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Abstract
After a brief criticism of the paper of A. EINSTEIN on the special theory of Relativity
of 1905, we try to found this Theory on the smallest scale that can be studied through
the use of the Equation of Continuity of Time. We set down the idea of continuity of
time at the level of an elementary particle of matter related to an equation that is the
basis of our work. We propose a new way to describe interactions between particles of
matter and bosons of interaction, and we represent the four dimensional space-time of
the particle in a simple way which logic is open to criticism, as all theory is restrained.
We elaborate a two orders perturbation theory from which we deduce the mechanisms
of the law of Lenz at the smallest scale. This deduction enables us to confirm the
existence of the graviton as a boson of spin 2 responsible for the stability of charge of
an elementary particle.
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I Introduction
ln his first paper on the Special Theory of Relativity [l], Albert EINSTEIN gives

definitions of the notions of simultaneity, synchronization of events and synchronous
clocks (in the first two paragraphs of the kinematics part before tackling the Lorentz
Transformation). As it has been built, the Special Theory of Relativity is exact, not omly
physically but also mathematically and what has been done based on and since this early
paper proves it.

Nevertheless the gap that still exists between the works of A. EINSTEIN and
quantum physics commits critical research to be done to give new sights on Einstein's
approach to the Theories of Relativity.

In the third paragraph of his paper [1], A. EINSTEIN introduces two inertial
systems: K (x, y, z, t) and k (6, q, (, t), the last system moving at the velocity v in
comparison with K (with strict and usual conditions of movement of the axis of k in
relation to the axis of K...). A. EINSTEIN clarifies the way he measures space and
reminds us of how time is specified in each system. He then sets down x' : x - vt, what
enables him to say that it is obvious that determined values x', Y, z, which do not
depend on time (that might be a first source of criticisms considering his change of
variable), correspond to a point at rest in the system k. At that point of his reasoning, his
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aim is to express t as the whole indications given by the clocks at rest in the system k,
synchronized as specified previously.

A. EINSTEIN, to establish the equations of the LorenE Transforrration, considers
a light ray which is emitted from the origin point of k along the X axis towards x' where
it is reflected towards the origin of the coordinates of k.

In the framework of today's physics, this reasoning is valid in accordance with a
very low probability: the light ray is composed of vast amounts of photons and
statistically we are supposed to find a sufficiently great number of those photons for
A. EINSTEIN's reasoning to be right. But within the frame of a modern theory of
elementary particles, in which the Special Theory of Relativity is abundantly used,
especially for high energies, it seems that the reasoning of A.EINSTEIN is not valid: the
photons may be absorbed instead of being reflected, the ray may not be coherent... So a
very weak probability for a single photon to do what expected A. EINSTEIN. At the
smallest scale, physicists do not consider actually classical rays (as known before A.
EINSTEIN demonstrated the existence of the photon) an)nnore, but they would deal
with photons (bosons) beams with probabilities of interaction characterized by cross
sections, and probabilities of perfect reflection of a photon by a particle of matter to the
point from where the photon has been emitted... Close to zero.

A perfect reflection would be a reflection that allows the preserving of a temporal
coherence from the emission to the reception (after reflection) of the photon by the
point, which emitted it. In this hypothesis, the photon carries tanporal information
without any discontinuity (this justifies the name of the main equation of the theory
presented here) in order to work on a same "clock" - this idea is suggested by the work
of A. EINSTEIN who used light to explain what synchronization is - to reproduce at
another level the reasoning of A. EINSTEIN to set up the Special Theory of Relativity.

In accordance with his famous reasoning, A. EINSTEIN sets down (for x'
infinitely small, by what he passes from a macroscopic scale to the quantum scale):

à rvà r-+ - -  =  u
àx'  c '  -v '  à t

9!*aid rle)=o
à t  \ z  )

( l )

Where c is the velocity of light in the vacuum. This first equation enables A. EINSTEIN
to calculate r, which is linear because of the properties of homogeneity of space and of
time and which does not depend either on y or on z. (according to the special geometric
relations between K and k). Other arguments lead to the complete Lorentz
Transformation.

