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Âbstract Optimization theory is a key technolog5' for inverse problems of recon-
struction with applications in science, technology and economy. Discrete tomogra-
phy is a modern research field which deals with finite objects from VLSI chip design
or medical imaging. This paper focusses on the utilization of modern optimization
methods to approximately lesolve the NP-hard reconstruction problem of discrete
tomography. Our new approaches and introductions are based on modeling arrd
algorithms from coding theory and optimal experimental design- Hete, we com-
bine continuous and discrete optimization with exploiting geometrical q.mmetries,
or mor€ grneraliy, equivariances, in a framework of statistical learning.
Keyuruds Irverse Problem, Discrete Tomography, Optimization, Statistical Learn-
ing, VLSI Chip Design and Medical Imaging.

1 Lrtrodnction

The starting point of Com,puterized, Tomography (CT )rnght be the need to construct
the density dishihtion within the human body by means of X-ray projeetions.
Let us cmsider the problem of locating a tumor. \t'e often need an estimate of
the lscation sr the basis of nminnasively available data to plan the treatment or
a opaation. In our case, the available information consists of the projections.
The algorithrns of CT reconstruct the volume data at a resolution limited by the
nrmbcr of projections. However, it is possible to reconstruct the data at much
higb€r æsolutions, if it may take a limited number of values from a discrete set.
The accuracy of localization depends on the resolution, while a larger number of
projections costs higher doses of ionizing radiation. Tlns, Diserete Tomography
(DT) advances CT whenever it is applicable. In DT, we try to solve such problems
in an ideal, at least approximate way? and develop algorithms.

Taking the tomography of a &dimensional object, €.8., â human brain, means
observing the 2-dimensional slices, whereas in two dimensions the projections are
obtained by rays, e.g., X-rays 126, 451. Tomography investigates the biology of the
brain and the technical devices, and it looks for improving numerical and optimal
methods. For reference refer to Aster et al. [3].
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Fiç 1: Illustration of the rnain pmblan of DT.

We assume that we are given a domain which can be discrete or continuous and
a function F with a discrete range. Our aim is to reconstmct F from weighted surns
which are the projections of F' in the chosen horizontal and vertical directions in
the image (cf. Figure 1). In these projections and their records, our measilrements
and data consist. This is an'inuerse problem in which we want to reconstruct a
la,ttice set from its X-rays or projections- Batenburg, [4] presents an improvement
of a reconstruction algorithm in order to minimize the time complexity where the
optimized version is 50 times fa.ster than the existing approach [30].

Srb.en the object to be reconstructed is assumed to be continuous, real analysis'
is used to develop the theory. By the necessity of m-rmerical evaluations, those
Corttinuous Tornography problems often become discretizeQ in rnany cases, then,
a linear system of equations is the resulting problem [3f. As the name Discrete
Tomography suggests, DT is a part of discrete mathematics 121, 271. For further
information on the theory, algorithms and applications of DT, we refer to the book
of Herurarr and Kuba [35] and, related with our approaches, l7I, 73, 741. In recent
years, 'various applications of DT became reported. DT has been applied to diverse
areas such as medical sciences, image processing, electron microscopy, scheduling,
statistical data security, game theory and material sciences. For instance, as a ûrst
result on metlical applications, Reiber et aI. [60] reconstructed the right coronary
artery from two cineangiograms. For various medical applications of DT such as
enhancement of tomographic images, reconstruction of huuran organs, e.9., blood
vessels, we refer to the survey paper of Kuba et al. [a71.

In this paper, we first give the notation and basic problems of DT. In Section 3, we
present algorithms coming from optimization and statistical learning, supported by
the recogrrition and exploitation of geometrical-algebraical invariances. In Section
4, we provide a short survey of some important applications. We will finish the
paper with open problems and an outlook. Since in this paper various methods and
traditions come together, we emphasize their concerted interplay whereas, however,



Fig. 2: A latti,ce 'i,s giuen on the left hand, sid,e; a si,mple latti,ce set is shown on the
right hand side.

not all technical aspects can be recalled and presented. This will be done in detail
in future lvorks.

2 Preliminaries

Let us introduce the basic notation and definitions which is similar to Shepp et al.
[15]. Here, V,standsfor the set ofintegers, andNs denotes the set ofnatural numbers
including 0. Lattice sets are discrete sets F CZd which are finite subsets of integer
l'ectors (cf. Figure 2). The embedding seL,Vd, called a latt'ice, or a rectangular subset
of it containing .F can be considered as a regular grid of points or positions. The
latter ones are also called cells. If we are irr medical applications of DT, then, this
notion has a natural meaning. Latti,ce d,irections are norzero vectors u in the lattice
Zd , b:ut over the field Q of rational numbers, n'hich implies u € Qd. A finite sequence
of distinct lattice directions will be denoted by D, hence, for some q € N, q > 2,

