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Abstract Optimization theory is a key technology for inverse problems of recon-
struction with applications in science, technology and economy. Discrete tomogra-
phy is a modern research field which deals with finite objects from VLSI chip design
or medical imaging. This paper focusses on the utilization of modern optimization
methods to approximately resolve the NP-hard reconstruction problem of discrete
tomography. Our new approaches and introductions are based on modeling and
algorithms from coding theory and optimal experimental design. Here, we com-
bine continuous and discrete optimization with exploiting geometrical symmetries,
or more generally, equivariances, in a framework of statistical learning.
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1 Imtroduction

The starting point of Computerized Tomography (CT ) might be the need to construct
the density distribution within the human body by means of X-ray projections.
Let us comsider the problem of locating a tumor. We often need an estimate of
the location on the basis of noninvasively available data to plan the treatment or
an operation. In our case, the available information consists of the projections.
The algorithms of CT reconstruct the volume data at a resolution limited by the
number of projections. However, it is possible to reconstruct the data at much
higher resolutions, if it may take a limited number of values from a discrete set.
The accuracy of localization depends on the resolution, while a larger number of
projections costs higher doses of ionizing radiation. Thus, Discrete Tomography
(DT) advances CT whenever it is applicable. In DT, we try to solve such problems
in an ideal, at least approximate way, and develop algorithms.

Taking the tomography of a 3-dimensional object, e.g., a human brain, means
observing the 2-dimensional slices, whereas in two dimensions the projections are
obtained by rays, e.g., X-rays |26, 45]. Tomography investigates the biology of the
brain and the technical devices, and it looks for improving numerical and optimal
methods. For reference refer to Aster et al. [3].
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Fig. 1: Illustration of the main problem of DT.

We assume that we are given a domain which can be discrete or continuous and
a function F' with a discrete range. Our aim is to reconstruct F’ from weighted sums
which are the projections of F' in the chosen horizontal and vertical directions in
the image (cf. Figure 1). In these projections and their records, our measurements
and data consist. This is an inverse problem in which we want to reconstruct a
lattice set from its X-rays or projections. Batenburg [4] presents an improvement
of a reconstruction algorithm in order to minimize the time complexity where the
optimized version is 50 times faster than the existing approach [30].

When the object to be reconstructed is assumed to be continuous, real analysis
is used to develop the theory. By the necessity of numerical evaluations, those
Continuous Tomography problems often become discretized; in many cases, then,
a linear system of equations is the resulting problem [3]. As the name Discrete
Tomography suggests, DT is a part of discrete mathematics [21, 27]. For further
information on the theory, algorithms and applications of DT, we refer to the book
of Herman and Kuba [35] and, related with our approaches, [71, 73, 74]. In recent
years, various applications of DT became reported. DT has been applied to diverse
areas such as medical sciences, image processing, electron microscopy, scheduling,
statistical data security, game theory and material sciences. For instance, as a first
result on medical applications, Reiber et al. [60] reconstructed the right coronary
artery from two cineangiograms. For various medical applications of DT such as
enhancement of tomographic images, reconstruction of human organs, e.g., blood
vessels, we refer to the survey paper of Kuba et al. [47].

In this paper, we first give the notation and basic problems of DT. In Section 3, we
present algorithms coming from optimization and statistical learning, supported by
the recognition and exploitation of geometrical-algebraical invariances. In Section
4, we provide a short survey of some important applications. We will finish the
paper with open problems and an outlook. Since in this paper various methods and
traditions come together, we emphasize their concerted interplay whereas, however,
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Fig. 2: A lattice is given on the left hand side; a simple lattice set is shown on the
right hand side.

not all technical aspects can be recalled and presented. This will be done in detail
in future works.

2 Preliminaries

Let us introduce the basic notation and definitions which is similar to Shepp et al.
[15]. Here, Z stands for the set of integers, and Ny denotes the set of natural numbers
including 0. Lattice sets are discrete sets F' C Z¢ which are finite subsets of integer
vectors (cf. Figure 2). The embedding set Z¢, called a lattice, or a rectangular subset
of it containing F' can be considered as a regular grid of points or positions. The
latter ones are also called cells. If we are in medical applications of DT, then, this
notion has a natural meaning. Lattice directions are nonzero vectors v in the lattice
Z%, but over the field Q of rational numbers, which impliesv € Q?. A finite sequence
of distinct lattice directions will be denoted by D, hence, for some ¢ € N, g > 2,

D = (v1,vs,...,7). (1)

A lattice line | is parallel to a vector vy € D and, furthermore, it has nonempty
mtersection with the lattice: [NZ? # @. For a visualization of lattice lines see l; and
l in Figure 1. The set of all lattice lines which are parallel tov; € D is denoted by
Lk, and £ will be the class of finite sets in Z¢. The collection of the set of lattice
lines determined by D is represented by

L= (F.I%.... 19 g22 (2)

Based on these definitions and notations, a lattice line [ may, e.g., correspond
to an X-ray, and it will be chosen from the set L* if { is parallel to some chosen
direction v;. In that context, a lattice set represents an atom cluster embedded into
a grid (lattice) of possible atom positions.