2 The equation of continuity of time
In order to avoid the supposed "old-fashioned" reasoning and to characùerize the

continuity of temporal information caried by photons and finally to obtain another
approach to the Lorentz Transformation, we set down the equation of continuity of time
(ECr):
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Where n: v/c is the special refractive index of the (particle of) matter which velocity is
v (supposed to be different from zero), where v is the apparent velocity of emission of
the photon by the matter in the vacuum and c is the (phase) velocity of the photon in the

vacunm. e is then considered as a density of time uod r!ê as a vector density of time
n

*h"r" le is the velocity of the time density carrier (lal: .1. When the apparent
n

velocity of emission of the photon is c, the velocity of the carrier is lel as well which is

compatible with the idea of our introduction that the photon could be the carrier of
temporal information. For an apparent velocity of emission (from a particle of matter)
lower than c, the density of time would be carried faster than c. So it could mean that
global time coherence of a piece of matter or of a star seems higher than the one of the
vacuum: particles of matter exchange photons which apparent speed v of emission is
lower than c so the time density is exchanged at a speed much higher than c which
ensures that the temporal information is exchanged faster than light signals between
particles: time coherence is so established globally in matter and perception by light,
which is not as fast, gives a sight of a global time coherence. This conjecture formalizes
the anticipatory nature of the ECT and of the all perceived matter. Its application to the
Lorentz Transformation already exists: Daniel Dubois' work on the foundation of
anticipation in Electromagnetism [2] showed the anticipatory effect in an electrical field
produced by a moving charged particle.

2,1 The path towards the Lorentz transformation

Considering our single photon moving along the X-axis at the velocity c and so
that:

*=0,9=0,
dz dx

(3), (4), (5)

eq. 2 becomes:
#--,

àc  c '  à t-+ - -  =  u
à t  v â x

Which is equivalent to:

3*4*=o (7)
dx c" dt

As t is linear (for the same re:$on as quoted in our introduction), it comes from eqs. 3,
4,5 anid?;

- , - ( .  v . . )r=alt -; xJ G)
Where o is a function of v and we choose that at the origin of k t: 0 if t: 0.
As we set down the equation of continuity of time, we do it for the continuity of space
coordinates and we get:

(6)
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Where v is the velocity of the carrier of 't densify". AftEt integration ft is linear), we
get:

É =b(x-nt) (10)
Where b is a frmction of v and we choose t:0 if x = 0.

A further argument would lead to a first kind of homogeneous transformations of
K into k with conditions like a = b.

At this stage we do not have any inforrration on y,1q, Ç because we considered
a single photon with no other rays of liglrt in K or k than a "spark" along the X-axis. We
are on the smallest physics scale.

What we have to consider now is the space-time distortion due to the emission of
the photon. As a matter of fact this distortion necessitates the applicaton of a
conection, which is:

F;, - =
I P,u^

-  |  - B

r-7 
r

1',-7

( l  1)

Where P is the differential radiation pressure of the photon.
Then we can write the law of transformation of time and of one space dimension

from K to k:

'='4'-i')
€ =oF6-ut)

(12)

(13)
So, while studying the Special Theory of Relativity through a single photon" it

appærs that at the smallest scale we lack information to light up the whole set of
relations which A. EINSTEIN established as the Iorentz transformation, using
abundantly continuity (of light, time, inertial systems, etc), isotropy, sometimes a kind
of additive law of velocities mixing up the velocity of a material systan and the velocity
of light ('forgetting" that the velocity of light is the same in all inertial systems). . .

In fact each of us plays the role of a coherence operator, giving mind to signals
and linls between events, which are mostly discontinuous at a scale we are not
supposed to be aware of without specialized pieces of apparatus. And in spite of our
criticisms, A. EINSTEIN was a great operator.

As it appears clearly in this paragraph, we are not able to found the special theory
of Relativity but we would do so if we considered the systems K and k at the scales of
the classical mechanics or of A. EINSTEIN's physics reached through principles of
"decoherence". Our aim is then to exploit the equation ofcontinuity of time locally and
at a very small scale (within distances of the order of l0-" m and times of the order of
1043 s).
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3 The reciprocity principle of interactions
For the reception of the photon by the particle of matter, we can write the space-

time distortion in reception:

R_u' 
- . " '  

=(+i) ,  " '  
- , r '  _ ( t r ) l

-  
C 2  

\ - - l  
C ,  p ,

Where (t;)' = -l ; and the space-time distortion in emission:

E= ; "  ;= f ,
c -  - v -

The reciprocity principle, which maintains the matter stâbility, then involves:
E = R

And so from eqs. 14, 15 and 16 we get:

f '  =+ i

4 Calculation of the ECT in spherical coordinates
We choose to write the ECT in spherical coordinates.

(r4)

( ls)

(16)

(17)

Figure 1: M (O, x,y,z') à M (O, r,0o g)

Weconsiderthat r=ro with 
f 

=O O.t 
$ 

+O ;0=I tr isisotropic; andweuse

therormulas g=gg *d 3=gg
àe à0 àt àtp àç ôt

We then obtain:
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Where A cltaractet'rzes the spin asymmetry of the particle of matter. A canbe considered
as a generalization of what is called the anomalous momentum of the electron.

