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Abstract
The Miuimum Classification Ermr (MCE) / Generali"ed Probabilistic Descent

(GPD) learning proposed by Katagiri and Juang in 1992 ha.s attracted a great deal of
attention for its high recognition performance and wide range of applications includ-
ing the case where the length of feature vectors is variable like speech recognition.
In this report, we propæe a new method to improve the generalization performance
of the MCE learning by employing au regularization technique which is widely used
to solve ill-posed problems. Feed-forward neural networks a.re employed to evaluate
the performance of the proposed method.
Ke5rwords : MCE/GPD, Generalization Ability, ill-posed problem, over-fitting.

1 lrrtroduction

In the classical pattern recognition theory, if one ca,n predict the exact probability
densities ofthe target categories beforehand, the Bayes decision rule would give the
optimum decision that achienes the minimum error risk. In order to estimate the
densities and design a set of classifiers, the maximumlikelihood estimation (ML)
is widely used in various area.s of machine learning and pattern recognition. How-
ever, in the real-world pattern recognition pmblems, the number of data arrailable
is restricted and therefore the Bayes-type classifiers trained by the ML method
sometimes result in insufficient recognition performance. Instead of estimating the
probabilistic distributions, one can employ the discriminative learning in which the
parameters of the classifier are adapted to minimize the classification error.

However, it is for the very limited situations of real-world problems that the
classical discriminative learning such a.s perceptron gives better classification per-
formance than the Ml,-based learning. This comes from the fact that the cost
function employed in the learning scheme is not differentiable in respect to the pa-
rameters that are to be adapted, and therefore parameter adaptation can not be
done adequately.

International Journcl of Computing Anticipatory Systems, Volume 15,2004
Edited by D. M. Dubois, CHAOfl, Liège, Belgium,ISSN 1373-5411 ISBN 2-93fit9ffit4



In order to overcome the difficultly, Amari proposed Probabilistic Descent (PD).
In 1992, Katagiri and .Iuang generalized the idea of the PD learning and proposed the
Minimum Classification Error (MCE) / Generalized Probabilistic Descent (GPD)
learning[l]. The MCE/GPD lea.rning successfully defines an object firnction that can
be optimized by means of the gradient descent technique. The key idea of the MCE
formulation is to employ a smooth loss function which represents the cla.ssification
error instead of using a hard decision function.

As a result, compared to other discriminative learning, the MCE/GPD learning
is crucial in the sense that it is applicable to arbitrary discriminant functions that
are difierentiable in respect to the pararneters that are to be adapted. To be specific,
it can be applied to discriminant functions that deal with variable record lmgth of
data like speech recogni1i61.

The superiority of the MCE learning to the conventional MLbased learning
h+. been shown for various functions such a.s linear-discriminant functious, multi-
layer perceptron (MLP), dynarnic time warping (DTw) and hidden Markov model
(HMIVI). However, it suflers from a problem of generalization performance for testing
data as it is with other learning methods. This is due to the fact that tbe MCE
lea'rning has an inclination to adapt the pa.rarnetcrs specifcalty to the training data
in order to achieve the minimnm classification error.

In this paper, we propose a new approarùr of improving the generalization per-
formance of the MCE learniug and to use the information of mis classified data
by incorporating a new feature value derived from the misclassification measure of
MCE/GPD leaming.

The propoeed learning scheme easily combines MCE/GPD learning with other
difierent learning netÀods, which are expected to work supplernentaly.

2 Minimum Classification Error Learning

Let g(r; Àr) h a discriminant function with positive value to discriminate a data
of class C1 from the other classes, where x, À1 denote a vector in D-dimmsional
feature space and the set of parameter of the discriminant firnction, respectively.
For an input vector :q if the following eguation holds

sr(x; Àr) ) s,r(x; À;) for a,ll i + k, (1)

s is clâçsifid to ciass C3.
In the frala€rlqrk of the MCE learning, miscla.ssification measure for class C6 is

Mned as

d;(x) : -g*(:q Âr) + l#-,nrn'"'nr)l' (2)
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where M represents the number of classes and 4 is a positive number.
case where ? go€s to infinity, the misclassification measure becomes

d6(x) : -s*(xÀr) + g"()q À").