D - -  ( r r ,a2 , .  .  .  ,uq) .  (1 )

A latti,ce lirre I is parallel to a vector up € D and, furthennore, it has nonempty
intersection with the lattice: I nZd I 0. For a visualization of lattice lines see 11 and
J2 in Figure 1. The set of all lattice lines which are parallel toux Q. D is denoted by
Lk, and, É will be the class of finite sets in Zd. The collection of the set of lattice
lines determined by D is represented by

L : ( L r , L r , . . . , L o ) , q > 2 .  ( 2 )

Based on these definitions and notations, a lattice line I may, e.g., correspond
to an X-ray, and it will be chosen from the set Lk if I is parallel to some chosen
direction up. In that context, a lattice set represents an atom cluster embedded into
a grid (lattice) of possible atom positions.



Based on a discretization prepared and on a slicewise reduction of the reconstruc-

tion to two dimensions, we can refine our tomographical problem by afeasibility
problem posed in the planar way of dimension 2. Then, any two distinct lattice

directions can be considered. Since a suitable linear transformation can be found
which transforms any two dimensional lattice to a lattice with directions(l,0) and
(0,1), we will consider this latter case. In applications studied by us below, how-

ever, the iterative choice of the lattiee directions is part of the challenge and art,
an element of a learning process [341. There are more directions than these stan-
dard ones (provided for simplicity) possible. namely, e.g., the diagonal-wise and

counterdiagonal-wise ones, and, moreover, a refinement by partial and local instead
of global measurements.

At this stage, our aim is to find a binary vector which satisfies a matrix equation
given by

Pz : b, (3)

where P e {0,l}uxlv and b e NN/. Namely, if the smallest rectangular box con-
taining the finite set to be reconstructed has dimension n1 x n2, then, M : nr * nz
and l[ * TL1 n2. Hence, M is the number of lattice lines, in this case being par-

allel to the directions (1,0) and (0, 1) on which there is at least one element from
our discrete set, and N is the total number of points or positions considered in our
reconstruction problem.

According to the projections taken we define the matrix P, sometimes referred
to as a uiew matrir [28]. The vector b consists of the raywise recorded experimental
data. Considering that the surface or tissue to becorne reconstructed is discretized
by cells, this matrix will consist of rows whose components are 1 for any cell where
the ray (represented by a row of P) goes through, and 0 if the ray' does not meet
that cell. Here, the binary values come from the provided orthogonality of the axes
of directions and from the distance of a unit 1 between neighbouring lattice points

along of these directions. In cases of nonorthogonalitv or, more generally, coming
from an underlying and discretized continuous problem, P may also have nonbinary
values of distance or vâlues of further physical, biological or chemical dimensions [3].

We could as well extend our feasibility problem by imposilg the marcimization
of /(r), defined as the sum of the components ra (i e {1,2, . . . , N}) with respect to
eq. 3, i.e.,

(Pr) ê
maximize f  (r)  : :  Lt t ,  subject to Px: b and r € {0, l }N

- - 1

A solution of this optimization problem implies feasibility, but it additionally
aims at a maximal density of atoms or of other considered discrete objects, in other
words, at a high distribution or a large support. For example, the value a.ssociated
with each cell, by rela:ration of the discrete case, can correspond to the amount of
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Fig. 3: An'instance illustrati.ng the problem as a linear programm'ing problem. Pro-
jection on two lattice l'ines 'in the di,rections (1,0) and (0,1).

radiation passed onto the next cell. Hence. by maximizing the sum/(r) in (P1) we
reversely allocate the X-ray meâsurement data Ô; rnore t'idelv. torrards portions for
any single cell under a threshold. Herewith, we minimize the radiation emerging
from that object. Especially, in corresponding medical applications, this is ver]'
important for protecting health under X-ray application.

Other objective functions rather than/(r) are possible and they can be selected
depending on the studied application from science, technologl', ecology, social science
or medicine. For example, we could also minimize the objective function /(r) from
(R). For this minimization problem, a more general interpretation can tre given by
the theory of inverse problems: There is a trade-off between the interest in a high
(re-)solution quality on the one side, and not too high a problem complexity, i.e., a
minimal number of nonvanishing pararnet€rs 17 on the other side [3]. That second
goal expresses itself in norrrr'-minimizing of c, e.g., in the 8- (or Buclidean) norm,
or, as in our case, the t- (or sum*) norm. Please note the nonnegativity implied by
the binary constraints.

For our optimization problem (P1), there are polynomial-time interior point
methods (cf. [36, 661). In Secti,on 3, we give detailed interpretation and new in-
sights from the viewpoint of optimization.

Example l. Oonsider the lottice set giuen in Figure 3. It is contained in a (3 x
2)-rectangle, hence, M : 5 ond, N : 6. Here, we lcnow the project'ions along 3
horizontal and 2 aert'i,cal direct'i,ons. For this 'instance we haue the following system
of equations

r t * I z  :  1

r z * r q  1

1 5 * 1 6  :  2

1 1  l r s  * x s  :  2

12  l r q  * za  :  2 .



