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Abstract

Presented is an abstract model of controllable processes on partial ordered times.
Emphasized is the definition of structures, of variables and their control, of uncertainty,
and the study of partial ordered times and their mutual relationships. This is applied to
describe evolutionary processes in general spaces, modeling physical processes by
taking causality and operational time lag into account.
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l. Introduction

To show the occurrence of processes on partial ordered times and to clarifu the
problem classes and concepts we are dealing with, we consider the following examples:

Example l: Let (A, <n) : la<b<c<d) and (8, <e) : {I<2<3<4<51 be two strictly
ordered independentprocesses, forexample operation sequences on a computer, drivgn
by indepandent clocks 1a" md "b", respectively. For process intercommunication, at
2 a message is to send to a, which a is waiting for. This establishes an order relation
2 < a. By another intercommunication may be defined c < 5. Then on AUB a partial

ordering <au<s\-< is defmed as "global" time. A planned intercommunication 4 < a,
c < 2 causes a circle and does not create a global time. Process A waits for process B
and B waits for A (a "dead lock"). This is all well investigated in the theory of multi-
tasking and parallel processing computers.

Example 2:We considertheclass I of functions I [0,5] -+ R, R therealnumbers,

[0, 5] c R a closed interral, in particular the subclass of polynomials flol{n) of degree
n. 9ot(2, [0, 5]) is described by y : ax2+ bx+ c, x is a variable on [0, 5f, a e R\{0}, â
e R, c e R are variables, y is a variable on R, depending on "object" variable .r and
on "control" variable (a,b,c), both are independent. ([0, 5], <) represents a "time".
l. Initial value problem: Present time instant is / : 0, posed is y(0) : 0, y(0) : l. There
are infinite many solutions c : 0, b: l, variable a is uncertain, i.e. domain R\{0} is
known, but no value is determined. Posing /(0):0,y(0) : l,y"(0):2, this determines
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one solution y : i+x. The derivatives imply information about objects in the "nearest"
future / > 0; however, this problem representation is not understood to be anticipatory.
2. Anticipatory representations contain information (function- and derivative values or
functions of these, or domain restrictions) about objects in a "farer" future 0</<5.
Posing -y(0) : 0, y(4): 0, yields c : 0 and infinite many solutions. Adding a third
condition, (max y(x)) : 4 solutions are y : ax(x-4) for a : -l and a > 4/5, i.e.
infinite many. Adding a fourth condition .y(5) < 0, we find y : x(4-x)- For this
example, the anticipatory representation can be replaced by the initial value problem

-v(0) : 0, y(0) : 4, y"(0): -2. Mixed initial- and boundary value problems for linear
differential equations are extensively treated in text books.
3. For discrete time ... tn4, tn, 1n+1.... a representation xn+t: F(...xn, xr+y), ... xn
known, xn+r the successor of xr, is not anticipatory but a fix point equation f-or.rr*1,
which may have no, one, or many solutions. For example: For real numbers, the
equation xn-t : S]:xn*x,tr has no solution if 5+xn + 0, and infrnite many solutions for
s+xn:0. If it is sure that a fix point exists, one can try to solve the fix point equation x
: F(...x,, x) approximately by iterations (v('+t) - F(..."('))).o,t,2J,....This sequence
need not converge, or may converge but not to the fix point x wanted Examples for
real functions: For equation .r : -x, the fix point is 0, it cumnot be reached by iterations
starting with x(0) * 0. For equation x: x2, fix points are 0 and l, startingwith x(0) * I,
iterations either diverge or converge to 0, but not to l.

2. Structures

For any fwo sets 1, S and any function l: .[ -+ S we use the following notations: r is
an indexing. 1 is a set of indices (e.g. names, addresses, co-ordinates), S is a set of

objects, .çril :der (i) : s(i), .ti :,rer Q, srit), (sr)iur:o"r {(r, sr,t) | ie.I} c 1xS denotes a

"family" (or parameterized set). (s,)i€/ represents the function l and is also denoted by
s/  wi th sn= t ( I )  i f  r  isunmistakablyspeci f ied.  so:A. Incase 1:  { i }  wewr i tealso
s; for s1i;. If the set S is itself indexed by fr, we write s6 fbr an element of Sr. Notice,

without reference to an indexing lunction l, notations like s;, sl, ls, etc. can denote
elements of a set. Then distinct elements need distinct names. However, in a family for

.ri # s7, stit: stil is possible. The reciprocal i'(tr,i) of sg is a subset of ,f and in
general not a singleton.