In an extreme

Flere, s stands for the class number with the la^rgest discriminant value among the
ræt of M - 1 classes. Obviously d*(x) < 0 in case of correct cla-qsification, d;(x) > 0
in case of miscla-ssifrcation.

Usingthemisclassi f icat ionmea^srreforasetoftrainingdataX:(xr, . . . ,x iv),
tk objective fimction to be minimized is defined as an empirical average loss func-
tion given by

(3)

(4)/..(^fx) = +ËË (d2(g)r(açc*).

H e r e , À : ( À r , ' . . , Â i r ) ,

1
t(d) = 

l;;=iæt' 
(5)

and 10 of (a) is an indicator function which has a valueof one when the argument
is true and zero otherwise.

In order to minimize the objective function of (4), the well-known gradient de-
scent method can be applied and the set of pararneters of each discriminant function
is adapted by the following rule:

i1(t+t) _ Â(r) _ sVtrolntt);X; (6)

where À(t) denotes the set of para,meters at the f-th iteration and a denotes the
learning parameter of a positive small value.

3 Improvement of the Generalization Performance

The MCE learning using the object function given in ( ) tries to minimize the
misclassification rate for the finite number of training data- As a result, the set of
parameters Â of the discriminant function specifically adapted to the training data.
In consequence, this causes a decline of the generalization performance.

In order to improve the generalization performance of the MCE learning, the
parameter { of (5) is expected to control the sensitivity of forming the decision
boundary against the distribution of training data. However, the relationship be
tween f and the shape of decision boundary in the featurc space is not clear.
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FYom the view point of generalization for real-world problems, the function that
the recognizer tries to learn should be, in some sense, smooth. Based on this as-
sumption as an â priori knowledge, we propose a new approach to improve the
generalization performance by employing a regularization technique to the MCE
learning. In the framework of regularization, the new objective function I(Â) can
be defined as

l,(^lx) : Io(ÂlX) + 7r(^) (T)

where F is the penalty term, and the parameter 7 controls the extent to which the
penalty term F influences the form of the solution.

Tikhonov proposed the class of Tikhonov regularizers to solve ill-posed problems,
whose form is given by

Here, e,y denote input va,riable and output variable, respectively, and àr(c) > 0
for r :0, . . . ,Ë- l  and hn(r)  > 0. In the present study, as asimplecase of the
Tikhonov regularizer, we have employed the follor;ying empirical term given in, which
is

1 S+S/augo(*") \ 'F '(^ lx) : ,^, t  ' IL l- ;z I  (e)
ou' {-=r?=r?=, \ ad, )

where r, : (f,,l, - - -,r,,.o) represents the n-th trainin€ data in .Ddimensional
space. The parameter updating rule of (6) is now

1(t+t)  -  t@ _ ey L(, t t r) lX). (10)

The MCE }earning algorithm based on ttre proposed criterion ryill b€ refsred as
nMCE in the following text.

4 Application to Neural Networks

The modified MCE learniug criterion given in (21) can be applied to arbitrary
discriminant functions that are second order difierentiable in respect to th€ variables
of the functions. For the present study, multi-Layer perceptron type neural network
is employed as a platform of recognizer to evaluate. the performance.

For the pth training data xr,let {ir and Off) be the input and output of the
i-th cell of layer rn, ræpectively, where 1 S ni < M. Then the input value of the
i-th cell of layer rn is given as

flm-l

Ifr: I w(*-''12ff-', +0:^).
; - 1

F:;21"'n'o'(#) u'' (8)

( 1 1 )
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Here, urjf--t) is the connection weight between the i-th cell of la1ær rn and the

i-th cell of Iayer m - 7, 0l*' i" a constant and n* represents the number of cells in
layer m. The output of each cell is given as

o9) = f (ry))
in which /0 is a sigmoid function of the form

r@):
l * e - 8

(r2)

(13)