Here. P.r andb are
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,  b : . t

The projection of a lattice set in direction r.r7. is p(P : Lwl --+ No such that

pP 0: ltr' n ll : I /("), (4)
ret

r,r'here / is the characteristic firnction of f', i.e., ï (r) : 1 if r e F, and "f(r) 
: 0 it

r 4 . F .
Two lattice sets F and F" are said tobe tomographi,cally equ'iualent with respect

to the directions D. if the following equality is satisfied:

pF,  :  p9) ,  k :  r ,2 , . . . ,e .

Now, let us state the three main problems which discrete tomography is concerned
with:
Consistency(€, L)
Giuen: Funct ions ,Qe) '  7&) --* No, k:  I ,2, . . . ,e,  with f in i tesupport  ( i .e. ,  for
every k: p(ot(l) l0 for finitely many I e ,(k) only).

Quest ' ion: Does there exist  an F e t  such that O' i '  :pk for k:1,2,. . . ,q?
uniqueness (t, L)
G'iuert: An ,F e t.
Question: Does there exist a different F' e t such that F and f" are disjoint and
tomographicalll' ecluivalent 'with respect to the directions of D?

If a set is nonunique, then it cannot by its projections be distinguished from
some other set. in Zd. \\'e note that utilizing available a priori information on the
reconstructed object may help to distinguish the most likely solution. The successive
discovering of such a knowledge will later on be part of our algorithmic approach.
Reconstruction (t, L)
G' iue'n: Funct ions O&) '  | t* l  -  No, k:  I ,2, . . . ,e,  with f in i te support .
?as , t . '  Cons t ruc t  a f in i tese t  F  e  €  suchtha t  p f ) :pk  fo rk :1 ,2 , . . . ,g .

It should be clear from the definitions that if the reconstruction problem is
solvable, then the corrsistency problem can be solved as well. In the following, we
come to compleri.ty results [22] for our reconstruction problems by lattice lines. For
closer information refer to [20, 42], and we begin with a small table. Here, PTA
stands for the existence of a corresponding polynomial-time algorithn

(5)



Consistency Uniqueness Reconstruction
Q : 2 , d : 2

q > 3
PTA

NP Complete
PTA

NP Complete
PTA

NP Hard

One of the results stated by Gritzmann and Gardner [75] says that any discrete
srrbse.t of 22 is unique with respect toD if the cardinality of D exceeds 6.

The complexity of the problem is not in general developped yet forr-dimensio-
nal X-rays when r is greater than 1. Only a few results are known. For instance,
when r : 2, d: 3, and Z consists of the 3 coordinate plânes, the problems still
rernain opetr.

If we have Ç:2lattice directions only, then, due to Ryser's Theorem [64], by
checking whether â known submatrix is contained in a binary matrix or not, we can
sa1' rvhether it is unique or not. On the other hand, it is known that one cannot
check uniqueness 

"vith 
the same procedrrre if there are q > 2 directions.

Becausc of the described problem complexities: one looks for nerv algorithmical
methods. In the follov'ing, we give a contribution to this by modern optimization
combined with geometrical-algebraical properties of structure and in a process of
leanriug, of information gainiug and using.

3 Optimization in Discrete Tomography

For the sake of simplicitJ', rl'e shall in the following concentrate on referring to the
applied backgrourrd from rn'icrocàip design. This preference in motivation will also
well fit to our methods from experimental desi.gn which will be later on presented.

3.1 Motivation and Preparation by Optimization in VLSI Chip Design

-\n. 'integrated circuit (IC) is a tinl' semiconductor chip, on which a complex of
electronic components and their interconnections are fabricated with a set of patteru
defining masks. The technique of fabricating an IC rvith a set of masks is somewhat
analogous to that of creating a photograph with a uegative.

The evolution of IC technologv is measured b1' the number of components in-
tegrated on a single chip. The IC industry has gone through the milestones of
small scale integration (SSI), medium scale integrat'ion (MSI), large scale integra-
tion (LSl), and, uery large scale 'integrati,on (VLSI). Known as Moore's Law, the
maximum number of transistors on a chip approximately doubles every eighteen
months. The creation of a VLSI circuit involves a large number of activities such
as modeling, simulation and logic design,[691. Opti,mization plays a very important
role in all of these tasks.

Here, DT deals with the reconstruction of an atom cluster which is faced with
in quality control of a microchip's boundary layer, [48, 551. Since the problem of
reconstruction is NP-hard, we look for approri.rnatiue algorithms using optimization
in a refined way, coupled by structure analy'sis and statistical learning.