Let there be given a family (S,)r.r of sets S14 with I + A, Sg + O.We define:

S :o"t U S, . for any J c I the (in general unordered) set product fl S, :a"r {(sr)r.y I

s;e$, ieJ),,S* :o"r 
,!, ,[Jt,. 

f] differs from the Cartesian product X, which is

ordered and finite. If all S4 equal the set S we write ^S / for ll ^S, . Any R c ^S*
t e I

defines a "structure" (or "general relation") on S. Classically, a relation is defined as a
subset of one Cartesian product.
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The basic selection- and composition operations on sets, like subset selection c,

intersection f), union (J, difference \, symmetric difference Â, apply to structures R

of S* as sets of families, and to families as sets of pairs (i, sn). For illustration' we

consider singleton relations R: \r, lc S*, ru : (ri) i.u, p': lr 'v\c S*, t"v: (r ').v.

Denotation A means "and". denotation v means "or".
( l )  F o r  Â + R ' h o l d s :  r R " : a " r R u R ' :  l r ç r , r ' v l  ,  R c R " ,  R n R ' : 4 .

Considering the families ru, t" t , examples for operations are:

(2.1)Select ionbysubsetsof indices:  Forany Kçl  the"pro ject ionof  ru onto À' '  is

pr(K', rs):a"r(ri)iuu.,r (compare with "call by name").

(2.2) Selection by subsets of objects: For t" c [J S 1i1 the "selection by Z out of r1i " is

sel(T; rù :a.t (ri)i.w :a"r {fil 11 e rLt A r[j] e ?"] (compare with "call by value").

(3.I ) Intersection of families: ry ît r 'y : (r")1.w :d"t {r"i l  r"i: t ' i :  r ' j t j  eUnV} .

(3.2) The union of families: ru w r'y yields a family if ru and r'r. coincide on UaV.

Then  ( r ' i ) i . L i  u r '  =de r  t r " t l r " i : r ,  f o r  j eUV, r " i : r ' i  f o r  i eAU, r " t : 7 t :
r '1 for jeUnYl .If functions (o,: (ri, r 'ù -+ (r",)),uun, are given, a family on
(JwV canbe obtained. We assume or: identity for r,:7''-

These operations can be extended to families (Rr).", of general structures .R; ç S* bY

application to all component families of the R. For any (Rfu..t with cardinality >l

we name frmctions K (R)i.L -+ R, R c S*, "concatenations" (infix notation r). In

particular, if for any J-tupel ((ri)i.tri)i.1,(ri)i.rrjt e R., a commutative group operation

.81(rii)i.L: ri exists, K((rùi.trL)i* ) may be defined as (ri);./, ':v,'rtr ' K is then a

cornmutative group operation. Examples for J are for sets: union ur or intersection

n, for lattices: join v or meet n, for additive groups: * . Reverse to concaænation r

is a partition z of a family sn. into part families. The objects of the sets SJ1, iel, and

the indices can themselves be parameterized strucû.res of other objects and other

indices, which are then on lower stmctural hierarchical level than the previous ones. For

example, aset lM14liel) of sets M1q ora family ((m.i)i.Lriù,.r of families (miùj.Lrit

are of higher hierarchical level than their constituents. The tmion UM t,l and a

concatenation K(((mi)i.tiùiuù : (mjùji.u, U

level.

3. Variables and their Control

l e r

=a,r Ul(i)x 11, reduce the hierarchical
i e l

We consider a non-empty family (rp)p.r of non-empty structures (i.e. general

relations) ryrl.For all p let be ro: IÇ(c, vtr,ù, Kyrl being a concatenation, which can

depend on (c, vJol), and let c be a structure which is independent of all vp1. c can be

empty. To facilitate the representation of R: {r pl I pePl we define as new objects the

variable var v on variability domain V: lvU I pePl with respect to R, lwitten var v



: (V; R),variable var r : var rc (c,var v) on R, and var K : K : {rcpl I pePl, the
domain of admitted concatenations to yield elements of R. We make the variables

"controllable"byassociatingto varx,x e {r,r,v\, afunction val with val:Qt,varx)

è xJo1. Ttre val-functions are named "control-" or "assignment" functions. P or

indirectly any set Q with a given function a: Q -+ P = a(Q), is a set of control- /
assignment parameters. For assignment according parameter p we write also val(var

x): p r-> x{pl, or var x ::\p) xJp1. The variable domains R, K, V are sets of "states" or

"instances" of var r, var K) var v, respectively. p itself can be the result of an

assignment to a variable var p: P. If a "reset" function '. xpè var-r is known, i.e. if a
variable, its domain of definition and an assignment function val are known of which

xJol is an instance, application of val: (q,var x) + (xo) t'esults in a substitution (re-

assignrnent) xo for xr.