Based on a discretization prepared and on a slicewise reduction of the reconstruc-
tion to two dimensions, we can refine our tomographical problem by a feasibility
problem posed in the planar way of dimension 2. Then, any two distinct lattice
directions can be considered. Since a suitable linear transformation can be found
which transforms any two dimensional lattice to a lattice with directions (1,0) and
(0,1), we will consider this latter case. In applications studied by us below, how-
ever, the iterative choice of the lattice directions is part of the challenge and art,
an element of a learning process [34]. There are more directions than these stan-
dard ones (provided for simplicity) possible, namely, e.g., the diagonal-wise and
counterdiagonal-wise ones, and, moreover, a refinement by partial and local instead
of global measurements.

At this stage, our aim is to find a binary vector which satisfies a matrix equation
given by

Pg = b (3)

where P € {0,1}M*¥ and b € N}. Namely, if the smallest rectangular box con-
taining the finite set to be reconstructed has dimension n; X n, then, M =n14+n,
and N = n; - ny. Hence, M is the number of lattice lines, in this case being par-
allel to the directions (1,0) and (0,1) on which there is at least one element from
our discrete set, and N is the total number of points or positions considered in our
reconstruction problem.

According to the projections taken we define the matrix P, sometimes referred
to as a view matriz [28]. The vector b consists of the raywise recorded experimental
data. Considering that the surface or tissue to become reconstructed is discretized
by cells, this matrix will consist of rows whose components are 1 for any cell where
the ray (represented by a row of P) goes through, and 0 if the ray does not meet
that cell. Here, the binary values come from the provided orthogonality of the axes
of directions and from the distance of a unit 1 between neighbouring lattice points
along of these directions. In cases of nonorthogonality or, more generally, coming
from an underlying and discretized continuous problem, P may also have nonbinary
values of distance or values of further physical, biological or chemical dimensions [3].

We could as well extend our feasibility problem by imposing the maximization
of f(z), defined as the sum of the components z; (i € {1,2,..., N}) with respect to
eq. 3, i.e.,

N
(Py) maximize f(z) := sz, subject to Pz = b and z € {0,1}".
j=1

A solution of this optimization problem implies feasibility, but it additionally
aims at a maximal density of atoms or of other considered discrete objects, in other
words, at a high distribution or a large support. For example, the value associated
with each cell, by relaxation of the discrete case, can correspond to the amount of




x1]
X3

X

2 2

Fig. 3: An instance illustrating the problem as a linear programming problem. Pro-
jection on two lattice lines in the directions (1,0) and (0,1).

radiation passed onto the next cell. Hence, by maximizing the sum f(z) in (P;) we
reversely allocate the X-ray measurement data b; more widely, towards portions for
any single cell under a threshold. Herewith, we minimize the radiation emerging
from that object. Especially, in corresponding medical applications, this is very
important for protecting health under X-ray application.

Other objective functions rather than f(z) are possible and they can be selected
depending on the studied application from science, technology, ecology, social science
or medicine. For example, we could also minimize the objective function f(z) from
(P,). For this minimization problem, a more general interpretation can be given by
the theory of inverse problems: There is a trade-off between the interest in a high
(re-)solution quality on the one side, and not too high a problem complexity, i.e., a
minimal number of nonvanishing parameters z; on the other side [3]. That second
goal expresses itself in norm-minimizing of z, e.g., in the ¢2- (or Euclidean) norm,
or, as in our case, the #!- (or sum-) norm. Please note the nonnegativity implied by
the binary constraints.

For our optimization problem (P;), there are polynomial-time interior point
methods (cf. [36, 66]). In Section 3, we give detailed interpretation and new in-
sights from the viewpoint of optimization.

