check whether the concept of hidden
organizing structures rnay be applicable, at least within special contexts, also in quantum
theory (rnaybe only as a descriptive tool). This would not mean a significant change since
all the fundarnental principles, like discreteness, indeterminisnr" noncommutativity, and
nonlocality, are retained.

In designing a type of experiments it must be sure in before that a remarkable
outcome - if any - cannot be e4plained in a traditional way. It should be recalled that the
selector matrices and other special matrices (as introduced in Section 3.2) include the
possibility of multi-level hierarchically structured rnatrices. This suggests, €.9., to study
the dynamic properties of large molecules (rnacromolecules) with a multi-level
hierarchical structure. An example for a class of chemical compounds with a rather
simple hierarchical stnrcture is given by large benzenoid hydrocarbons, which consist of
rnany benzene rings in a specific arrangement.

e Original source: Botr (1948, p. 314); re,printed in: Collected Works, vol. 7,p.332.
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Now consider either one such large rnolecule, or two of thern, Mr and M2
(preferab$ in two separate test tubes). It is conjectured that under special conditions an

EPR-tite coupling may occur, either within zuitable substructures of one molecule, or

between one suhructure of Mr and another one of Mz. Conditions for such a coupling
rnay be seen in analory to the keyJock principle (Section 3.2). For the sake of comfort
we may use the term "afEnity'': a high atrnity will corrgspond to a low dissimilarity, and
vice versa (the rnathematical transformation is trivial).to Under these aszumptions a high

aftrity will lead to an increased probability for coupling. From the viewpoint of empirical
testing, coupling manifests itself in a structural nrodification of the second partner in

accordance withthe modification occurring inthe first one.
Furthermore it is assumed that a dynamic , stepwise generation of ffinity is possible:

an existing correspondence between several subunits on a lower lever may trigger an
improved atrnity between subsystems on the next higher level" and this may be continued
recursively. A formal analysis of hierarchically structured quantum systerns and their
dynamics is presented by Healey (1989, p. 63-33); technical details, like formulas
describing the influence from level É to level ne, would be beyond the scope of this paper.

In parallel with the dynamic generation of affinity, the hypothesis presented here
implies the formation (or modification) of a hidden organizing structure, such that this
new stnrcture will persist for some time and another empirical test - search of alterations
of chemical structure (unexpected compounds) without evident cause - becomes
possible. Such an "EPR-chemistry" will have the nice advantage that a low probability
for the effect will suffice, because specific compounds, even if produced in a low
concentratioru can be identified by filtering and other methods.

When the present proposal is related to the state of the art of quantum theory,
another point must be briefly addressed. TÎre term "hidden organizing structure" may
remind of "hidden variables". The latter concept can look back on a strange and
changeful history of recçtion. For sorne decades there was a peculiar and fierce debate,
with *arguments- and practices outside the usual style of scientific discussion (to say it
politely).tt In the present context the following selection of keywords must suffice:

l. A careful analysis discloses that John von Neumann never supplied a definitive proof
for the impossibility of hidden variables, nor claimed to have such a proof (Clauser
2002, p.66f).

2. The strongest argument against such a statement of impossibility is due to Primas
(1990), who reduces that statement to a fundarnental misunderstanding of the
rneasurenrent process.

3. Much of the criticism against the concept of hidden variables really concerns sonre
specific clainrs in its surroundings which have nothing to do with the present
proposal.

'o Reasors for avoiding the ambiguous term ,,similaritf rvere givor in Section 3.2.
tt For a more rec€nt pres€ntatidr of the theory soe Bdrm and Hiley (1993), f6 the histtry of reception
see Clauser (2002).
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'With 
some reservations the transition from a hidden structure to hidden variables

can be regarded as a transition from a finer model to a coarser model: the coarser model
is generated from the finer one by neglecting and simplification. When all structure-
fonning relations are discmded" then a set of umelated variables will remain. Any
criticism against the coarser model need not necessarily ap'ply to the finer one.

4.4 Quantum Theory and Beyond

Quantum effects occur outside the traditional scope of quantum theory, too. To start
with a hamrless example, Miranker (1997) considers the inevitable rounding errors in
nunrerical calculations (computation with a finite number of digits), and observes that
thCIe is a striking correspondence with characteristic features of quantum processes, e.g.
a "law of addition of probabilities via the complex valued probbility amplitudes", and
notions like "state, wave flrnctiorl dynamics, observatiorl and nonlocality" have their
counterparts.