Ingeneral, letthere be givena set Îc X:,rcr lxbllpeP'i.Î cletermines amaximal

set Fç P such that Î: lxntl peF 1. w" write (F, var x): ual-t 1l ) with respect

to the function vql: Px{var x}-+ X. val I is a homomorphism of pow X onto pow

(Px{varx}). pow mea-îs powerset.
The variability domain of a variable can be structured by functions or general relations

and is also named "type" of the variable. Variables and control parameters can be

composite. We consider var v : (var v1)1.6 Yàr v1 1 h : lvrbt I peP(l)1, var v''. V =

l ( r t p o t ù r c L l p : ( p ( l ) ) r c r  e  P l w i t h  v  c l l v t ,  r = $ r 0 - L e t b e  L = L ' v L "  w i t h

L'+ A, L"+ A, L'n L": A. Let var v be partially assigned '*'ith control parameter p'
: (p(l))t.r'e P': a"rp4L'; P). Then var vx:6.'ç (rrh,ry)rct r (var vr)tut . The control
parameter set for (var vr)rct" is P":a"r pAL": ext(p': P). i.e. the projection onto L"
of the extension of the parameter family p' into P. Notice" in general P" c 

,nPil).

Visualization is shown in Figure l. L : 11,21 , p(l) given, var p(2) : P".

P t l )

P"
domain of
var p(2)

p(r)

Figure 1

P( l)
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The terminology is: var v* is a partial variable, (the assignment to, the knowledge
about) var v* is incomplete, val(var v*) is indeterminate, however its domain (range)
is determined, the assumption, va(var ,*) : 7 for expected i e V* is uncertain.

The domain of a variable can contain variables, which are then of lower variability
level with respect to this variable. In this way hierarchies of variables and their controls
can be defined.

For a function variable var y : var flvar x), or written var f : var x --> var y. we assume
var f :{fo '. Xo -+ Yp: fo(Xp) | peP}.We have var xp : Xr: {xot I qeQ(ù\, var y, : Yr.
The assignments are: var -f ::Qt) fr, which determines Xn and Yr, after that var x, ::(q)
xpo,then vîryp::.fo@pù with pq or xpq as control parameters. varl' depends on var
x, var y is of higher variability level than var x.

Example -3: Relational database, questionnaire. Let the scheme for var r be

Thef ixedstructure c isthe text andtheframe,vatr,atp:cr(varvt. , ,o,p)k1 l . : .3.4.si ,
concatenation r is insertion into the scheme. The domains of the variables (types) are
denoted in the frst line. For example, first name : set of all English prenames. A
variable of type dote is structured: (var day,var month, var vear)- A relation of var v5
with var v4 is: year of birth S present yeal < year of death 1 v-€er of birth + 150, if the
person is alive. A partial assignment is for example:
\în p = 5, var v5,1 = Williom, yît v52 :: J. , var v5.3 :: Miller, vàl v5,4, = 28.7.1968.
Control parameters are omitted. Entry into the scheme as line 5 is the concatenation K.

The hwledge about William J. Miller is incomplete, however the range of var vs is
partly known: Present ycar 2006 < year of death < 2118. lf Miller is now seriously sick,
adaptation to a more realistic bound is: year of death < 2048. Surviving 2010 is rather
certain, 2030 is not so certain, 2040 is rather uncertain, the uncertainty is graded. In
course of time, entries and the scheme can be changed, variables and their domains can
be deleted. and others can be added.

4. Time

We model "time" by a set (2, <) of time instances /-points / as elements and with a
partial, irreflexive, asymmetric, transitive order relation <. We also write < c. TxT.
Any subset U c. T is assumed to have the induced ordering. In particular, a subset C c

number first name middle
initial

family name date o1
birth

dare qf
death

var D Vâf v7 Yàf Vt Vâf Vt Vâf V.r Vâf Vs

number first name middle
initial

familv name date ofbirth date of
death

5 William J. Miller 28.7.1968. V&f Vs
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?" istotal lyordered, i f  forany t ' , t "€.  C ei ther t ' : t " ,or t '<t" ,  or t"1 t ' ,mutual ly
exclusive. Then C is a "chain" in ?" Any chain C is element of î-. For t e T, {(t))

is a chain. Z is the union of all chains in (2, <), thus lrc UT' , i.e. Z is a relation
C chain in Z

according our definition. Two chains C', C" are of the same "ordering type" if there

exists an isomorphism p: C' <+ C", this means p is a I to 1 mapping and from c k

c ' *  in  C ' fo l lows l6c)<Ac ' * ) , f rom c"1c"*  in  C"  fo l lows t f t k ' ) . l t t ( " " * ) "
For UcT and Vc.T, a chain tn UvY which is not a chain in U and not a chain in Z
is a "connector" of U and V.

Notations used in the following are: A ("for all"), V ("it exists"), - ("not"), n

("and"), v ("or"), -d"1 ("is defined by"), < in a formula stands for < or <, mutually
exclusive in this formula.

By < on ?" (partial) order relations on pow i" can be defined. For subsets U, I/, lry
of i" examples are:

(l) U<^g1V =a,ç Aue(J(YveV(u <v)),from U1n(u)V,Y<ne)W follows Ulne)W.