9



In fact, the entire production process of microchips concludes with a guarantee

control of whether the outer layer on a microchip, consisting, e.g.? of silicon, is
not too rough. Therefore, we investigate the layer's surface structure. In other
words, we wish homogeneous boundary layers. Detecting T,he holes and all kinds of
nonconueli,tiescanbe defined in the discrete terms of the grid and of the lattice set of
atoms, and it asks to reconstruct the atom cluster and its structure. For this purpose?

we want to find out where the atoms are located. This is ourinuerse problern

Finding the concrete layer is our reconstruct'ion ptoblem or. in other words, our
problem on est,imation or approtimation of parameters. By means of measurements.
of discovering the geometrical and algebraical structure, aud by a combined process

of statistical learning and optimization, we try to solve this problem efticiently.
Our learning consists in a stepwise approximation of the atom cluster: Firstly

and, then, in every iteration, we may embed the possible cluster into a slighly
bigger (neighbouring) discrete set, which also lies in the underlying grid and may
be a bit easier to investigate. If fact, there may be small holes or cuts (i.e., paths

without atoms) become closed by us in order that we can expect more svûlmetry-like
structures. Such a preprncessingby aset extension can be made by an insertion of
further aùoms which will be taken off again at the end of our solution algorithm.
Later on, we will come back to this small aspect, but for the moment disregard it.
It is enough for us to consider the atom cluster lying i:r a sufficiently large discrete
rectangle which is a subset of the grid.

Now, using a series of X-ray measurements, we discover and systematicall;* ex-
ploit our lattice set's equ'iuariant (e.g., symmetrical) properties. This can be done
globally, but also locally or parti,ally for a finite number of subsets which entirely
cover our neighbouring rectangle, and by minimizing an appropriate objective func-
tion. Such discrete subsets or uindous may. e.g., be a srrraller (discrete) squares,
discs, but also (less locally but partially), frames (differences between concentric
squares) and rings or, since our reflections also apply in higher dimensional spaces?
cubes, balls, frames of higher dimensions, or tori. Herewith, they may have l'er1' dil'-
ferent connectivity properties, or7 more generally, their algebraical topological may
differ very much [68]. As being given in these exarnples, the subsets should reveal
geometrical-algebraical symmetries which can be represented as a closedness under
motions, i.e., group orbits, to which we will come next. Herewith, the subsets be-
come the place where those parts of the atom cluster which are lying in them, just

like in a subspace, can appropriately be investigated under the qualitative criterion
of equivariance. Let us mention that our approach on window covering (or partition-
ing) with a variety of maturities of reduced dimensions being possible within each
window, can be considered as a special and discrete version of. erhausti,on principle

[13, 25, 63, 701 applied on our problem from DT.
In fact that objective function represents an expected error or a variance of

our estimation, and it should be inuarianl with respect to those motions, like ro-
tations, permutations and sign-changes, which are describing the equivarince struc-

l0



tures. This will below become closer defined by means of group elements and regular
transformations. Then, finally these equivariances, if verified by the X-ray mea-
surements, help us to simplify the representation of the atom (sub-) cluster or of
its estimate (iterate) and, hereu,'ith, globally, partially or locally to dimensionally
reduce the complexity of our reconstruction problem. Besides of the probabilistic
meaning of such a reduction [18], there can also a geometrical interpretation be
given: Globally, or in the partial or local windows of our subsets. we look at less
and, possibly, other coordinates (e.g., polar ones), or at lou'er dimensional spaces
where the group orbits pa.ss through. In terms of corresponcling continuous models,
we may think of transversal sections [38] traversed b1' trajectories (say, solving a
system of clifferential equations [2, 561). Later on, when the reconstruction problem
is approximately resolved, we follow the obits or discrete trajectories back, assign
the problem result from the points on the section to all the other points on the
corresponding orbit. This backward ossignrnenf will orbitwise be done by the same
values, or up to a regular change of coordinates of the measurement vector, e.9., by
a permutation of the components or another tra,nsformation related with the group
of orbits.

In the course of this approach, we make use of statistical learning with its algo
rithms by training (i.e., first determination of model parameters) anàtest'ing (error
analysis and successive minimization). In this context, the most famous optimization
algorithms apply for minimizing least squares of errors. they fiud a rnat'imum lilce-
lihood of the unknown para,meters, or they are called EM-algorithrns (expectation-
maximization). In this sense, we will present various approaches to solve variants
and generalizations of the problem (A).

