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Abstract
This paper discusses the design of constrained controllers based on the modes
decomposition, with respect to the symbolic solutions. A triple integrator plant has been
used to illustrate the design. The paper is focused on the synthesis in a computer algebra
system MAPLE, which is shown "step by step" in the paper. The designed control can
be applied to a broader class of systems.
Keywords: pole assignment control, time optimal control, constraints, nonlinear, third
order system.

I Introduction

The importance of the control signal constraints is generally well known. Some
attempts to treat its influence can already be found in the beginning of control.
Feldbaum (1966) mentions idea of two Russian engineers to improve the steel rolling
mills control by a quadratic velocity feedback - an idea from 1935 which has later been
rigorously elucidated by the theory of the relay minimum time systems in 50-ties. As
one of the main general results of this early period, the Feldbaum's theorem about n-
intervals of the optimal continuous time control (1949) should be mentioned précised
later by conclusions of the well known Pontrjagin's minimum (maximum) principle
around 1956. Occurrence of different parasitic phenomena typical for the minimum time
control (like the relay chattering, or oscillation in the neighbourhood of the demanded
states) has already in the "golden" era of the minimum time control at the end of 50-ties
led to the demand on smooth solutions and quiet steady states brought by the pole-
assignment control. However, also today, after more than 70 years of intensive research
in the control area, the problem of the constrained control is still not sufficiently solved,
even in the case of the simplest 1 st order and 2nd order plants ! Of course, there exists a
huge amount of literature devoted to this problem. ln the last decade, many textbooks
appeared treating the constrained control problem by multiple approaches (see e.g.
Blanchini and Miani, 1997 and several other contributions to the book by Tarbouriech
and Hennet; Borelli, 2003; Goodw-in, Seron and De Donâ. 2005; Glattfelder and
Schaufelberge4 2A03; Hu and Lin, 2001; Liu and Michel, 1994:' Perez,2005; Saberi,
Stoorvogel and Sannuti 1999-2000). This variety ofapproaches can be understood as a
result of different requirements met in practice. Despite of this, it is interesting to note
that majority of the approaches try to use new approaches (as e.g. the constrained
predictive control or different gain scheduling approaches based e.g. on ellipsoid
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techniques, etc.). ln difference to these new approaches, the presented paper tends to
keep continuity with the development in the minimum time and the linear pole
assignment area. Under slogan by F. Kafka "to believe in progress means not to believe
the progress already was..." we try to expand the experience gained by the minimum
time control and to eliminate its shortness by using the principles of the pole assignment
control.

The constrained pole assignment control gives hybrid solutions with dynamics
ranging from the relay minimum time systems to the linear pole assignment ones. While
the general theory of the optimal control is (theoretically) able to treat system of any
order, it is to note that the practical applications of the minimum time control (see e.g.
Athans and Falb, 1966; Feldbaum,1966; Pavlov, 1966) deal mostly with the 2no and the
3'd order systems. Already the 3'd order relay minimum time systems were that time
considered to be reasonably complex both from the point of view of the design and its
implementation. This is the main reason, why the higher order problems were mostly
solved only offline. By modifying the optimal control sequences from the rectangular
ones to softer ones by restricting the speed of the transients by the closed loop poles, the
complexity of the corresponding transients and that of their description increases. It is
already to see by dealing with the 2no order processes (see e.g. Huba, 2003, or 2005).
On the other hand, in difference to the 60-ties years of the previous century, today we
have at disposal powerful computer algebra tools that reasonably extend the scope of
solvable tasks and equip a resercher in the development process. Furthermore, result of
this process can be implemented by using powerful computer tools. The aim of this
paper is to show how such design steps can be supported by the MAPLE V software.
The paper is based on the theoretical treatment given by Bistak et al. (2006).

z Synthesis of Algorithm in MAPLE for Linear Segment of
Reference Surface

At first we clear memory and read user packages
) r e s t a r t :  w i t h  (  ] i n a l g )  :  w i t h  ( p 1 o t s  )  :  w i t h  ( p l o t t o o l s  )  :

We assign the closed loop poles
> a l - f a : : a r r a y  ( 1 .  .  3 ,  I a 1 p h a 1 ,  a 1 p h a 2 ,  a l p h a 3 ]  )  ;

a l fa := fa l ,a2 ,o3 f

We assip the system matrix and the input vector
> A : : m a t r i x ( 3 , 3 ,  [ 0 , 1 , 0 , 0 , 0 r 1 , 0 . 0 , 0 ]  )  ; b : :
m a t r j - x  ( 3 , 1 ,  [ 0 , 0 , 1 ]  )  ;