(2) U<1"1^V -6"p Av€V(YueU(u<v)), from U<1';^V,V<çuynVI/ follows U<ç's^l/.
(3) I-J<^t,tnV =aer({k^r,r/ and U<1,r^I\, also denotedby U<V.

Notice: From U3V and VSU need not follow U : V. Example: U = the interval

[0,1 ] of real numbers, V : the interval [0,1] of rational numbers.

A particular case is: UlnnV =6"ç A(u,v)eUxV (u < v).

(4) (U < n : a"; (-V(a,v)eUxV (v<u)). In general, < is not associative. However,

f rom U<W,Vc. I l r  and V< l /AVfo l lows UUZ<W\T/ . I î  U<nnV then U<V.

For t"l: {ui, V: lr\. Ll/: l*1, these orderings reduce to <. By order relations on
pow T orderrelationson pow(pow T) canbe defined, andso on.

lf ?" is finite then to each subset U of ?" exists a set U.i, of minimal elements,

i.e. [J,i, 4 (AIJ,nin. We consider a recursive procedure (A) which is basic in the theory
of algorithms and of evolutionary systems:

We use (N. <), the strictly ordered natural numbers, as "algorithmic" or "evolution"
time, a time (i", <) and as initial data n : l, 1' ) :a"r T, A t :d"r A,and do recursively
(Al): select a non empfy set A,l cT") c i' of minimal elements of /'t,
(A2): concatenate (An, L*4) to An'r :deî A, w L,/4 with the ordering induced by . ,
(A3): concatenate (1') , L,r4) to 1"") :drt 1"' \ L,l with the ordering induced by < ,
(A4): if 'lln+t) + A then replace n by n * l, go to (Al), else denote n by n* and

terminate (A).

The selection of L,'4 may be controlled and may be subject to conditions. The

procedure always terminates by exhausting the finite set 1". We have !a,l < llf 
t.

i 3n  i<n+ l

[ J l , e  n  f i f ' : A . f i  c : ( l ) - r . 2 . . . u  i S a m a x i m a l c h a i n i n I ' t h e n  m 1  n * < c a r d T
i<x  i<n+ l

(cardinality of O. The set Ngrobut : fi.2,...n*\ or any isomorphic set can serve as
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global time for the process (L*A)n<n*. L,.4 r-s n, n e Ngbbot, is a homomorphism, the

elements of Ll are independent with respect to Ngrotot.A "shortest" global time is c.

ln topological terms, lTn) | neNgb6oT) forms a filter base with lirnft A, {A, I neNgbb"t\
forms an ideal base with limit ?- Generalizations of the procedure (A) are treated in
Section 6.:

E x a m p l e  4 :  T :  l t i l i : 1 , 2 , 3 , . . . 9 ) .  L e t b e :  G :  { ( t r <  t à , ( h < t t ) , ( t c < t a ) , ( h < t ) ( t z <
îa ) , t t z<  l c ) ) .Byassoc iab i l i t y ,H :  l ( t z< t s ) ,Uz< ta ) , ( t t <1s ) ,Q t<  16 ) ) .These to f cha ins

is C = {(/.i)}t-lGuHu[(r I lt < ts), G: I tt < ta), Qt I t.r < ts) Qt < ta < t)l c.

7\-t(TxT)w(TxIxI). One possible decomposition is: Ârl : lr2, bl, A4A : tt1, rzl, Ly4 :

Itt, tcl, A,l : {ts, tal. Ly4 : {16]1, a maximal chain is l(t r < tt < 16)} with length 3, card

?": 9. For example, A,A w L,zA = (Ts = lt+ t5, t6, t6, /q)), the connector set of Âl with

L ,2Av  Ly4w LAw Â l  i s  l ( t z , t à , ( t z , t s ) , ( t z , t a ) , ( t 2 , t a , t 5 ) ,Q2 , ta , t 6 )1 .  SeeF igu re2 .

Figure 2

5. Processes and Process Homonrorphisms

Let there be given: A time (f, <), a subset U c T. a non-empty set ^S, an indexing l:
U-+ S with r è s111,s74 e S. Frequently, S c pow Z, Z anon-empty set. Then su :

(sr),.u is a "process on L.I' with "state" sp1 aT t. The ordering < on Z induces an
ordering oo sy : t < t' e (if and only if) sr < s i: All concepts defined by the ordering
of T aretransferabletoprocesses.Let sr:(s i)r . r ,  beanotherprocess. I f  UaV+A
then sr/ and sz are"concurrent"on UaV.lf UaV:A then sy and sy ?rênamed
independent ("parallel"). Ifa time (I, <) and a set S are given, the set ofall processes
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on ^S over T is P: USU . Each subset of P is also named process. Two processes
UcT

su, s'v are time isomorphic if a <-isomorphism rp : U <+ Z exists for them. If in

additiôn for all zeU holds s1s1 : s'Ja(u11, then the processes are time invariant with

respect to A. If ^S is ordered itself, (S, <s), and if the indexing I is a <s -

homomorphism, i.e. for t'< /" holds (t1,,:r t(t'),then r(1) is atime.