In search of a unifed description of observation processes - comprehending both the
physical aspects and ttre observer - an operator algebna was developed which enables a
fornal description of at leas a significant majority of the cognitive processes. It is found
that this op€rator algebr4 which is a noncornnrutative semiring with some additional
features, belongs to a type already known in literature and has an astonishing
corespondence with the usual operator algebras in quantum theory (Gernert 2000a).

The relationship between quantum theory and biology is closer than expected.
Several authors outline a unified view of both fields ard study the utilization of quantum
phenomena by living organisms (Conrad et aL 1988, Josephson et al. 1991). A detailed
analysis of quantum effects and their role within firdarnental physiological processes is
given by Matsuno (2001).

There are still more striking examples demonstrating that phenomena in rather
distant fields can be exphined only on the basis of quantum ttrcory. Atmanspacher et al.
QNz) exerrylify this by findings both from inforrnation dynamics and from
psychotherapy (individual therapy and systenrtherapeutic settings). Their proposal
termed '\À'eak quantum theo4y''is based upon a slight weakening of an axiom system and

the role of noncommutativity and entanglernent.
Most of these examples can be seen in a direct connection with the presupposed

hidden structures. As already pointed out earlier (Josephson et al. l99l), the notion of
meaning will become indispensable. Meaning is the regulatory principle that determines
whether or not entanglerrcrt will occur between two entities. Key and lock, taken
lirlerally, are the sinplest nrechanical arrangement in which two parts have a 'lneaning"

for each other. The key-lock prirrciple (Section 32) minors the property tbat one part of
a structure is meaningful for another, and so the nethods outlined above ofler a chance
for a fonml description, ard with some plausibility the assignment of meaning can be
inûuenced by hidden structures.
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5 Connections with Anticipatory Systems

The concept of an anticipotory system was introduced by Robert Rosen In his
definition this term denotes'b system containing a predictive model of itself and/or of its
environment, which allows it to change state at an instant in accord with the mdel's
predictions pertaining to a later instant''. (Rosen 1985, p. 339) In order to point out the
characteristic features of such systems, the two older techniques of rational predictbn
shall be contrasted. There are
- a primitive ong time-series e><hapolatioq and
- an advanced one, model-based prediction, in vùich conclusions are derived from a

model of the sysem under consideratioq wbere the model is forrrulated by a nndel-
author outside the system-

In a rpdern view, tlese two styles arc termed '\^reak anticipation3'. By way of conEast,
in an anticipatory system prediction is perforrned by the system itself (sfionganticipation,
system-based prediction). Examples are giveir by an anticipatory effect in an electric field
produced by a moving charged perlricle, and by a corroct quantitative resuft for tb
perihelion anomaly of the planet Mercury @ubois 2000,2003).

The concept of hidden organizing stnrctur€s is perfectly corryatibk with the theory of
anticipatory systerns. Both concepts have in common that the system behavbu is
understood and explained on tlæ basis of internal features (together with the interactbn
between the systerr and its envhonment). A hidden organizing structure may be regarded
as a special component of a system in which *the anticipation is generated by the systern
itself'. (Dubois 2000, p. 3) In this moment, the theory of anticipatory systems can work
without tlre concept of hidden organizing structures. But it seenrs quite likely that in
some future, more sophisticated situations that concept rnay turn out to be a useful tool
for description and analysis (the question of what is done by the system may naturally
lead to inquiring how rt is perfonned).

6 Concluding Remarks and Outlook

"There exist arguments that conplermtary descriptions to those of quantum
rne.chanics can and in all probability do oeÆur." (Josephson et a[ 1991, p. 200) The
present paper does not go so frr; the proposal made here is not corrylementary, but
supplementary (and compatible with the state of knowledge). Suggestions for enrpirical
tests have been given (Section 4.3).

The proposal outlined here is conpatible with the state of the art in anticipatory
systems. In future specific qases a resort to a hidden O may be advantageous (Section 5).
The same holds in the sinpler case of model-based prediction In a hter step, a possible
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'Teedback", an influence of the ongoing system dynamics upon O, and hence a long-term
variability of O, can be considered. (As a matter of research strategy, this point should be
reserved to a second phase, since in the beginning a constancy of O at least over a
certain time interval is required.)

Also in the present context the central role of noncommutativity and entanglement
becomes evident. Operations underlying here are noncornrnutative, and this is reflected
by the well-known property of matrix multiplication (or of products of other operators
which nray replace matrices in special contexts). The connection of entanglement,
dissimilarity, and the key-lock principle was addressed in some detail. One of the next
essential steps in research will be an integrated treatment of physical and cognitive
processes. According to Stapp (1995, p.822) the basic problem ofquantum theory is'to
reconcile the nonclassical character of the quantum world with the classical character of
our perceptions of it".
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