3.2 Coding Theory Applied in Discrete îomography

We consider a sufficiently large rectangular subset of the lattice with the unknorvn
atom cluster included (to be studied by rays, mainly X-rays), as a word being close
to one or another element of a finite linear spaceC. This uord can be easily found b1'
aligning the columns (or ro'ws) of the binary matrix given by the rectangular set and
the lattice directions. This initial linear code incorporates an'r' preinformation which
we have about the possible location of the atom cluster. At first, we only have a
vague initial guess about the atom distribution. We try to tnd the codeword which
is closest to our guess by decoding. In order to decode, in tomographical terms: to
reconstruct, we can use the Optimal Decodi,ng Rule or Marirnum Li,kelihood Decodi,ng
Rule [501.'We 

generate a train'ing sef and a test set of measurements. By training we refine
and suitably build up a code where we suppose that the atom distribution should be
an element in or approximated by. Afterwards, but iteratiuely coupled with training,
by testing we validate or falsify and successively improve the code and, hereu'ith, the
approximation of the real atom cluster. Within of this learning process, we step by
step reduce the dimension or complexity of the code (herewith, adapting it to our
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increasing structural insight). This implies an alternating sequence of training and
test errors being analyzed. This is also a proceeding source for conclusions about
the further measurement design which is given. e.g., by the window partitioning and
by the choice of lattice directions therein.

Since a linear code is defined as a vector space over some finite fieldZo, where
p is some prime number. we use coding theory to find geometrical properties of our
atom cluster in a step by step process of measurement and improvement. Since
\ile are dealing with discrete tomography in VLSI chip design, our code is over the
freld 22, hence p : 2. Here, I means existence and 0 means nonexistence of an
atom at a lattice point. Let us assume again that we are working in the dimension
I{ : r}r - n2 of à, say) smallest rectangle containing the finite (sub-) set to be
reconstructed. For measuring the difference between the approximative iterate and
the closest codewords, we use the Hamming distance.

Forrnolizatian of ML: Let us have the preinformation that our atom distrib-
ution is firstly approximated by at least one element c0 of a code C C (Zr)* . Then,
for any u €. (2,2)N u'e ask:

N

minimize f (r) :: I(", - ut)z, r €C.

In fact, the Hamming d'istanceof two word,s of i;;"*, linear code is defined as the
number of places rvhere the rvords ditrer [41]. We note, (rn - ur)2 : ti ua in the
field, Zz.

As our first kind of equivariance and pattern for following approaches, here, we
look for cycli,ci,ty ivhich implies manv simplifications in decoding. We can analyze
this code, hence, find out rvhat a kind of an error-correcting code it is or what its
minimum distance is. Cyclic linear codes have many special features which make
them more easily applicable [-111. We remark that our problem N,IL can also be
refined in a stochastic manner [34] based on distribution assumptions about noise
in the X-ray measurement data.

A cyclic l'inear code C is a cyclic subspace of the vector space (Zr)N in which
it is defined. Given a code word here and considering the first component (letter)
succeeding the last component in this word, then, any uniform shift to the right in
the coordinates does not lead to a leaving from the code. This cyclic permutation
of the coordinates can be irnagined by (closed) orbi.ts. Herewith, cyclicity means a
closeness condition in rreighbouring structure of the atoms. Let us enumerate the
position of the word and state the following correspondence:

u  :  (oo ,  e1 , . . . ,o* - r )  €  (Zo)*  <+ u( r )  - -  a t ) *  a1r  +  . . .  +  o rs - r rN- l .

In the sequel, we may use this identification without any special mentioning of it.
Furthermore, note that working on C is equivalent to working in the ring Z ol"]l p@)
of polynomials modulo p(r) :: rN - I. We recall that

u(r) : ryçr1 mod (e(r)) <+ u(r) - u(r) is divisible by s@),

(Pz)

T2



and if 9(r) has degree r, then lz,olrllg@)l - p'. Let S(r) : 9o * gp * ... * g,r,
be the generator polynomi,al of our code C (under the above identification), i.e.,
C: {a(r)g(r)la(r) e Zo[r)lp@)].r In other words, C is the code generated by
g(z), in symbol: C :< S@) > . Then, a generator matrix G for C representing C,
by definition, in the way C : {G{lc e (Zr)N}, is

G _

9 1 9 2 9 , 0
9o 91 9z 9,

o 9 o 9 t g z 9 ,

For the multiplication with such as special matrix G we can use shtJt registers.
Appll-ing the generator polynomial 9(r) instead of general generator matrices G,
i.e., scalar polynomial algebra and calculation instead of higher dimensional matrix
algebra is rnuch more convenient. Herewith. we have reduced the problem complexit-v*
to a grcat extelrt. Then, but iterativelv coupled, b-'- a suitable decoding algorithur we
can find orrt what the most closest code words. hence, most probable approximate
atonrs' locations, are. Furthermore, b1' using g(r) rve canonically define lhe control
polynonti;al

h(.r): :+
u'here, b' definition, C just consists * ,,1"t?trnomials c{r) e Z,olr)lp@) with
h(r)c(r): 0 (modulo p(r)). By S(") we cau do error-correction more easily than
with a carronical con,trol matrir. \\-c illustrate this b-v- the following example which
rve learn lrom [a11.