5 The state equation of an interacting pafticle
Using thermodynamic relations (tricks), we get from eq. 19:

(2t)

(22)

(23)

interacting particle

gt(r*!-*-ell*44 =o
af [- vrr? vro| ) v âr

àr  è r  c '  c '  c '
= - -  .  a = t t - T -

àt àt v vro0 vroti,

(21) =;(#), =\ - i ='-5=' -;(#),
From eqs. 17 and 23, we then get the state equation of an

(SErP):

Ê2 =+i = --r-r 
, ;[#),

5.1 Imaginary use of the state equation

(18)

(19), (20)

(9:) n=t
l â tJ ,  v

(;) e=gr I

(24)

We can notice that the interaction imposes stresses on v. So eqs. 15 and I 7 give:

(25\
The same v/ay, eq. 24 gives:

u =J-zn(!) "''i (26)
\ d t l '

Eqs. 25 and 26 then lead to:

far )  |  i \zptg
l---  |  = -)-e ' '  ' t  

c,  p=0,1,2,3,4,5,6,7 (27)
\af ./, JJl ,q

According to our approach, the interaction is a kind of pernrbation, so we must
present our results in accordance with this fact.

5.2 The perturbation theory

A piece of algebra from the $ 5.1 and a physical reasoning allow us to set v as
composed of a main solution:
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Perturbed by:

- ti!
v = + 4 2 e  4  c

1 +;!

f l=-Le- '8
,rlJ,

(28)

Qe\

Where the pertwbation II is applied to the main solution that is represented by two
"axis" in the next paragraph. So II appears as fluctuations from these axis. In this way,
we find all the representations of the eight states found in the equation eq.27.

6 Graphic representation
The four main solutions given by eq. 28 give a clear description of the light cone

according to our approach which take into consideration the whole set of variables
(through the radius r and the time t) of the four dimensional space-time (other
representations grve an erroneous sight of this cone with only two space variables and
sometimes with only one space axis which emphasizes the too important role played by
the common axis of the rwo inertial systems studied through the Special Theory of
Relativity...).

Half of the states of the particle of interacting matter are in space-like regions
(dotted lines in hachured regron) and the other half are in time-like regions.

.:,.\

+ 112

Figure 2: The eight states of the matter interacting with a photon

:

. . \

/ i -

- 1
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It appears on this drawing that the spin number, at least in timeJike regions, can
be explained in our theory. As we began on old electrodynamics, we resfrain our
reasoning to electrons and photons.

At first, we can define h (the Planck constant) in a heuristic way as the circulation
of a photon on the "circle" of unit radius on the light cone around the time axis. In a
system of units such as c = 1 (according to the drawing the circulation happens for the
time unit) calculations should give h = 2æ (so h =l), both conditions specified to get the
Klein-Gordon equation which solution is the wave frrnction of de Broglie. This
circulation for the unit positive radius corresponds to a spin I (the spin of a photon,
specified on the drawing). The helicity -1 of the photon corresponds to a negative radius
(the sip depends on the system ofreference).

For the fluctuation that gives a state at "half' a causality field (we call "causality
field" the "half'of a timelike region) for a positive r, the spin is %. The state at'half'a
causality field for negative r corresponds to a spin -% (specified on Fig.2).

Our main hlpothesis is then that to cross a spaceJike region (from one ligbt
banier to the other), the particle has to interact with a boson of spin 2, a graviton.

If we consider K as the "eigen" inertial system of the particle of matter, we can
suppose that k is also an "eigen" inertial system but of the interacting particle (we then
"see" the spin of the particle of matter in K from k).

As we can check it (see $ 2), the time density can be carried by a carrier which
velocity may exceed the velocity of light: this is the case if we consider that v is the
consequence, at the particle level, of its interaction (emission and reception of a

photon). v may be very small so "- ^^ybe much higher than c, what suggests that we

could receive information (at leastlernporal one) from particles which are out of regions
of"classic" causality, through links ofnew causalities.

In this paper, we consider that the symmetry of time corresponds also to the
symmeûry of charge (Feynman's interpretation). So the states that appear for negative t
are supposed to fit to negative particles.

We would add to the CPT symmetry the symmetry of spin (at least for the
electon'positron) that would imply a weak spin-charge coupling. According to what we
study in our paper, this coupling does not resist to paxity: the space symmetry implies a
shift of spin.

? The second order ofthe theory

7.1 The limitations of the second order

For the first order, we skipped over possible indeterminate values of A or

I i | *O the perturbation theory of the $ 5.2 does not depend on those functions. But
\ d t  ) ,

now that we want to calculate a second order perturbation, we have to set down the
following hypothesis:
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According to A. EINSTEIN, the velocity of light in k measured in K appears to be:
c x  = c - v

a ^  \

[94]  =o
(âr l ,

What could be interpreted as connected to magnetic properties
gauge condition). Then we derive eq. 21:

-4f*l =4,o=fPl
a\à t '  ) ,  v '  [  ô l  / .

