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Abstract

We found the magic square a simple problem with a very rich combinatorics: for a
magic square of order n, there are #*! manners to fill the nxn matrix with integers
between 1 and »°, without repetitions, but only very few of them are magic squares [1].
For order 4 there are exactly 7040 magic squares. So we use the magic square as a
benchmark to compare mathematical programming, namely mixed integer programming
(MIP), with Genetic Algorithms (GAs), that we will show are much more powerful to
solve these kind of discrete combinatorial explosive problems. Finally we developed an
artificial intelligence randomized minimax algorithm that imitates a human solving the
magic square and we showed that in most cases its performance, in terms of number of
changes of pairs of numbers, is better than the performance of the GA algorithm.
Keywords: Magic Square as a Benchmark, MIP Solution of a Magic Square, Al
Randomized Minimax Algorithm that Solves the Magic Square, Improved Evolutionary
Algorithm, Addition-Multiplication Magic Squares.

1 Introduction

In the literature ‘magic square’ has various meanings. Here we consider the ancient
addition magic square which is a square matrix nxn with integer elements between 1
and r*, without repetitions, and where the sums of the elements of all lines, columns and
the two main diagonals are equal to the magic sum which is given by [2]

MagicSum=Zay/n=n (n’+1)/2 ey

Since we found a very difficult task to reach a magic square by simple changes of
pairs of elements, even for n=3, for game development we did only consider the
Relaxed Magic Square where we did not impose that the sum of the elements of the two
main diagonals being equal to the magic sum.

By the same argument in the magic rectangles all lines must have the sum given by [2]

LineMagicSum=Za;; /n=n(m n +1) / 2 )

and all columns must have the sum [2]
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ColumnMagicSum=Z2a Im=m(m n +1) / 2 3)

Sun in [6] showed that the magic rectangle has solution only when m and » are both
odd or both even, but never n=m=2, that is a magic square 2x2 that is simple to show
that it has no solution [1].

In the literature exists also another proposal of magic square, the addition-
multiplication magic square [3-4] that has also the restriction that the products of all
elements of all lines, columns and the two main diagonals being equal to the magic
product, but without the restriction of the maximum element being »°. This is a much
more difficult and challenging problem than the traditional magic square and in the near
future we will consider the Relaxed Addition-Multiplication Magic Squares where it
will not be imposed the constraints of the sums and products of the two principal
diagonals being equal to the magic sum and magic product, respectively.

2 The Magic Square as a Benchmark

Our initial motivation to study the magic square was to compare MIP with GAs in
the solution of explosive combinatorial optimisation problems to make a decision on
which method to use to solve a even much more explosive combinatorial problem.
Rechenberg in [5] reported that using a 1998 Pentium PC, may be a Pentium II with a
200 MHz clock, obtained a 100x100 magic square in about 2h, which would mean
about 20 minutes in a 1GHz modern PC...and our Pentium III with a 1GHz clock, using
the Cplex algorithm to implement MIP, took about 4.3 days to obtain a 7x7 relaxed
magic square!...which is a much more simple problem than obtaining a 7x7 magic
square! In Table 1 you can find the solution obtained with our MIP model and you can
verify that as a matter of fact the sums of the main diagonals are not equal to the magic
sum 175.

Table 1: The relaxed 7x7 magic square obtained by the Cplex algorithm after 4.3 days
of computation on a Pentium III @ 1GHz. You can verify that the sums of the main
diagonals are not equal to the magic sum of 175 and that this solution is completely
different from the two solutions presented in Tables 2 and 3.
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3 Comparing GAs to Humans

Using a game we developped based on the relaxed magic square we obtained a 7x7
relaxed magic square in 83 moves departing from a sequential square (see table 2) and
in 57 moves departing from a random square (see table 3), which is surely a better
performance than the MIP’s one but we don’t believe that we would be capable to build
a 100x100 magic square!

Table 2: The 7x7 relaxed magic square obtained by the author in 83 moves from a
sequential initialisation.

Move 83, Objective=175 Move 84
49| 29 1| 4|21 |35] 36 49 129 14|21 35|36
16| 9|10 46| 40 | 13| 48 16 | 2] 10 |46] 40 | 13| 48
8| 211714547 |31 18 8 | 9| 17 [45]| 47 {31 | 18
2523 (24128 | 26| 22| 27 25 (23] 24 28| 26 | 22| 27
14| 34 (43| 7|30 |32]| 15 14 (34| 43| 7| 30 | 32| 15
19| 41 |38 12| 6 | 39| 20 19 |41] 38 |12] 6 (39| 20
44137 |42 33| 5| 3|11 44 (37| 42 |33] 5| 3|11

Error=98 Error=0

[old value,new value]=[9 2]

Table 3: The 7x7 relaxed magic square obtained by the author in 57 moves from a
random initialisation.