Example 2. Let our dimensions be p : 2.'r : 3. N : 2' - 1 - 7 and let our
r:ycli,r: litteo,r ude be a Ho,rnrning codt:. i.e., th,e colttmns of ou,r control matr,irH are
puuw'ise dtJferent and nonuanish'ing. Here. the generator ytolynomial wh'ich we use
is ju,st the m,i,nimal polynomi,al p.(r) : rr + r * 1. Referring to a primiti,ue element
a (wltrcre p(a): l), we ca'n repre.sent our preferred control matrir by

I i  :  ( 1 ,  e , e 2 , . . . , a 6 ) .

In fact, calculati,ng mod,ulo p,(r) in the field of polynomr,als psr2 * 0fi * &z which
carr, in the stand,ard utay be represented by the columns (13o,0r, p2)r (and i,nserting
,: o), our control matrir talces the fonn,

":(ilsiiii)
1 \tr'e hope that the traditional notation g(e) for the generator polynomial made by us in this

Subsection 3.2 does not lea.d to any confusion with the symbol g used for orbits outside of this
subsection.

(6)
( :

0  . . .  0
0  . . .  0

t3



Th.is special matri,r, obtained frorn polynornial calculation and, jttst representable by
powers of a, is tnore conueni,ent than the canon'ical control matrir which results from
the form, of the correspond'ing generator matrir. Now, let us thinlc that we haue

rece'iued, the word,u or, equiualently, polynomialu(r): c(r)+ ri, where c(r) is the
correct code word (where beirr,g 'in the cod,e just means c(a) : 0) and r' stands for
the error term at the i,-th pos'i,ti,on of the word. Both c(r) and r" are unlcnowns. By
the equat'ions

Hur : u(a) (: c(a) + a') : an,

howeuer, we id,enttfy the errorri. In fact, tf, e.g., u(r)::x * ra, wiih c(r) und r'
h id ,den,  then,  the  ca lcu la t ' ionu(a) :  a+aa:  o*  (a*a2) :  (a*  a )+a2:  a2  ( tn
Z) allows us detect the error at the place i :2. Herewith, we get as ou,r result of

reconstruct'ion by ML princ'iple: c(r) : r+r2 +r4 and, the correspond,ing code word,
C . .

In DT applications, the dimensions are of course, utuch larger than in this exam-
ple, but our basic idea from decoding remains the same for a best approximation of
the atom distribution by a code word. \Ve recall that, in our approach, this approxi-
mation is embedded in a learning processes with, e.g.. cyclicity found and exploited.
Concerning that structural property, in the ne.xt Subsection 3.3 \4/e present and use
further examples in the rich, modern and general class of equivariances.

3.3 Optimal Experimental Design Applied in DT

Here. the basic idea is to look for equiuariances in the atom distribution or of an
approximate of it. B-v these, we continue our reflections initiated with cyclicitJ' irr

Subsection 3.2. They will simplify the problem and reduce the dimension. These
generalizecl symmetry-like properties could be worked out by our X-ray measure-
ments in a way of trial and error. However, we will clo it more systematically by
remaining in a framework of statistical learning. Then, with that structural in-
formation at hand, we ask for an optimal approximation of the atom distribution,
where the optimization function is, e.g., likelihood of the estimation (to be maxi-
mized), its bias and/or variance (to be minimized) [34], and it should be compatible
with the equivariance structure which we found. This compatibility will be called
'inuariance. Both invariance and equivariance information will be represented and
utilized by opti.mal etperi,m.ental desi,gntheory from statistics [18]. Before we intro-
duce them closer, please note that these geometrical-algebraical methods of Gaffke
and Heiligers have already successfully been applied for the elasticity of crystals in
material science [6].

Let us regard a Linear regress'i,on modet y(r) : |'p(r) (r e X), where p :

(pr,pr,. . . ,Pn)T is an lR'-valued function on the experimental region .t C lRq with
compact range p(.t), and d : (0r,02, . . . ,0n)' € lR' is an unknown parameter vector.
Fbr example, the basis functions pi@) may be polynomials or basic trigonometric
functions. By an approximate design d we mean a discrete probability measure on
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,T with finite support, i.e., it assigns nonnegatir-e weights t(r1) to finitely many
points 16 € X ( i  :  1,  2, . . . ,N) only and such that Dl:r t (rr) :  1.  The moment
matrix, M@), which reflects the statistical properties of the design t, is a pos-
itive semidefinite (n x n)-matrix. The components of M(t) are the covariances
C o u ( p r , p i )  ( i ,  j  :  I , 2 , . .  . , n ) .

To decide about the optimality of a design developed in this way, we need a
real-valued convex criterion on the convex cone C of symmetric (n x n)-matrices.
This is related with cone or semidefinite programming; we refer to [51. Our feasible
set, being a convex cone, can be viewed as the infinite intersection of hyperplanes,
yielding a semi-infinite optimization problem [36]. Let us call a design optirnalll7l
if it is an optimal solution of

{P') min f W(e)), subject to M(€) eC.