[0 ' ol t 0'l
A: :1  0  0  l l  b : : l  0 l

lo o o.l L 'J
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We define the identity matrix with size 3 x 3 which is used later.
) I I : = m a t r i x ( 3 , 3 ,  [ 1 , 0 ,  0 ,  0 , I , 0 , 0 ,  0 , 1 ]  )  ;

[ l  0  0 l
t l

I I : : 10  I  0 l

lo o 1l
We assign the control signal constraints as well.
)  U :  : a r r a y  ( 7 .  . 2 )  ;

U : :n ray( l  . .2 ,  [  ] )

Then the eigenvectors vr,2,3 can be computed using the matrix
(evalm) according to (6)
> f o r i f r o m l t o 3 d o
> v  I i ]  : : e v a l - m  ( i n v e r s e  ( a l - f a  I i ]  * I I - A )  & * b )  :
\ n À .  n r i n +  / r r \ .

È / !  J r r  9  \  v  /  ,

expression evaluation

Non-linear part of the l't subsystem is created by points x, as the result of backward
integration of (4) on the interval le(0 t,) using il=gt =U i and. starting from the

point v,LI,. The state transition matrix e-^' and the vector b(-r) of the l't sub-system
are
>A1 : :exponent ia l -  (A ,  - t1 )  ;
b 1  : = m a p  ( i n t ,  ( e v a l m ( e x p o n e n t i a l -  ( A ,  t a u )  & * b ) ,  t a u = O .  . - t 1 )  )  ;

f  , t z 1  |  - ' t t 1
I t  - t t  + l  l  6 l

At  : : l  ̂  
'  
. l  b t  := l  t rz  I

l0  |  - t r  
|  |  ?  I

Lo o r)  l t '  I
Reference curve can be expressed as

I-------:-
a3'

I.-..-;
a3'

I---;-
ctJ

I..----;
a2'

I---;-
a2"

I
az

I---;
c r l '

I-;
ù .1 '

t
I

a,t
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f  , ' f
I  r  - t  

' l  
I

l '  "  2 l
x , (1, )=10 I  - r ,  

la ,v ,+
l0 0 r l
L I

, | |
6 l

2 l

L lu,' )  I '- l
- t '  I^ l

I
I

i .e.
)  x 1  : : e v a l - m ( A 1 & * v  [ 1 ]  * q 1 + U  [ 1 ]  * b 1 )  ;

x = xr((Ur-,

( l )

. (  |  t l  / / 2 )  1 . .  . 1
n ' [ " t ,  -  

" f  
*  

z " t  ) -  uu t I I '

,/,:l ,,(# #) *)u,,,
4- r.,,
û,1 |

The 2"d subsystem can be computed in similar way, the non-lineæ part of the 2nd

subsystem is created by points x, as the result of backward integration of (4) on the

interval I e (0 tr) using u = Çz =U r-, -U 
, and starting from the point

o.(U,- ,-LI ,), so the state transition matrix e-^' andthe vector b(-r) of the 2nd sub-

system are
>A2  :  : exponen t i a f  (A ,  - L2 )  ;
b 2 :  = m a p  ( i n t ,  ( e v a l m  ( e x p o n e n r i a f  ( A ,  t a u )  & * b )  '  t a u : 0  .  . - t 2 )  )  ;

r tt21 l-g:]
I t  - t2  71 l  6 l

A2: : l ^  -^ l  b2 : : lû2  |
l0  1  - t2 l  I  . ,  I
[o o rJ l ,_' ,r l

Using the 1" subsystan as the initial state in the 2nd subsystem one gets the generalized
representation of the reference surface

-  I )  |- l

6 l
2 l

t ^  |

î lu,_, (2t
--t, I

I
I

a l

t r '  I- l

2 l
- r, l(x,

Ii l
I

+  v [ 2 ]

-  L a

1

0

(q,tr)  + ezv z) +

) , h2  )  .
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x I 2 : :