We consider a frmction J: X: (xù,.u -+ Y: (lt)t.v , xt è !'t'. In general, time (U'
.u) is independent of time (V, <ù. Let f be the domain of the x14, and Ç be the

domain of the y14. We say X, Y are "input-" and "output processes" respectively to the

"plrocessor"f Functional dependency is denoted by -+, t-+. \r)Ve further assume,/' is a

S-homomorphisrn, i.e. for rr<xi' holds nrl<flx't), subscripts of < omitted. The

set extension F of f is a homomorphism with respect to set inclusion c. For (v1.) we

consider the reciprocal image j'(y,.): (,x),.un. In case F is independent of U, F

maps U* onto {Ê} and (xpù1.u- onto (;r*,.). Let U and V besub-timesof atime
(?", <) wi*r the induced ordering. To model physical reality, where a cause is not later
or simulraneous with its effect and all operations take time, we assume, the "time delay

condition" AxeX(-fix) < x) holds, in our notation: .r < .(-t). This excludes

mathematical identity for f but includes operational time delay x < flx). If

AxeX(x<Jfu)), then X < Y (according our definition of <), because ./ is surjective.

Under these assumptions, the "processing time" of J' is UwV c Z. We denote X1rq :aer

lxy,1l teL\, YJvl:def Lvrq I teZ|. Output data may be used as input data at later time.

Forexample, if the objects are sets, if y'g clpl and x"ft"J Ç"ryr'7 with t'< t",then
x"[,,]:y'[t] is possible. By causality, input X* exists not exclusively originating from
the output, by intention, output I'* exists not exclusively used for input. We say, the
processes f , y* are "extemal", i.e. their states are given, observable, measurable.
available, accessible for other applications.

Example J. 'Forreal numbers let  be I :  $t+z: xt+2:der(xp+11x-rt , l ) ,*z i  teN), X: Yw

X*, X*: {xr, x2) given, )'* = A.-f is multiplication x. This is physically an infinite
operation without an extemal result, only changing "internal states". x1t+r1 and xp1 have
to be memorized. However, if the output process is external then )z: I*. For xttt: xtzl
: I the process is stationary. This example is covered by classical automata theory.

Example 6: (7,  <):  (R. <),  let  be ,X* :  ( /2,)r . to.  ,*1. O<l*e T. Y* :  t t  ! r2 dr )art) te[o.t* t  Q
0

is a < - isomorphism with r < dt), expressing the operational time delay. This example
is not covered by classical automata theory.
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An object x1 e X may be uncertain, but known to be an element of X c X, i.e. var x, :

Î. 1then the functional result 1," is undetermined but an element of f( * ) c )'. i.e. var

y,: F(var x) varies on F(X \.In addition, F canbe uncertain.

Example 7: Let be I ç (R*, <)x(R*, <), R* denotes the set of non-negative real
numbers. A partial ordering << on ?r is given by ((t', /') << (s', s')) <+ ((t'< s) n (r"
< s')) excl. or ((t'S s) n (/" < s')). For example, to X : (xt),.r, x111 € R+, let correspond
Y:((s(t) : t ' f t lxt"g,r fxg1))ter,  rp(xç4) e R*. From t<<È fol lows s( l)<s(r*) . I f  var
r: [a, b]x[c, d], a < b, c ( d, then var s: [axc, bxd] (this is an example for interval
arithmetic on R, the time delay is neglected).

Under certain assumptions and for a universal time, processors can be concatenated to
a composite processor (or "network"): For illusffation, let be F: xu -+ yt t x'u . x"u",

l"'".'. a partition of y,l î' , î' admissible given input parts. For given concatenations
K', K" let be x î' :derx'u' K' î' , x"i." =deî x"u" r" V' . G'. x'.,r" -) !': '. H: x""," ) !"=".
Figure 3 is a visualization.

x

Figure 3

For the composed processor the input processes are xu) î' , V' , the ouput processes are

!"'v"' , !'z', !""". The relation "part of the output of a processor F is a part of the input
of a processor G" is a connector C(F,G). If not empty, it generates an irreflexive,
transitive ordering F < G ("G depends on F') on the set of processors composed. < is

155



compatible with < for the processes. In reality, C(F,G) represents itself a processor
("channel"), copying output of I' as time lagged input to G. The assumptions we made
are: xu is in the domain of F; x'.' is in the domain of G: x"," is in the domain of 11
("domain condition"). For example, if this is violated by input arriving too early or
because input parts have to be sequenced for processing, a connector needs
synchronizing devices like memories or transmission delays.