Example 1. Consider the lattice set given in Figure 3. It is contained in a (3 X
2)-rectangle, hence, M = 5 and N = 6. Here, we know the projections along 3
horizontal and 2 vertical directions. For this instance we have the following system
of equations

T+ X2 =

T3+ T4

Il

NN N =

Ts +l’6 =
T + x3 + x5 =

To + x4 +xg =




Here, P,x and b are

I

110000 . 1
001100 2 1
P=lloto 00011/, z= f b=1 2 "
101010 4 2
010101 s 2

Te

The projection of a lattice set in direction vy is p'’ : L® — Ny such that

PR =1Fni =Y f(z), (4)

z€l

where f is the characteristic function of F, i.e., f(z) =1 ifz € F, and f(z) =0 if
r¢F.

Two lattice sets F' and F” are said to be tomographically equivalent with respect
to the directions D, if the following equality is satisfied:

k k
P =¥, k=12,...,¢ (5)

Now, let us state the three main problems which discrete tomography is concerned
with:

Consistency(&, L)

Given: Functions p® : L™ — Ny, k = 1,2,...,q, with finite support (i.e., for
every k: p*'(1) # 0 for finitely many [ € L™ only).

Question: Does there exist an F' € £ such that pgf) =ptfork=1,2...,q7
Uniqueness (£, L)

Given: An F € £.

Question: Does there exist a different F” € £ such that F' and F” are disjoint and
tomographically equivalent with respect to the directions of D?

If a set is nonunique, then it cannot by its projections be distinguished from
some other set in Z?. We note that utilizing available a priori information on the
reconstructed object may help to distinguish the most likely solution. The successive
discovering of such a knowledge will later on be part of our algorithmic approach.
Reconstruction (£, L)

Given: Functions p® : L®) - Ny k=1,2,...,q, with finite support.
Task: Construct a finite set F' € & such that pl) = p¥ for k =1,2,...,q.

It should be clear from the definitions that if the reconstruction problem is
solvable, then the consistency problem can be solved as well. In the following, we
come to complezity results [22] for our reconstruction problems by lattice lines. For
closer information refer to [20, 42], and we begin with a small table. Here, PTA
stands for the existence of a corresponding polynomial-time algorithm.



Consistency Uniqueness | Reconstruction
g=2,d=2 PTA PTA PTA
q>3 NP Complete | NP Complete NP Hard

One of the results stated by Gritzmann and Gardner [75] says that any discrete
subset of Z? is unique with respect to D if the cardinality of D exceeds 6.

The complexity of the problem is not in general developped yet for r-dimensio-
nal X-rays when r is greater than 1. Only a few results are known. For instance,
when 7 = 2, d = 3, and L consists of the 3 coordinate planes, the problems still
remain open.

If we have g = 2 lattice directions only, then, due to Ryser’s Theorem |64], by
checking whether a known submatrix is contained in a binary matrix or not, we can
say whether it is unique or not. On the other hand, it is known that one cannot
check uniqueness with the same procedure if there are ¢ > 2 directions.

Because of the described problem complexities, one looks for new algorithmical
methods. In the following, we give a contribution to this by modern optimization
combined with geometrical-algebraical properties of structure and in a process of
learning, of information gaining and using.

3 Optimization in Discrete Tomography

For the sake of simplicity, we shall in the following concentrate on referring to the
applied background from microchip design. This preference in motivation will also
well fit to our methods from experimental design which will be later on presented.

3.1 Motivation and Preparation by Optimization in VLSI Chip Design

An integrated circuit (IC) is a tiny semiconductor chip, on which a complex of
electronic components and their interconnections are fabricated with a set of pattern
defining masks. The technique of fabricating an IC with a set of masks is somewhat
analogous to that of creating a photograph with a negative.

The evolution of IC technology is measured by the number of components in-
tegrated on a single chip. The IC industry has gone through the milestones of
small scale integration (SS1), medium scale integration (MS1), large scale integra-
tion (LSI), and very large scale integration (VLSI). Known as Moore’s Law, the
maximum number of transistors on a chip approximately doubles every eighteen
months. The creation of a VLSI circuit involves a large number of activities such
as modeling, simulation and logic design,[69]. Optimization plays a very important
role in all of these tasks.

Here, DT deals with the reconstruction of an atom cluster which is faced with
in quality control of a microchip’s boundary layer, [48, 55]. Since the problem of
reconstruction is NP-hard, we look for approzimative algorithms using optimization
in a refined way, coupled by structure analysis and statistical learning.