And we get a second order state equationthat gives:

o = -J|,q(!:) 
"''i\ d | "  )

\  / t

l,&) 'o
[ àr ./,

We then derive eq. 25 and get: 
a / r \

a = IJJT , ' '1,{ l
\ d t  ) ,

From eq. 32 and 35 we get:

a=1J1",,t 
[#),

(30)

of the particle (or a

(3 1)

While in k co would be the well-known constant. Even if this reasoning is not really

valid, it points out that the velocity of light may increase (here from c" to c* ),
especially in our theory:

(32)

(33)

(35)

(34)

r*l  =-+- 
" i(2p*rË rÈ) , p=0,t,2,3,4,s,6,7 (36)

[a" J, JE n" ta'J,
Where we keç track of the minus sign in eq. 32 that implies a shift of phase (of r)
between v in eq. 28 and a in eq. 37.

72 The second order perturbation equations
From eqs. 32 and 35, the main solution for a appears to be:

(37)

And the perturbation due to the interaction is still fI.

s The coherence between the first and the second orders
The rules of coherence of our theory are the following:

l. The interaction is characteized "mechanically''(as a fluctuation of the
light cone) and is independent of the kind of bosons which interact,

2. The inæraction (electromagretic, weak, strong, gravitation) the boson is
for, is characteized by the number of spin of the boson (l for the photon,
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2 for the graviton) and the matter interacting is characterized by its state
(which the spin number is a Part of),

3. The representation of the state of spin appears in Fig.2 on which one unit
ofspin corresponds to a rotation ofnl4,

4. In Fig.2, it is possible to turn around O to count the numbers of spin
between the different states,

5. We consider that when the second order state coincides with the fnst order
state, a particle characterized by those states exists and is stable.

9 The equivalence between gravitation and acceleration
The difference of phase (of r) between v and cr implies the same difference of

phase between states of first and second order. This shift of r tums a negative particle of

spin % into a positive particle of spin -Yz and to reach the state of the negative particle of
spin Yz back, it has to interact with bosons which sum of spins is four (4 x n/4 = r). All
combinations of bosons totalizing a sum of spins of four and respecting the rules 3 and
4 would suit (according to our tricky theory).

We choose the two following exarnples:
A. The two orders states coincide after two interactions with two photons

and one interaction with a graviton,
B. The two orders states coincide after two interactions with two gravitons.

This last example particularly meuus that at the smallest scale, the acceleration of
a particle changes its charge sign so the particle becomes its anti-particle and needs two
gravitons to get back its initial charge. In other terms, the gravitation is responsible for
the stability of the negative charge of the electron.

10 An explanation of the law of Lenz

The main result of the previous paragfaphs is well known as the "law of Lenz"
which can be expressed as follows: the effects induced by a variation in magnetic field
(and so the currents which create it) go against the causes which give birth to them (the

decreasing or the increase in the magnetic field or in the electrical current which creates
it). This law is essentially valid in electric circuits composed of a certain amount of
turns.

So for a turn where goes a current I, the increase in I creates effects which go
against itself (and against the current represented by I). At the level of the charges
carriers, the electrons, our theory brings a description: the charge switch ofthe carriers
creates a current which go against their initial current and its increase, and this would
give an explanation ofthe appearance ofan induced ("counter") electromotive force.

As this electromotive force is not created by a generator and as it comes from
charge carriers currents, the law of Innz is simply the switch of charge of the carriers
when they are accelerated or slowed down in their own inertial system which can be
detected macroscopically within a very short time.

ln the case of a decreasing I, the charge carrier seems slowed down, so accelerated
in the opposite direction of its initial movement, this acceleration creates the charge
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switch and then its participation to a positive flux going in the direction of I, tending to
stop I from decrease.

Other phenomena are screening by surrounding atoms (which allows the switch of
charge to be sufficiently persistent to create the macroscopic effect of the law of Lenz),
collisions of electrons and positrons which would create the energy dissipated by the
Joules effect (as "friction" is not the appropriate term for the collisions of electrons with
other particles or "impurities" supposed to be found in a conducting material)...

11 Conclusion
It is important to specifu that to be detected as an element of the electrical current

the particle must exchange a boson of electromagnetic interaction with the current
detector. The same requirement must be fulfilled to detect the switch of charge of the
particle. This is the case for the example A of the $ 9'

This requirement is not fulfilled in the case of the example B of the $ 9: without
the screening by surrounding atoms, the particle exchanges two gfavitons in the
"continuity" with its acceleration and keeps its charge. It is the reason why beams of
accelerated electrOns seem stable in charge from a "macroscopic" point of view.
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