Starting with a finite set l4l iell of time independent processors F; on level n : 0
("atoms"), compositions of composite processors on level z generate processors on
level n+l (hierarchy of compositions). A physical object which represented a
processor, may be reused after its processing time w at "later" time w', w nw': Q-
Use may change the physical object and the processor.

Example 6: (7, <): (N, <), xJn1, ![n] non-negafive integers. For n : 1,2,3,.-.let be xn+r
: (xbl - 1),*r while x7,7 > l, )',p1na1 : @Je(ùl * n' xJ,1),p6+11, rp(n): n', with initial
values: x111 :5,!yt1: 0. We find x : (5642,33,?a,1:),y: (0r,5+21q,4816,8025,10536).

Varieties of times, processes, processors, connectors and networks can be described
by controlled variables. We revisit Section 2 and apply the previous reasioning on time
behavior ofobjects.

We consider a function variable var y : var flvar x), varf :{fo : Xo -> Yo: fr(X) |
peP\,varxp:Xp: lxpqlqeQ@)l,varyp:Yr. Ihe assignments are:varf  : :Qt)f ,which
determines X, and Yr, after that var xo ::(q) xpq, then var yo : :(pq) !pq: fr(xrr) with
pq or xpq as control parameters. We assume. (S, <s), (I. <r) are giventimes, S(p4) c
S, T(pq) c. T are sub-times with the induced orderings. Now let the objects xpq, lpq be
processes, xru -- (xpqr),esrpqt, lpq = (vpqt)Gr@4 : fo((xpq,)r.stcor). To process xpq the
process -ypq is assigned but not St&teS .{pqs to states /pqr. However, if a point wise

function h, : (xpq,),.stnr1 -+ (vpq)t.r@qr is given, i.e. xpq, è lpqb the set extension H, of
ho maps processes onto processes. By causality. (s(pq)eS(pq)) < (t(pq)ef(pq)).

Let us assume: P : l1tl, thus omitting index p in the following, S:6.e USISI , for q
q.Q

* q' to have S(q)nS(Sl : Q, AqeQ(H: (xqs)sesre., H (I,i'(ci)), thus S(q) r+ {(q)}, and

T: {t(q) | q.Ql. H is a c - set homomorphism. In addition, 11 implies a <-

homomorphism Hti,tei S -+ L Time (7. <r) is a coarsening of time (S, <s). The
- t

reciprocal image H ((v,),.7,*) to a process (y,),.r* , T* c T, is a family of processes,
- 1 - l

((x,/")..qc)) lS(.1): H 1;,,,n(t))ç7,*. Forgiven t, by causality,{t} < H 1i-"(t). Anexample is
a compiler, transforming a series of statements in a higher order programming language

into a series of series of instmctions in a lower level language. If for all q,q'eQ a<'

isomorphism dq,q): S(,1) +S(4) exists, i.e. a I to I mappingpreserving <, and for

all s e S(q) xn."l: xlq,,6nù1, then (xuurg,s)seslvarn, with var q: Q is a time invariant

representation with respect to {S(q) | q.Ql.
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6. Evolutionary Systems

Let there be given a time (f, <). Any subsets U, V of I have the ordering induced
by <.Concatenation U rV (alsowritten t<U,n) isdefinedby UwY withordering
induced by .. We consider a set U e pov, I and make the following assumptions:
( A l ) :  U  c T r U  a n d  t  i s a  m a x i m a l s e t s u c h  t h a t  u < l J  .

(A2): LU c. (UwU ) such tl'tat nÛ :6g1AU \ IJ + A,

t A 3 ) :  A Û  <  t u  r  a Û  ) .
From these assumptions follows: LlaÙ = A (by definition of <), thus UaLÛ: O,
(Cl): AU < (t\ L(r, (LUuLr; < 1ut aoî. (proof: by (A2), (A3), and for any X,Y,Z:

(X < Y rr Z c Y) -:> X< Y\2, (X < Z r Y < Q = (XwY < Q),
(C2):  Â(u.v)e(UxA.Û)(-VteTtÛ@<t<v) (proof:  u<t nte\Û = r .7UÛ 1et; ,
Kv =) -(LÛ <7UÛ )), this contradicts (A3)).

Ho means (

Figure 4

Figure 4 shows an illustration. Applied to chains C(UwLÛ ) on Uu,ÂÛ with C(U)
:a"r C(uwA,Ù1nLl, C@Û):a.r C(Ur-rÂtnnt, we have the following cases,
visualized in Figure 5:

(a) if max C(t4 and min C(ÂÛ) exist: max C{(l)< min C(ÂÛ), CIump);
(b) if max C(Lf and not min C(tÛ I exists: {max C(i4} <^^ C(^Û), (Dedekind cut);

(c) if not max C((D and min C(LÛ ) exists: C((D <^^ {min C(lt)}, (Dedekind cut);

(d) if not max C(t/) and not min C(ÂÛ ) exist: C(t) <^^ C(AÛ ), (gap).