In fact, the entire production process of microchips concludes with a guarantee
control of whether the outer layer on a microchip, consisting, e.g., of silicon, is
not too rough. Therefore, we investigate the layer’s surface structure. In other
words, we wish homogeneous boundary layers. Detecting the holes and all kinds of
nonconvezities can be defined in the discrete terms of the grid and of the lattice set of
atoms, and it asks to reconstruct the atom cluster and its structure. For this purpose,
we want to find out where the atoms are located. This is our inverse problem.
Finding the concrete layer is our reconstruction problem or, in other words, our
problem on estimation or approzimation of parameters. By means of measurements,
of discovering the geometrical and algebraical structure, and by a combined process
of statistical learning and optimization, we try to solve this problem efficiently.

Our learning consists in a stepwise approximation of the atom cluster: Firstly
and, then, in every iteration, we may embed the possible cluster into a slighly
bigger (neighbouring) discrete set, which also lies in the underlying grid and may
be a bit easier to investigate. If fact, there may be small holes or cuts (i.e., paths
without atoms) become closed by us in order that we can expect more symmetry-like
structures. Such a preprocessing by a set extension can be made by an insertion of
further atoms which will be taken off again at the end of our solution algorithm.
Later on, we will come back to this small aspect, but for the moment disregard it.
It is enough for us to consider the atom cluster lying in a sufficiently large discrete
rectangle which is a subset of the grid.

Now, using a series of X-ray measurements, we discover and systematically ex-
ploit our lattice set’s equivariant (e.g., symmetrical) properties. This can be done
globally, but also locally or partially for a finite number of subsets which entirely
cover our neighbouring rectangle, and by minimizing an appropriate objective func-
tion. Such discrete subsets or windows may, e.g., be a smaller (discrete) squares,
discs, but also (less locally, but partially), frames (differences between concentric
squares) and rings or, since our reflections also apply in higher dimensional spaces,
cubes, balls, frames of higher dimensions, or tori. Herewith, they may have very dif-
ferent connectivity properties, or, more generally, their algebraical topological may
differ very much [68]. As being given in these examples, the subsets should reveal
geometrical-algebraical symmetries which can be represented as a closedness under
motions, i.e., group orbits, to which we will come next. Herewith, the subsets be-
come the place where those parts of the atom cluster which are lying in them, just
like in a subspace, can appropriately be investigated under the qualitative criterion
of equivariance. Let us mention that our approach on window covering (or partition-
ing) with a variety of maturities of reduced dimensions being possible within each
window, can be considered as a special and discrete version of ezhaustion principle
[13, 25, 63, 70] applied on our problem from DT.

In fact that objective function represents an expected error or a variance of
our estimation, and it should be invariant with respect to those motions, like ro-
tations, permutations and sign-changes, which are describing the equivarince struc-
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tures. This will below become closer defined by means of group elements and regular
transformations. Then, finally, these equivariances, if verified by the X-ray mea-
surements, help us to simplify the representation of the atom (sub-) cluster or of
its estimate (iterate) and, herewith, globally, partially or locally to dimensionally
reduce the complexity of our reconstruction problem. Besides of the probabilistic
meaning of such a reduction [18], there can also a geometrical interpretation be
given: Globally, or in the partial or local windows of our subsets. we look at less
and, possibly, other coordinates (e.g., polar ones), or at lower dimensional spaces
where the group orbits pass through. In terms of corresponding continuous models,
we may think of transversal sections [38] traversed by trajectories (say, solving a
system of differential equations [2, 56]). Later on, when the reconstruction problem
is approximately resolved, we follow the obits or discrete trajectories back, assign
the problem result from the points on the section to all the other points on the
corresponding orbit. This backward assignment will orbitwise be done by the same
values, or up to a regular change of coordinates of the measurement vector, e.g., by
a permutation of the components or another transformation related with the group
of orbits.

In the course of this approach, we make use of statistical learning with its algo-
rithms by training (i.e., first determination of model parameters) and testing (error
analysis and successive minimization). In this context, the most famous optimization
algorithms apply for minimizing least squares of errors, they find a mazimum like-
lihood of the unknown parameters, or they are called EM-algorithms (expectation-
maximization). In this sense, we will present various approaches to solve variants
and generalizations of the problem (7).

3.2 Coding Theory Applied in Discrete Tomography

We consider a sufficiently large rectangular subset of the lattice with the unknown
atom cluster included (to be studied by rays, mainly, X-rays), as a word being close
to one or another element of a finite linear spaceC. This word can be easily found by
aligning the columns (or rows) of the binary matrix given by the rectangular set and
the lattice directions. This initial linear code incorporates any preinformation which
we have about the possible location of the atom cluster. At first, we only have a
vague initial guess about the atom distribution. We try to find the codeword which
is closest to our guess by decoding. In order to decode, in tomographical terms: to
reconstruct, we can use the Optimal Decoding Rule or Mazimum Likelihood Decoding
Rule [50].