In the franeçork of the conveational error back-pmpagation (EBP), the object
functioa is deûned on the basis of least squarèd error (LSE), which is

"*:*Ëii Q*-off)' (14)

where t,r; denotes the desired output for the i-th output cell against the n-th input-
On the other hand, in the propæed nMCE learning, the objective frmction that

should be minimized is given in the form of (21). Under rhe nev defrnition, the
minimizatiou of the object function is done by adjusting the weights of the network
with the following algorithm.

g,7 -r1 <- w[r^-L) - 
"#Ë N"fr,

The weight adjustment Atu$) it

(n) AL6IX\
wit' : 

,æt
azo(^lx) , aF(^):  
^P+1;F

In case of the three.layer network, each term in
output layer (rn:3),

ÔLo i^-------,-:---:-- : ltnQff);^)t(4f) € cr)
Atff -" 

L=t
Adr(/S); ̂ )n(m_1)--i7;;-vni

".ph

(15)

(16)

(16) is given as follows. In the

(17)

# 
: r"E'ffi''tt--rt ç'r'^-t^-2t12

f' af-'\).:i-rm-z) 7u 17--t) 1
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where ljf) denotes the input to the j-th cell of layer m.
In the hidden layer (m = 2),

ah
æ

( Al r*+r-r\

\â4;o';t )
Oa/I );Â),-,(--,)
--wP-"a 1

AF

w
= IE' \*"- r' Qff)),:î -') + #-')
(,!f-',)' lo - z r u#\) r' el1\ - rçr' v9, ù"1\

tlm+1

: ç
Z-.
Ë = 1

(20)E' 
.ff*'^, (n g-, (wt**-rt!2 f Ulp l)

(1e)

where dn",. is the Krouecker symbol.

5 The 2-stage Building Learning

This sæction describes the 2-stage Building Learning, which is the simplest case in
the framework of Model Building Learning.

Ll Outline

Ftgure I shows a basis construction of the 2-stap Building Iæarning.
The 2-stage Building Learning (2BL) is a method which re-evaluates the miss-

classified data by using a classification method suctr as Bayes decision rule, Support
Vector Machines (SVM), Hidden Markov Models (HMM) and so on. In the first
step of 2BL, data that are difficult to classify correctly are choeen, and they are
examined closely for the following second stage. It is well-know that one of the
drawbacks of the MCE / GPD learnhg is its computational expensiveness. The
2BL makes it possible to decrease the computation time of the MCE/GPD learning
by supplementarily employing a comparatiwly inexpe.,sive method such as Bayes
decision rule and K-nea.rest Neighbors in the second step.

Since the second stage of the 2BL is invoked only when misclassification error
oceurs in the ûrst stage, the 2BL gives the sa.rne learning result with that of the
MCE / GPD learning in case that there are no misclaæification data found in the
first stage.
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Trainirg llata

MCE Iæaming

Eru Drlr

Cæract Mdel Ba5ns Deckion Rule
Suppctrt Vector Machine
Ilid&n Marlov Model
Urrc BdprWagatior

PrinÊipal Co,apmenb Analysn
K-nearest Neighbor rule

Erc Mo&l

Fig. 1: a basis constmctiûn of the 2-stages Buildins Leaming.

It is clear that simply applying the sa,me cla.sifier to the missc'lassifieation data
in the second stage ha.s no efiect on improvement of the recognition performa.nce.
Additional features are nded to improve the classification performance- As a new
feature for classification, we propos€ to use the value given by the misclassitcation
measure of the MCE/GPD learing. As a result of adding a new feature to the original
feature space, the misclassified date in the first stage are dealt in the new feature
space.Figure 2 shows an idea on giving new features. The propoeed 2BL can sohrc
the both problems sf dgclining the generalization performance and coæputatinally
expensiveness as overlearning.

5.2 Evaluation

In ca.se of two models based on input data and misclassification data., this s€etioû
describes the method to estimate two models eqnally.

The set of data can be classified into either clear zone or gray zon€ .rccording to
the distribution of data.