[old value.new value]=[13 26]
Move 57, Objective=175 Move 58
2 (35| 24|23|39]16] 36 2135124| 23 |39]| 16| 36
17| 5] 31]29|42]45]| 6 171 5|31| 29|42 45| 6
41(20]| 46| 25| 4|18]|21 41(20(46| 25| 4| 18| 21
10|112| 14| 49|44)|38| 8 10|12|14| 49| 44| 38| 8
43(30| 19| 1| 7(27|48 43130|19 1] 7|27 48
15(40| 32| 37|13| 3|22 15|140(32| 37|26| 3| 22
47133] 9| 11/26]28]|34 47(33]1 9| 11|13| 28| 34
Error=338 Error=0
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4 Comparing GAs to AI Minimax Randomized Algorithm

Before describing in detail our artificial intelligence randomized minimax algorithm
let’s see, in table 4, how it did obtain a magic square of order four from random
initialization and in appendix A we did obtain a 4x4 magic square from a random initial
filling...in 118 moves!

Table 4: Example of a run of Al minimax algorithm finding a magic square of order four
from random initial filling.

Move 1, Objective=34 14<—>12 13<—>14
1] 91 313 Move 5, Objective=34 Move 9, Objective=34
8| 6|14] 12 1 | 14]3]13 213 514
11| 5] 2115/ 8 6(12] 9 86109
7(10] 4|16 16 5(15| 2 16 315 1
Error=886 71101411 712 411
Error=46 Error=4
15<->2 5<->3 8§<—>9
Move 2, Objective=34 Move 6, Objective=34 Move 10, Objective=34
1 9|3 |13 1| 14513 2 13| 5|14
8 6114 |12 | 8 612 9 9 6[10] 8
11} 5(15] 2 16 3115 2 16 3115 1
7 110 4]16 7110411 7 12| 4|11
Error=301 Error=22 Error=2
12<->9 2<->1 12<->13
Move 3, Objective=34 Move 7, Objective=34 Move 11, Objective=34
1| 12] 3|13 2 [14] 5]13 12| 12 5]14
8 6/14| 9 8 |6 12| 9 9 6 10| 8
11 5115 2 16 3| 15] 1 16 31 15] 1
7 | 10| 4|16 7 (10 4] 11 7| 13| 4|11
Error=175 Error=13 Error=4
11 <—>16 10 <—>12 2<—>10
Move 4, Objective=34 Move 8, Objective=34 Move 12, Objective=34
1 i12] 3113 2| 14/5|13 10 12| 5 |14
8 6|14 | 9 8 610 9 9 6| 2 | 8
16| 5{15] 2 16 3115 1] 16 3115 | 1
7 110 4|11 71 12]1 4] 11 7 13] 4 |11
Error=90 Error=5 Error=388
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4<—>15 7<—>2 5<—>10

Move 13, Objective=34 Move 15, Objective=34 Move 17, Objective=34
10 12| 5 |14 10 | 125 |14 5 6| 10]14
9 6|2 | 8 9 6|7 | 8 9 12] 7| 8
16 31411 16 | 13|14 1 16| 13| 4] 1
7 1315 |11 2 3115 |11 2 3] 15]11
Error=575 Error=105 Error=30
3<—>13 12<->6 5<->7
Move 14, Objective=34 Move 16, Objective=34 Move 18, Objective=34
10 12 | 5|14 10 6| 51|14 7 61014
9 6 | 2] 8 9 12 71 8 9 12] 5| 8
16| 13 {41 16 | 13 411 16 13] 4| 1
7 3 [15]11 2 31 15111 2 3115]11
Error=275 Error=45 Error=18
3<—=>6
Move 19, Objective=34
7 311014
9| 12| 5| 8
16 13/4 | 1
2 6115111
Error=0

Each change corresponds to the permutation that minimizes the error over a set of random
number of cycles of random chosen pairs of numbers. When is detected a situation where the
chosen pair of numbers to be permuted is equal to the previous, then next change corresponds to
the change that, now, maximizes the error over a set of random number of cycles of random
chosen pairs of numbers. This prevents the oscillation and stagnation in local minimum.

5 Computational Results

In table 5 we compare the AI minimax algorithm to an improved evolutionary
algorithm for #»=3..20, in terms of number permutations. In most cases our algorithm is
much more efficient. Note that the number of permutations is obtained, in both cases,
in only one run, and not averaged over a set of successive runs.
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Table 5: Computational results of one run of each algorithm in terms of number of permutations.

n Al Minimax Alg Improved GA
3 7 121
4 19 57
5 185 129
6 126 48
7 108 3645
8 48 1824
9 84 456
10 95 2985
11 2023 2766
12 320 823
13 3330 562
14 1017 3510
15 1111 893
16 415 7762
17 191 753
18 420 1922
19 625 4507

20 613 6215

6 Conclusions and Future Work

We showed that although very simple, our Al minimax algorithm is very powerful.
Nevertheless their runtime are not so small as the permutations number, since each
permutation results from a minimization/maximization over a relatively great number of
cycles, and the calculation of the new error associated to a given permutation is time
consuming. We also showed that the magic square is a good benchmark to compare
optimization algorithms since it has an explosive combinatorics that increases with nl,
n being the order of the magic square.

In the near future we are planning to test our algorithm to solve a much more
complex problem: the relaxed addition-multiplication magic square where it is relaxed
the constraint of the maximum element being #* which turns its combinatorics much
more explosive [3-4].
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