We generate a training set and a test set of measurements. By training we refine
and suitably build up a code where we suppose that the atom distribution should be
an element in or approximated by. Afterwards, but iteratively coupled with training,
by testing we validate or falsify and successively improve the code and, herewith, the
approximation of the real atom cluster. Within of this learning process, we step by
step reduce the dimension or complexity of the code (herewith, adapting it to our
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increasing structural insight). This implies an alternating sequence of training and
test errors being analyzed. This is also a proceeding source for conclusions about
the further measurement design which is given, e.g., by the window partitioning and
by the choice of lattice directions therein.

Since a linear code is defined as a vector space over some finite field Z,, where
p is some prime number, we use coding theory to find geometrical properties of our
atom cluster in a step by step process of measurement and improvement. Since
we are dealing with discrete tomography in VLSI chip design, our code is over the
field Z,, hence p = 2. Here, 1 means existence and 0 means nonexistence of an
atom at a lattice point. Let us assume again that we are working in the dimension
N = n; - ny of a, say, smallest rectangle containing the finite (sub-) set to be
reconstructed. For measuring the difference between the approximative iterate and
the closest codewords, we use the Hamming distance.

Formalization of ML: Let us have the preinformation that our atom distrib-
ution is firstly approximated by at least one element c® of a code C C (Z3)". Then,
for any u € (Z2)" we ask:

N
(P2) minimize  f(z) = Z(x, —u;)?, zeC.
i=1
In fact, the Hamming distance of two words of a binary linear code is defined as the
number of places where the words differ [41]. We note, (z; — u;)* = z; — u; in the
field Zs.

As our first kind of equivariance and pattern for following approaches, here, we
look for cyclicity which implies many simplifications in decoding. We can analyze
this code, hence, find out what a kind of an error-correcting code it is or what its
minimum distance is. Cyclic linear codes have many special features which make
them more easily applicable [41]. We remark that our problem ML can also be
refined in a stochastic manner [34] based on distribution assumptions about noise
in the X-ray measurement data.

A cyelic linear code C is a cyclic subspace of the vector space (Z,)" in which
it is defined. Given a code word here and considering the first component (letter)
succeeding the last component in this word, then, any uniform shift to the right in
the coordinates does not lead to a leaving from the code. This cyclic permutation
of the coordinates can be imagined by (closed) orbits. Herewith, cyclicity means a
closeness condition in neighbouring structure of the atoms. Let us enumerate the
position of the word and state the following correspondence:

u=(ag,a1,...,ay_1) € (Zq)N S uwz)=a+az+... * an_ga L
In the sequel, we may use this identification without any special mentioning of it.
Furthermore, note that working on C is equivalent to working in the ring Z,[z]/p(z)
of polynomials modulo p(z) := z¥ — 1. We recall that

u(z) =w(z) mod (¢g(z)) < wu(z)—w(z)is divisible by g(z),
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and if g(z) has degree r, then |Z,[z]/g(z)| = p". Let g(z) = go + g1z + ... + g,z”
be the generator polynomial of our code C (under the above identification), i.e.,
C = {a(z)g(z)|a(z) € Zy[z]/p(x)}.! In other words, C is the code generated by
g(z), in symbol: C =< g(z) > . Then, a generator matrix G for C representing C,
by definition, in the way C = {GcT|c € (Z,)V}, is

9 9 g - g 0 0 - 0
0 ceo g 0 «-- O

g=| . * # B2oe T (6)
o0 - - 0 g @ g - g

For the multiplication with such as special matrix G we can use shift registers.
Applying the generator polynomial ¢g(z) instead of general generator matrices G,
i.e., scalar polynomial algebra aud calculation instead of higher dimensional matrix
algebra is much more convenient. Herewith, we have reduced the problem complexity
to a great extent. Then, but iteratively coupled, by a suitable decoding algorithm we
can find out what the most closest code words, hence, most probable approximate
atoms’ locations, are. Furthermore, by using g(z) we canonically define the control
polynomial

Ale) = g(z)

where, by definition, C just consists of the polynomials ¢(z) € Z,[z]/p(z) with
h(z)c(z) = 0 (modulo p(z)). By g(z) we can do error-correction more easily than
with a canonical control matriz. We illustrate this by the following example which
we learn from [41].