["(# #.#)-!u,'t'*ft
- tz (ut# #).)u,tr'. #)+)t*(# (r,tr +#)-lu,,"f

[ ' , (# #) *!rr, tr ' *$-,t (#- (r,tt .#)*]u,,2'f

l* 
(r,t l +S-r,,tf

First it is necessry to solve e{n"tion
x  =  x3  (q3 , t  r )  +  x ,  (q , t  r )  +  x r (Q, t  r )  =

r l- t . '  I- l

6 l
t 3  I"r- lu,

1 l. l
- t .  I

I
I

[ t  - t .  ' , ' f

= lo I  -?,  
1, . ,  (q, , t , )+x.(q,, t , )+q,v,)+

L'o 'l
(3)

using l, =A,t, = 0,/, :0 to get parameters qr ,gz,Qt. However it is the same as to find
the point of intersection of surface (2) with the line defined by vector v, and the
representative point. So the parametric representation of the surface mentioned above is
> s u r f _ e q x : :  s u b s  (  { t 1 : 0 , L 2 = 0 l , x I 2  [ 1 , 1 ]  ) ;

" qI q2
surJ_eqx :: -= , + -j ,

cr l '  a2t

> s u r f _ e q y : =  s u b s  (  { t 1 : 0 , t 2 = 0 } ,  x I 2 1 2 ,  I l  )  ;

surf eqy t:3+*34
o.'l2 a22

> s u r f _ e q z : :  s u b s  (  { t 1 : 0 , t 2 - - 0 } , x l . 2 1 3 ,  1 l  )  ;

surf eqz t: #. #
The line can be expressed as
> l i n e _ e q x : : X  -  q 3 * v [ 3 ]  [ 1 , 1 ] ;

Iine-eqx ,:X - q!,

ctJ 
-

>l  ine_eqy :  :Y  -  q3  *v  [  3 ]  12  ,  t l  ;

line_eqy ' = r -  Q 3
rx32
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> 1 i n e _ e q z : : Z  -  q 3 * v  [ 3 ]  [ 3 ,  1 ]  ;

l ine-eqz,:Z-+
ctJ

The system of linear equations which have to be solved is
>R1 :  : sur f_eqx : l  ine_eqx;

R I : = Q I - * 4 = X - 4 3 ,
cr,l ' s"2' cr3'

>R2 :  :surf_eqy: l  ine_eqy ;

R2 ,: QI, * 31= y - -9!-
cll '  a2' d.3"

>R3  :  : su r f_eqz=1 ine  _eqz  i

Pq .=1 ! - *  82  - ,  -  43^ '  ' -  
cr l  

-  
c , ,2=t-  o3

> S O L :  = s o l v e  (  { R 1 ,  R 2 ,  R 3  } ,  { q 1 ,  q 2 ,  q 3 l  )  :

Q] ::

>Q1 :  : subs  (  SOI ,  q1  )  ;
()-l3 (-a2 Y + X a2 s3 + Z- cr.3 )z)

>Q2  : : subs  (SO l , ,  q2  )

( a l  - a 3 ) ( - a 2 + a l )

o.23 (-o'l Y+ ul X a3 + Z - a3 Y)
(-a3 + c;,2) (-a2 + al)Q2

>Q3 : :subs  (SOL,  q3  )  ;
u 3 3  ( - u 2 Y + s 2 u l  X + Z - a l  Y )

t / r . : M

l f  q . ,e2 ,ez  fu l f i l l  a ,  e  (U,  Ur , i )  ,  q r . (0  (U3- i -U ) ) ,

q, e (U i - Qt - Qz U r-.i - 8r-er) then the control signal in the linear segment is

> A Z  :  - c o l - l e c t  ( s i m p l i f y  ( Q 1 + Q Z + 0 3 ) ,  l X , Y ,  Z )  )  ;

AZ:=a2a l  Xa3 +( -c r l  c r3  -s l  a2-u2  c t3 )  I+  (a2+a3 +cr l )Z

which corresponds to the Ackerman's formula.

3 Synthesis of Algorithm in MAPLE for Segment.tRSll

Let us consider the 3'd order integrator
i = Ax+bu (4)

) )



; - ., ["] l-ol [o I ol^-r |  |  
lo l ,r=lo o t l!=2, *=lr l 'o=, ,  |  |

2=u l r J  L l l  L0  0  0J
The aim is to desigrr and visualise a constrained pole assignment controller specified by
the closed loop poles dt l dz < at < 0 and the control signal constraints

u  e \ U , U r ) (s)
that will drive the representative point x to a reference surface RS (invariant set of
dimension 2) by decreasing the distance measured in the direction of the eigenvector

^, - , -  [ r  I  l ' l '
v, =la,l - A]-'b =l --; ---; - | (6)

la i  di-  ai  I
corresponding to ; = : . The RS itself is given by the two constrained mod.es of control
corresponding to the first two poles.