In all cases there exists no time point r between C((/) and C@Û ).If this holds for all

chains in UwLÛ ,we say U and AÛ are "adherent" or neighboring. UuAÛ is a
successor of U.Avisual izat ionisshowninFigure5. l fa l lcutsofal lchainsin (7,<)
are Dedekind cuts, we sa)' (2, <) is continuous.
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Figure 5

Starting with an Ulnp;o1 aûd assuming the procedure can be recursively repeated, the

family of indexed successors ((UvLÛ ),)meM ot increments

well-ordered ("algorithmic", "evolution-") time (M, <).
1A,Û )..u creates a

We are going to define processes on the time structures studied. Let there be given a

non-empty set X of objects and a time (f, <), a time process variable var w : l.Û c.

pow X and an object process variable var(xw) :der Vâr xvtw :der (var -r,),.u.v,' with

domain Ï(var w) c Xu'. For simplicity sake, we restricted the general .ut" 
,*l-,

with distinct sets X1r1, Xtrt for t*t' ,to 'fu'*. Admitted are only concatenations var(;rp)

rc var(x's,) : var(x"5,tuw), WaW' : A, vat x"t : var.r1 oo vilr Il, var x"t: var x',' on

v$ W', i.e. without overlap. We apply this to the evolution equation

ual!(r, *où : u#t)("r) rva/2)(Ar6y;, upper indices indicate the variable level.

We assume: var [J, var AU are subject to the conditions (A l, A2, A3), var A,U : var

tÛ . Vy our restrictions, r is independent of (var(xu), va(Àracr)). Omitting possible

control parameters p for var(x ù, q(p) for var(Âxau), let be assigned va/')1-r51 := 'rr,

e \vadxr)). This restricts the domain A.i(var(Àrau), var(xv)) of var(Ax6v) to

Afl(var(Âx6y), xy). The result is

uar?)1x, K^u) = (xy) rvar(l)(Âxau), u#t)(lrou) is a control variable for v#2)(x1'"6r,).

If Âxau is assigned to v#r)(^xau), we have va/r)(xu K^u):: (xu) r (Axau) : xLt rr.L.
Let there be given an initial object process (x u)0, and let continuations be possible. We

obtain by recursion for an evolution time (0 < succ 0 < succ(succ 0) < ... < m)

(xu)ru". * : (...((x Do r (Axlu)o)ru"" o) r (Âxau).ucc g)succ(succ 0) ...) ..' r (Arau)* : (x'u)o rc

K (Maùu because
1ro

independent of ((Lxru)p, (Âx6u),*" ). If a funher continuation starts with an initial
process (x'u).u"". to be concatenated with (xu).u"" r and so forth, we have a process of
("extemal") initial objects and the ("internal") object process controlled by var(Âr61i).

(d)
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If a commutative group operation o: XxX -+ X is defined (see Section 2), two
overlapping evolutionary object processes can be concatenated to one object process. If
TxX is a metric space, for continuous and differentiable functions Z-+ X, limits in the
evolution equation can be defined.

Example 8: We consider the partial ordered space Zc (R*, <)x(R*, <) of Example 7,
functions I -+ R. and a chain C with time points (r, r). In general, r, r' ate
independent. lf r':y(r),wecandescribe C by (r,T(r)),.t,. Fortheordering <<,7
has to be monotone. We choose < induced by (R*, <), set t: r and consider the chain
(t, /)),.t0,1) u (t, 0)1.11.2). With chosen initial process (xb: 0, x'r : -1) 

,and 
given

derivatives i:2t for [Q<tcl), i- -e-'*r for [sr<2), we find x(r): 0 + [2rdr 
: t2

t l

fo r [OSKI ) ,x ( r ) : - l  -  î . - ' * '  M: - l+ (e ' * '  -  l )  fo r  p<r<2) .For  / -+  l : - t ( r ) -+  l ,
i

i(t) -+ 2; x(l): -1, .i(l) = -1. Neither .r(l) nor i(r) is continuous at r: l. [0</<2)
is a continuous set. Let us assume, r is undetermined and varies in intervals: [t - O. t, t +
0,1) for 0- l  < /< 1.9, [0,  /+0.1) for0 < t<0.1, [ t -0.1, 2) for 1.9< r< 2. Thenfor r  e
[0 ,0 -1) ,var ; r ( r ) :  [0 , ( t+0 .1) t ] ; fo r  re  [0 .1 ,0 .9 ) ,varx ( r ) :  [ ( r -0 .1 )2 ,1 r+0.1)2 ] ; fo r  /e
[0.9, l . l ) ,  var-r(r) :  [ -2 + e'*oe, l ) ;  for I  e [1. ] ,  1.9),  varx(t) : [ -2+ eJ+Oe, -2 + e' '  ' ' r ] ;

for / e fL.g,2), varr(t): (-2 + e-t ,1+ et*t'tl.