Example 2. Let our dimensions bep = 2,71 = 3, N = 2" — 1 = 7 and let our
cyclic linear code be a Hamming code, i.e., the columns of our control matricH are
parrwise different and nonvanishing. Here. the generator polynomial which we use
is just the minimal polynomial u(z) = 3 + = + 1. Referring to a primitive element
a (where p(a) = 1), we can represent our preferred control matriz by

H = (1,a,d%...,a%.

In fact. calculating modulo p(x) in the field of polynomials Box?® + Bz + B2 which
can in the standard way be represented by the columns (Bo, 31, B32)T (and inserting
z = a), our control matriz takes the form

! We hope that the traditional notation g(x) for the generator polynomial made by us in this
Subsection 3.2 does not lead to any confusion with the symbol g used. for orbits outside of this
subsection.
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This special matriz, obtained from polynomial calculation and just representable by
powers of a, is more convenient than the canonical control matriz which results from
the form of the corresponding generator matriz. Now, let us think that we have
received the word u or, equivalently, polynomial u(z) = c(z) + z*, where c(z) is the
correct code word (where being in the code just means c(a) = 0) and x* stands for
the error term at the i-th position of the word. Both c(z) and z* are unknowns. By

the equations _ 4
HvT = u(a) (= c(a) +a') = d',

however, we identify the error *. In fact, if, e.g., u(z) = z + *, with ¢(z) and z*
hidden, then, the calculation u(a) = a+a* = a+ (a +a?) = (a+a) +a® = a® (in
Z,) allows us detect the error at the placei = 2. Herewith, we get as our result of
reconstruction by ML principle: c(x) = z+z?+z* and the corresponding code word
c. =

In DT applications, the dimensions are of course, much larger than in this exam-
ple, but our basic idea from decoding remains the same for a best approximation of
the atom distribution by a code word. We recall that, in our approach, this approxi-
mation is embedded in a learning processes with, e.g.. cyclicity found and exploited.
Concerning that structural property, in the next Subsection 3.3 we present and use
further examples in the rich, modern and general class of equivariances.

3.3 Optimal Experimental Design Applied in DT

Here, the basic idea is to look for equivariances in the atom distribution or of an
approximate of it. By these, we continue our reflections initiated with cyclicity in
Subsection 3.2. They will simplify the problem and reduce the dimension. These
generalized symmetry-like properties could be worked out by our X-ray measure-
ments in a way of trial and error. However, we will do it more systematically by
remaining in a framework of statistical learning. Then, with that structural in-
formation at hand, we ask for an optimal approximation of the atom distribution,
where the optimization function is, e.g., likelihood of the estimation (to be maxi-
mized), its bias and /or variance (to be minimized) [34], and it should be compatible
with the equivariance structure which we found. This compatibility will be called
invariance. Both invariance and equivariance information will be represented and
utilized by optimal ezperimental design theory from statistics [18]. Before we intro-
duce them closer, please note that these geometrical-algebraical methods of Gaffke
and Heiligers have already successfully been applied for the elasticity of crystals in
material science [6].

Let us regard a linear regression model y(z) = 6Tp(z) (z € X), where p =
(p1,P2,---,pn)T is an R™valued function on the experimental region X C R? with
compact range p(X), and § = (6,62, ...,6,)T € R™is an unknown parameter vector.
For example, the basis functions p;(z) may be polynomials or basic trigonometric
functions. By an approximate design £ we mean a discrete probability measure on
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X with finite support, i.e., it assigns nonnegative weights £(z;) to finitely many
points z; € X (1 = 1,2,...,N) only and such that Zf;lé’(xi) = 1. The moment
matrix, M(£), which reflects the statistical properties of the design &, is a pos-
itive semidefinite (n X n)-matrix. The components of M () are the covariances
Cov(piapj) (27.7 =1,3,... 7”)'

To decide about the optimality of a design developed in this way, we need a
real-valued convex criterion on the convex cone C of symmetric (n x n)-matrices.
This is related with cone or semidefinite programming; we refer to [5]. Our feasible
set, being a convex cone, can be viewed as the infinite intersection of hyperplanes,
yielding a semi-infinite optimization problem [36]. Let us call a design optimal [17]
if it is an optimal solution of

(P2) min f(M(£)), subject to M(E) €C.