After reaching RS, the controller should drive the reference point along RS to the
reference curve RC (invariant set of dimension 1) , corresponding to the constrained
mode of control associated with the pole a' . Along this curve the transient wilt finally
reach the origin that is an invariant set of dimension 0-

We start in the same rù/ay as in the linear case, at first we clear memory and read used
packages, etc. The difference is that we have to use different parameters when solving
equat ion(3)us ing  t r=O, t r=O,Qr=Ur  togetparameters  / r ,ez ,7 t .However i t i s the

same as to find the point of intersection of the surface (2) with the line defined by the
vector v. and the representative point. So the parametric representation of the surface
mentioned above is
) c r r  r f  ô ô v  .  :  e , , È r 5  (  {  q l : u  l 7 l  ,  t 2 = 0 L  x I Z  [ 1 ,  1 ]  )  ;

t I  2 )  1 , , . , 3  q 2sur f  eqx '=  u , (#  
#-  2" r  I  

-  
6 r , r t -  +  

* t
> s u r f  e q y : :  s u b s  (  { q 1 : U [ 1 ] , t 2 = 0 1 , x L 2 1 2 , 1 , ) )  ;

surf eqy ,: u ( +- 4.) *! ,. tt '  + Q2 -
" ' - - - t r '  

- r t a l z  
a l  )  2 - t "  o , 2 2

) s r r r f  e 6 7 t =  q u l - r q f

The line can be expressed

{ q 1 : U  [ 1 ] ,  t 2 : 0 1 ,  x 1 2 [ 3 ,  1 ]  )  ;
r i- r  q 2

surf eqz

in the same way as in the linear case

> l i n e _ _ e q x : = X  -  q 3 * v [ 3 ]  [ 1 , 1 ] ;

l ine-eqx r=X-+
c t j '

> I i n e _ e q y : = Y  -  q 3 * v [ 3 )  1 2 , l - l ;
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l ine-eqy,:Y- 
q!^,

a3 '

> l i n e _ e q z : : Z  -  q 3 * v [ 3 ]  [ 3 , 1 ] ;

l inc-eqz t :Z-4

Nevertheless, we have to solve the system of nonlinear equations in this case
>R1 :  : sur  f_eqx : I  ine_eqx;

Rr : : (J,(+-4** l  - lu, t t3 + q?^;=x- 83
[ o l '  a t ï  2 a 1  )  6 - t "  o ' 2 3  c r 3 3

>R2 :  =sur f_eqy=l ine_eqy ;

R2 := rJ.(  f - -4 ' ) .  !  r . , , '  *  Q2^ = Y- 83- r t a 1 2  
c r l  I  2 " 1 " '  s 2 2  

-  
0 - 3 2

>R3  :  : su r  f  _eqz :L  i ne_eqz  , '
U t  

. q 2  -  e 3R- l :=  ,  -Ur r l  * f r=Z-+

Now we solve them. At first we solve the equation R3, for parameter qr. The result is
substituted in equation R2 and stored in R2s.
>  Q 2 : : s o l v e  ( R 3  ,  e 2 )  ;

(-U, a3 + U, tl al cr3 + Z al a3 - q3 o-l) a2
Q 2 : = crl cr3

>R2s :  : subs  (q2=e2,  R2)  ;
R2s ::

, ,  (  |  _  r /  )  _ 1  , , . , = , - u , a 3 + u , t l r l l  
a 3 + Z a |  a 3 - q 3  o l  

_ r ,  q 3

" ' [ . r r t - " l  I + 1 t L ' t t - *  
= ' - o t '

We solve R2s for l,
> T 1 : = s o l v e ( R 2 s , t 1 ) ;

z  : : i  - (J ra l  c r3  +a3 Ura2+(Urz  c , l z  c , ,32  -s32 IJ rz  u22 -2Ura2a12 u i2  Z