An offer of various optimality criteria, /, is provided, the most common ones
being Kiefer's Qo-criteria orintegrated uariance or, more generally spoken. àn error
cri,teri,on. Mostly, these are not so complicated functions, defined, e.g., by the
eigenvalues or the trace of C or of C-I, where C is a s1'mmetric positive definite
(n x n)-rnatrix. Herewith, by such an approximate criterion or objective function, rn'e
aim at a highest probability of atom cluster reconstruction, at a smallest prediction
error and sbandard deviation of measurement error or noise, etc.. or at their additive
combi:rations [3a]. Higher courplexity and computational expenses arise for this
minimization task,'when we increase the dimension. Horvever, we can turn from a
global to a partial or local model (cf. Subsection 3.1) and, in those windol's, we
can use special structural properties in order to reduce the dimension. To this end
we will look for optimal d,es'i,gns, globalll.' or, at least. in the partial or local sense
of subdesigns, and approximatively'. In this sense, the following denotation and
terminology can also be understood in the relative sense of partial or local models
and, furthermore, they can from time to time be adapted to the growing insights n'e
gain in the course of measurement and learning.

Let all (n x n)-moment matrices C (C : M (t)) be lying in some convex cone C
with semidefinite elements and the given measurement space.t. As in Subsection
3.2, we can again by a suitable alignment of colnmns or rows directly turn from
matrices to vectors, e.g., for applying optimization methods below. Furthermore,J
is some suitable criterion on C to be minimized, F(r) stands for the measurements
of atom distribution along of a considered lattice direction and passing through a
lattice point z. Furthermore, Q is a compact group of regular matrices 2 € lR'x'
and 9 is a group of bijective g : X -->.1. These functions can by their image or trace
be imagined as orbits. For example, Ç is the group of orthogonal transformations
(e.g., rotations), of permutations or the group of sign changes? or groups jointly
generated by such groups. These group elements and their orbits by which we model
symmetry-like structures of equivariance, can be of different discrete densities. In
combination with the X-ray rreasurements, these orbits and their densities help
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to describe structure and homogenity of the unknown atom cluster. In cases of
high density and, for this, a more global lattice section provided, the orbits may be
regarded as discrete approximations of continuous trajectories. We remark that in
cases of rotations, the orbits pointwise follow a moving and detectingrad,ar beam;
this model is well-known in the discrete mathematics of oriented matroids [7, 8]. In
the partial or local windows of our research, or just globally, we may for our resea"rch
think of general'ized radar beams working.

The concerted interactions of all these functions and the matrices, called invari-
ance and equivariance, leads to dimensional reduction [17, 18]. Finally, semidefinite
and nonlinear integer programming problems have approximatively to be resolved.
Before we mention some basic ideas on these optimization methods, let us state the
central conditions which. in fact, are fulfilled for a number of constellations of our
examples on functions and matrices:

Inaarionce mearrs

r@cQr) : rQ)  v8e Q,ceC,

u'here / is one of those appropriate criteria"
Equiuarionce means

F(s@)) :  QnF(r) V s eÇ, r  e N.

Urrder these assumptions and the fact that our set is compact and convex, Jensen's
inequali,ty [62] implies that (Pz) has an optimal solution. In the paper [1fl on
optimal experirnental design, an iterative algorithm for solving (P2) approximately
is given. \À:e adapt and apply it suitably for our discrete tomography problems. In
order to achieve a better convergence rate, the following quadratic approximation is
constructed:

. f  (^ )  = T(^ , )+ 18, .m -  n ,  ) <H, (m -  m , ) , r r r -  f f i ,  )  (m  eC) .

Here, g, is the gradient, IL is the Hessian of / at mvl the iteration point at the v-th
iteration, respectivell', and < ',' ) stands for scalar product. Sometimes, we only
have approximates Eu, H, for the gradient and Hessian in hand. The line search
method and the step length can be chosen most efficiently. In order to minimize our
quaclratic approximation to the objective function f , Hi,ggi,ns-Polalc meth,od [37] is
used [17] (for further optimization methods cf., e.g., 15, 51, 521).

Figure 4, being the result obtained by both Gaffke and Heiligers [1] and Sloane

[33], illustrates the outcome of our algorithm. Since [17] asks for optimal designs
with rational weights, GafIke and Heiligers finally'' apply the group orbitsg on their
optimal approximate (real) solution points, e.g., they apply rotations, perturbations
and sign changes, on their optimal approximate (real) solution points, and a round-
ing procedure on the weights [591. This procedure works a bit like a cake-cutting
algorithm. All of the indicated points constitute a (symmetrical) exact design with

1
I
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Fig. 4: An optimally reconstructed, (small) atom cluster (desi,gn).