An offer of various optimality criteria, f, is provided, the most common ones
being Kiefer’s ®,-criteria or integrated variance or, more generally spoken. an error
criterion. Mostly, these are not so complicated functions, defined, e.g., by the
eigenvalues or the trace of C' or of C!, where C is a svmmetric positive definite
(nxn)-matrix. Herewith, by such an approximate criterion or objective function, we
aim at a highest probability of atom cluster reconstruction, at a smallest prediction
error and standard deviation of measurement error or noise, etc., or at their additive
combinations [34]. Higher complexity and computational expenses arise for this
minimization task, when we increase the dimension. However, we can turn from a
global to a partial or local model (cf. Subsection 3.1) and, in those windows, we
can use special structural properties in order to reduce the dimension. To this end
we will look for optimal designs, globally or, at least, in the partial or local sense
of subdesigns, and approximatively. In this sense, the following denotation and
terminology can also be understood in the relative sense of partial or local models
and, furthermore, they can from time to time be adapted to the growing insights we
gain in the course of measurement and learning.

Let all (n X n)-moment matrices C (C = M(£)) be lying in some convex cone C
with semidefinite elements and the given measurement space X. As in Subsection
3.2, we can again by a suitable alignment of columns or rows directly turn from
matrices to vectors, e.g., for applying optimization methods below. Furthermore, f
is some suitable criterion on C to be minimized, F'(z) stands for the measurements
of atom distribution along of a considered lattice direction and passing through a
lattice point . Furthermore, @ is a compact group of regular matrices @ € R™"
and G is a group of bijective g : X — X. These functions can by their image or trace
be imagined as orbits. For example, G is the group of orthogonal transformations
(e.g., rotations), of permutations or the group of sign changes, or groups jointly
generated by such groups. These group elements and their orbits by which we model
symmetry-like structures of equivariance, can be of different discrete densities. In
combination with the X-ray measurements, these orbits and their densities help
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to describe structure and homogenity of the unknown atom cluster. In cases of
high density and, for this, a more global lattice section provided, the orbits may be
regarded as discrete approximations of continuous trajectories. We remark that in
cases of rotations, the orbits pointwise follow a moving and detecting radar beam;
this model is well-known in the discrete mathematics of oriented matroids [7, 8]. In
the partial or local windows of our research, or just globally, we may for our research
think of generalized radar beams working.

The concerted interactions of all these functions and the matrices, called invari-
ance and equivariance, leads to dimensional reduction [17, 18]. Finally, semidefinite
and nonlinear integer programming problems have approximatively to be resolved.
Before we mention some basic ideas on these optimization methods, let us state the
central conditions which, in fact, are fulfilled for a number of constellations of our
examples on functions and matrices:

Invariance means

f(RQCQT) = f(C) YQeQ, CeC,

where f is one of those appropriate criteria.
Equivariance means

F(g(z)) = Q,F(x) Yge€g zed.

Under these assumptions and the fact that our set is compact and convex, Jensen’s
inequality [62] implies that (P,) has an optimal solution. In the paper [17] on
optimal experimental design, an iterative algorithm for solving (P;) approximately
is given. We adapt and apply it suitably for our discrete tomography problems. In
order to achieve a better convergence rate, the following quadratic approximation is
constructed:

1
f(m) =~ f(m,)+ < g,,m —m, > +§ <H,(m-m,),m—-—m,> (meC).

Here, g, is the gradient, H, is the Hessian of f at m,, the iteration point at the v-th
iteration, respectively, and < -,- > stands for scalar product. Sometimes, we only
have approximates g,, H, for the gradient and Hessian in hand. The line search
method and the step length can be chosen most efficiently. In order to minimize our
quadratic approximation to the objective function f, Higgins-Polak method [37] is
used [17] (for further optimization methods cf., e.g., [5, 51, 52]).

Figure 4, being the result obtained by both Gaffke and Heiligers [17] and Sloane
[33], illustrates the outcome of our algorithm. Since [17] asks for optimal designs
with rational weights, Gaffke and Heiligers finally apply the group orbitsg on their
optimal approximate (real) solution points, e.g., they apply rotations, perturbations
and sign changes, on their optimal approximate (real) solution points, and a round-
ing procedure on the weights [59]. This procedure works a bit like a cake-cutting
algorithm. All of the indicated points constitute a (symmetrical) exact design with
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Fig. 4: An optimally reconstructed (small) atom cluster (design).