+ 2 ( J , c " 2 c r t z  a 3  q 3  - 2 ( J r a 2 2  q 3  c t l z  + 2 ( J r c " 2 2  Y a l 2 o r t ) t " t ' )  /  Q r o " 2 o . 3
( r ^ )

û1 ), - [ 
", "t 

cr3 - cr3 U, a2 + (Ur2 ul2 c,.32 - o,32 ur2 c,22 -2 U, a2 c,,l2 c,.32 z

+2 (J ,a2  c t l z  a3  q3  -2  u ,u22 q3  cL l |  +2  (J ru22 Ys . lzor ' ) t t " ' )  /  Qrs"2  a3

c [ l )
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Then we get two results for I,

-LI, al cr3 + a3 (I , a2 + ,tD
Ura2 a3 ul

Urul u3 - a3 lJ, a2 + ̂ f D

U r u Z a 3  a l

Parameter l, has to be positive real, so there is easy to choose the first result because the
second result is always negative. Now we substitute the results into the equation Rl.
> t m p : : s u b s  ( q 2 - - Q 2 ,  R 1 )  :  R 1 s  : = s u b s  ( t 1 = T 1  [ 1 ] ,  t m p )  ;
Then the parmreter q. is the solution of Rls.
> Q 3 : : s o l v e  ( R 1 s ,  e 3 )  ;
After substitution d, = -0.5,a, = -1, d t = -2, U, - -1, U. = I one gets

Q3subs := - ç

-  ( 2 / 3 )
-4.50 ( l .SQ Z + 4.50 r -6.88 + 3.00X+ dD )

r - G / 3 )'  + 2 . 0 0 ( 1 . 5 0  2 + 4 . 5 0  f  - 6 . 8 8 + 3 . 0 0 - t I + { D )

+ 1.38 + 3.00 Z + 9 00 I+ 6.00 X + 2.00 /D

r - ( 1 / 3 )- 5 . 5 0 ( 1 . 5 0 2 + 4 . 5 0 Y - 6 . 8 8 + 3 . 0 0 - f + / D )  )
/  -  ( 2 / 3 )

/  
( 1 . 5 0  Z  +  4 . 5 0  r - 6 . 8 8  + 1 . 0 0 x + t D  )

- 4.00 Y - 4.00 z

D : : -61 .88  Y+27.00XY +  13 .50  YZ+68.06

41.25 x + 20.25 f - za.æ z + 2.25 22 + 9.00 X Z
1

The result has to o"-rJ;iKell, so we have chosen the real result and using several
substitutions we have got the control sigrral (AZ) in symbolic form.
> T T 1 : : s i m p l i f y ( s u b s  ( q 3 : Q 3  [ 1 ] , T 1  t 1 l  )  )  :
> Q Q 2 : : s i n p l i f y  ( s u b s  (  {  q 3 = Q 3  [ 1 ]  ,  t 1 = T T I L Q 2 )  )  :
> A Z : : c o l - l - e c t  ( s i m p l i f  y  ( Q :  [ 1 ] + U  [ 1 ] + e Q 2 )  ,  I X ,  y , Z ) )  ;
The synthesis for ,RS/rz leads to the 6th order equation. The result is one of the roots of
the 6'n order polynomial, that can be chosen using additional conditions described in
chapter 7 (i.e. t, > O,tz ) 0). The solution of (3), i.e. the synthesis of control algorithm,
for RS /z can be obtained in similar way as for the R^S/r.
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4 Extending Design Control to Other 3'd Order Plant

The possibilify of,controlling a different third order system using algorithm described
above is presented in this clger. We have chosen the plant with the system matrix
A* and the input vector b.''

[o r rl fol
r"=lo o r lu,=lol (7)

io o ol LtJ
The following simulation (Fig. l) shows the phase trajectory, output of the system and a
control signal, where the closed loop poles have been dr = -0.1,a. = -0.5,4-, = -1, the

control limits have been U e (- t t) and the initial condition has been

n450, -  130,81r.

fi$::ù
'

.i?itt

8$1nr

f$t;

Phasettl1ieercry

Figure 1: Ouput of the system, control signal, phase trajectory.

5 Conclusion

The constrained controller has been designed in computer algebra system MAPLE.
Due to the symbolic solutions there is not difficult to change closed loop poles or the
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input constraints in any application of this control. The controller derived for the triple
integrator can also be used for controlling a broader class of 3'd order systems.
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