Up to now, we disregarded general concatenations x((x',),u 1,. (x",),.y) : ((x1)r. ry, also
causality rnd the operæional time delay. 

'We 
use the notations xs, x'q1,, ly for past

object process, past initial processs past control process, respectively. var(Àxar/) : var
Lx*16s, væ(,Ly1iu) = vat Â/'r l,yo YZr (^xid : var Ax'uu.ly, âr€ proccss continuation
variables, subject to assrmrptions (A1,A2,A3). Omitting the prefix var, a general
formulation ofthe incrernental equations is in case
(X): The incremental control process {Ayru) and the incremental initial process
(Ax'1;|.) are given, the controlled incremflrtal object process Àr:u is to determine. We
consider (Âxru) : j(xu, yy, (Lyry)),with assumptions: Z< LV, U< LU, A + ÂZ(min) q

LY, LV(min) the set of <-minirnal elements in Ly, (V, Llt(min)) are adherent. Let f
be a time continuous <- homomorphism, then (Arrut.inl) : J(xu, yr, (Lyy@inù), (U,

ÂU(min)) are adherent. By causality: Ai eLV(Lyv < J(xu, yv, (Lyt))). Renaming
(M"p') :o"r (Âxau), we set (Âxou) : (Lr'ru) r, (M"wù if concatenation Kx is
defined. Processing time is LV w L,U'\) LU". In case of anticipatory systems we would
have processes f o, y, with Il<U , y<y in the arguments of / which are not

adherent xu , yr'.
(Y): The incremental object process (Àxau) is given, an incremental control process Ây
is to determine which would be a confol of it when later to reproduce. In general, there
can exist many control processes leading to the same object process. We consider one of
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them, (Ayar,) : g(xu, yv, (Lxnu)).Then assumptions and reasoning analogue to case (X)
can be applied.

Inaphysicalrepresentationof f and g,thememorizedhistory xu,x'u'.yy (orparts
of them) represent the "states" of the "processors" ;f *d g, influencing their functional
behavior. By definition, succ xu : xu K, Lx6s, succ /r : yv Ky L!u,, Kx and rc,
concatenations of x-, y -families. If I S are strict homomorphisms with respect to the
concatenations tcr, r", then (Arau) tcr succ (Àxau) : (Lx'ru),rr succ (Ârid K'-fl)cu K,
(Âxru), yy rcn (Ly*), (Lyv) Kv succ (Ayor)). Analogously, (Lyor) K', succ (Lyov) : s6,
K, (Mru), yr rcy (Lyw), (Ârau) ,ç succ (^rru)). By recursion, integral representations are
obtainable.

The operæional time delay is assumed to be describable by a time isomorphism p :
LU -+ A (LU) c T, A,U < A (L|J],, (il,LU) up (succ L|U].: ç (AU w succ Â[./), and y:
A,V -+ ty(A,t) c T, L,V < V(Ln, V(Ln u1z(succ LV): ty(LV u succ ÂIl).

7. Conclusion

The article is based on classical set theory and analysis as preseûted for example in

12,3,41 or in any other equivalent text books. The concept of families, general set
products and relations, concatenations, order relations among sets ofsubsets ofa partial
ordered set, variables and their control, procedure (A), composition of processors, are
already considered in []. Seemingly, processes on general partial ordered times, the
importance of the adherence condition, the assumptions Al, A2, A3 which imply the
well-ordering theorem, the use of relation <, are not treated in the literature (compare
for example [5,6,7]). [7] is on our line, has more details and less general concepts. For
modeling of physical systems, causality, operational time delay and uncertainty are
regarded.

References

Albrecht R. F.: "On mathematical systems theory". In: R. Albrecht (ed.): Systems:
Theory and Practice, Springer, Vienna-New Yorlq pp. 33-86, (1998)
Alexandroff P.S.: Einfiihrung in die Mengenlehre und die Theorie der reellen
Funktionen, VEB Deutscher Verlag der Wissenschaften, Berlin 1956
Bourbaki N.: Théorie des Ensembles, Hermann et Compagnie, Paris, 1954
Gâhler W.: Grundstrukturen der Analysis, Vol. I and II, Birkhâuser Verlag, Basel-
Stuugart, 1977,1978
Pichler F.: Mathematische Systemtheorie, Walter de Gruyter, Berlin-New York,
1975
Mesarovic M.D., Y.Takahara: Abstract Systemstheory, Springer Verlag, Berlin,
Heidelberg, New York, London, Paris, Tokyo, 1989
Wunsch G.:. Systemtheorie-Prinzipien und Systemklassen, in Handbuch der
Systemtheorie, Oldenburg Verlag, Mtinchen-Wien, I 986, pp. I -35

r l t
L r l

tzl

t3l
l4l

tsl

t6l

ï71

160


	Casus_v18_pp147-160_Albrecht