rational weights. The dark points constitute an approximate design with real-valued
weights. Concerning our application from VLSI chip design, we consider an atom to
be given at a grid point, if the corresponding weight exceeds some small threshold
e > 0 which is prescribed by us. 50] Since usually the set to be reconstructed is
nonsymmetric, i.e., not ideallv equivariant, we use the following treatment. We can
still apply our orbits g. e.g., make rotations, perturbations or sign changes, whereby,
we just include those lattice points which are neighbouring but not necessarily ex-
pected to be in the atom cluster, by giving them zero weights. Namely, we can add
some small neighbouring parts of the lattice to get more symmetries so that we can
optimize more easily. This means a preprocessing which may, in addition, also be
made at the beginning of every iteration step. At the end of the algorithm, we delete
these further auxiliary points. at least partially. Moreover, as explained above, we
perform a backward assignment by means of all the equivariance conditions used,
including a successive increase of the dimensions. Finally, we are are back in our
original problem dimension for all the windows which, herewith, such to say, became
closed. This concludes our algorithm.

We mention that Haase [29] suggests wavelet methods for the investigation for
fractal-like structures of a high roughness, e.g., also in VLSI design. Such a roughness
is often given in situations of little local symmetries, which we took account of
in our previous reflections. One further important way how to take into account
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violations of equivariance, e.g., symmetry breaking, can be learned from the theory
of discontinuous dynamical systems [57, 58]. In fact, let us think that our orbits are
close in approximation to solutions of a system of differential equations where, in
addition, jumps are allowed as soon as the trajectories transversally hit a manifold
[38], i.e., without any tangential effect. This means impulsive guidance of the local
or global flow to a different place where, then, the flow goes on. With these jumps
or impulses, we can take account of discontinuous parts in the structure of the
atom cluster or tissue, which may result from damages in the production processes
or, in medical applications, from violations, surgeries or mutations. For related
considerations we refer to [1, 24]. On the stage of the objection function, this
occurrence of jumps may in future necessitate a further development of discontinuous
optimization [10, 39, 72].

Our combination of continuous optimization methods with exploiting geometrical-
algebraical symmetries or, as we just discussed. broken symmetries, is a new contri-
bution to the inverse problems of DT.

4 Applications

Although the birth of Discrete Tomography is not long a time ago, it has been used
in many applications. Mostly, DT is applied for electron microscopy-techniques, for
quality control of industrial products in industrial imaging, for reconstruction of
the shape of heart chambers from orthogonal biplane cardiac angiograms in medical
imaging and for quality control in VLSI chip design. These applications promise to
lead to significant improvements in their fields.

The study of DT with medical applications is emerging as an important new
research area. To recover cross-section images from a number of projections. the
object is exposed to X-ray beams from a number of directions. The transmitted
rays convey information about the density distribution inside of the body. The
problem consists in reconstructing the best approximation of the real cross-section.
In order to model the 3 dimensional shape of the left or right heart chambers from
the density distributions of orthogonal biplane ventriculograms, Onnasch and Prause
[54] introduce a reconstruction method. In [54], techniques of image acquisition and
restoration are also presented. We remark that our interest in a small number of
X-ray measurements is not only of economical interest, but also for the sake of
health of a medical patient. Finally, in molecular biology, atom structures change
their geometry in time. This raises a prediction problem [43]| and a necessity to
take the dynamical aspect into consideration during the course of measurements
and statistical learning.

In industrial imaging, to obtain shape and dimensional information of industrial
parts, CT has been used as an important and powerful tool {12}, e.g., in reconstruct-
ing radioactive materials. Pointing out that most of the objects are made by one
material only, one can use DT by representing the related material with 1 and air
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with 0. In [9], the authors explain how DT offers valuable support in industrial
imaging and manufacturing. This may be applied to a wide range of materials [65].

5 Conclusion

Discrete Tomography is a promising field of mathematics which is developing rapidly.
Having various applications, its use requires appropriate modelling of the problem
and efficient implementation of the algorithms. Hence, further research in this field
suggests significant improvements. In this paper, we have investigated DT from the
new viewpoint of a combination of optimization theory, of analysis and utilization
of equivariance structures, and of statistical learning.

To mention an open problem, please consider a grid with a known number of
objects of the same size to be put on each row or column. The aim is to cover the
whole area with the objects. The problem is solvable in polynomial time if there
is only one object, whereas the computational complexity of the two object case is
a open problem. For three or more objects the problem is NP-complete. It is also
known that it is NP-hard for six or more objects.

Such NP-hard problem complexities ask for approximative algorithms. The uti-
lization of optimization theory in a framework of permanent learning is promising
for this purpose, and recommended in this paper. In the future, we want to continue
to refine, extend and apply the results and methods which we introduced.
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