rational vi'eights. The dark points constitute an approxinrate design with real-valued
weights. Concerniug our application from VLSI chip design, we consider an atom to
be given at a grid point. if the corresponding weight exceeds some small threshold
e > 0 which is prescribed bi us. 501 Since usually the set to be reconstructed is
nozs1,'mnetric, i.e., not ideallv equivariant. we use the following treatment. \Âte can
still apply' our orbits g, e.9., make rotations, perturbations or sign changes, whereby,
we just include those lattiee points which are neighbouring but not necessarily ex-
pected to be in the atom cluster, h1- giving them zero rveights. Namely we can add
some small neighbouring parts of the lattice to get more symmetries so that we can
optinrize more easily. This means à, pre.processdng which maJ', in addition, also be
made at the beginning of every iteration step. At the end of the algorithm, we delete
these further auxiliary points. at least partially. Moreover, as explained above, we
perform a backuord assignment by means of all the equivariance conditions used,
including a successive iucrease of the dimensions. Firrally, we are are back in our
original problem dimension for all the wi,nrlows which, herewith, such to say, became
closed. This concludes our algorithm.

We mention that Haase [29] suggests wavelet methods for the investigation for
fractal-like structures of a high roughness, e.g., also in VLSI design. Such a roughness
is often given in situations of little local symmetries, which we took account of
in our previous reflections. One further important way how to take into account
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violations of equivariance, e.g., symrnetry breabing, can be learned from the theory

of discontinuous dynamical systems [57, 5Sl. In fact, let us think that our orbits are

close in approximation to solutions of a system of differential equations where, in

addition, jumps are allowed as soon as the trajectories transversally hit a manifold

[38], i.e., without any tangential effect. This means impulsive guidance of the local

or global flow to a different place where, then, the flow goes on. With these jumps

or impulses? we can take account of discontinuous parts in the structure of the

atom cluster or tissue, which may result from clamages in the production processes

or, in medical applications, from violations, surgeries or mtrtations. For related

consideratiorls we refer to Il, 241. On the stage of the objection functiorr, this
occurrence of jumps may in future necessitate a further development of discont'inuous
optimi.zati.on [10, 39, 721.

Our combination of conbinuous optimization methods with exploiting geornetrical-
algebraical symmctries or, âs we just discussed, broken symmetries, is a new contri-
bution to the inverse problems of DT.

4 Applications

Although ttre birth of Discrete Tomography is not long a time ago, it has been rrsed

in many applications. Ivlostly, DT is applied for electron microscopy-techniques, for
qualit;' c<lntrol of industrial products in industrial imaging, for reconstruction of
the shape of heart chambers from orthogonal biplane cardiac angiograms in medical
imaging and for quality control in VLSI chip design. These applications pronrise to
lead to significant improvements in their fielcls.

The study of DT with medical applicati.ons is emerging às àn important nerv
research area. To recover cross-section images from a nuntber of projectit-rtrs. the
object is exposed to X-ray beams from a number of directions. The transmitted
rays convey information about the density distribution inside of the bodl-. The
problem consists in reconstructing the best appr<.rximatitln of the real cross-set:tion.
In order to rnodel the 3 dimensional shape of the left or right heart chambers front
the density distributions oforthogonal biplane ventriculograrns, Onnasch and Prause

[54[ introduce a reconstruction method. In [5,11, techniques of image acquisition and
restoration are also presented. We remark that our interest in a small number of
X-ray measurements is not only of economical interest, but also for the sake of
health of a medical patient. Finally, in molecrrlar biology, atom structures change
their geometry in time. This raises a prediction problem [43] and a necessit-v to
take the dynamical aspect into consideration during the course of measurements
and statistical learning.

In i,nd,ustri.al 'imagi.ng, to obtain shape and dimensional information of industrial
parts, CT ha.s been used as an important and powerful tool [12], e,g., in reconstruct-
ing radioactive materials. Pointing out that most of the objects are made by one
material only, one can use DT by representing the related material with 1 and air
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with 0. In [9], the authors explain how DT offers valuable support in industrial
imaging and manufacturing. This may be applied to a wide range of materials [65].

5 Conclusion

Discrete Tomography is a promising field of mathematics which is developing rapidly.
Having various applications, its use requires appropriate modelliug of the problem
and efficient implementation of the algorithms. Hence, further research in this field
suggests significant improvements. In this paper, we hal'e investigated DT fronr the
new viewpoint of a combination of optimization theory, of analysis and utilization
of equivariance structures, and of statistical learning.

To mention an open problem, please consider a grid with a known number of
objects of the same size to be put on each row or column. The aim is to cover the
whole area with the objects. The problem is solvable in poll'nomial tirne if there
is only one object, wherea^s the computational complexitl' of the tu'o object case is
a open protrlem. For three or more objects the problem is NP-complete. It is also
known that it is NP-hard for six or more objects.

Such NP-hard problem complexities ask for approximative algorithms. The uti-
lization of optimization theory in a frame.work of permanent learning is promising
for this purpose, and recom:nended in this paper. In the future, rve want to continue
to refine, extend and apply the results and methods which we introduced.
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