The clear zone is the area where the distribution of the sla'.I.s dafa has no overlaps
with others, whereas the gray zone is the area where the distribution overlaps with
others. Most of the Misclassified data exist in gray zone. It is difficult to evaluate
the two models produced together.

The evaluation process of 2BL is given as follows.

1. Calculate the miscla.ssification me:Éure of (2), and give a number of class to
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found data, ifit has aa value of found data is negative.

2. Find the mean value pr4 of each misclassification measure.

3. Decision Pararneter Q : #Df,=, u;, A > 2. P is the

number of data.

4. If Q > ù(x,Â;), class number of data decides i. Let reevaluate data in second
s t e p , i f S < d t ( x , & ) .

5. Let component of data add the value of misclassification measure as new fea-
ture.

6. Decide recoguition reillt used second model as class number of data-

The greater the value A takes, the nore the recogniti,on result depends on the
correct model. The smaller the value ,4 tah6, the more the recognition result
depends on $'rong model.

The discriminative learning such as the MCE / GPD learning bas an inclination
to adapt the parameters spaciûcally to the training data in order to ac'hive mini-
mum classification error. The proposed 2BL method is able to avoid declining the
generalization performance by reevaluating data around the decision boundary.

Some data decided correct in first evaluation have possibility to be decided fault
in seeond evaluation according to circumstances, if input data a,re evaluated by this
proposed evaluation.

But from figure 4, data in area A, B and C have possibility to be misrecognized
by the conventinal methods. On the other hand data in area C have possibility to
be correctly classified by the proposed method. Thus, recognition performânce as
a whole is expected to improve, even if some data are decided correctly iu the first
evaluation.

5.3 Decision Parameter Rule

This section describes how to determine the value of decision parameter Q : itt.
Let B : I so that Q: Bp,.

We, at first, calculate the average normalized within-class distance 7 as

1 P

1 : +D (+ - r(");t;(")-'(*o - p(")) (21)
r  o=L

ol2G)
o'2k)

ofl,

.  ,^91
"rl
o9\o)

f"i:l
1"r,,
L"fl

ç(c) -
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:

; Training Boundary
i+ . . . . . . '

Fig. 4: reaôon of misevaluation.

o[? : nI@[ù - rlo16!'t - p?l] (23)

where the xn : (rtp,rep,- - -,xpp) denotes the pth training dzta, p@) denotes the
rnean ï€ctor of dass c, and X(") denotes the covariance matrix of class c.

{Jsing the distance n the paranoeter B is given by

B :#i;6, o ) o, s: r,2," ' ,n (24)

where C represents the number of classes, P" rcpresents the number of pattern
wtors usd i{ the s.tà model. In case that 7 ta.kes a big value and B is close
+fr P"Cf P"4, the distribution of each class probably overlaps with others. Hence,
furths impdation of rnisclæified data is inporbant to improve the elassification
performance.

6 Multi-stage Building Learning

This section describes Multistage Building Learning (MBL), an stension of the 2-
siage Building Learning (2BL). Figure 5 shows a basis construction of Multistages
Building Learning.

The MCE / GPD learning ha.s a problem of overle,arniug.
MBL incorporates the misclassification mfftsure into tàe feature vector space

used in the former stage. As a result, the dimension of feature space increases as
the stage progrcsses. On the other hand, the number of data given to the next stage
decreases. The stage-building process terminates when no more data remains for
the next stage.

Training data
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Tntuirg DATA

DICE læaning

Etur Det

Corrd Ilbdel I lfCE Imlng

Eru Ilafr

Enor Hoael MCE Leærrirg

[ .

2.

Fig. 5: a basis constructiion of Multistages Building Learning.

Let g1(:qÂ1) be a discriminant function with podtive value to discriminde
a data of clase Cx fuom the other classee, where rc, Â1, denote a veetor in D-
dimensional feature space and the set of parameter of the discriminant fuoc-
tion, respectively.

For each data with feature vector x, calculate the following misclassiûcation
mea.sure

d*(x) = -ek(rq n-l * 
[rï ,Hon,@n-,']

convergent decision

1 P M
Io(^) : ; I t e@.(+,,\))r(xo e cr)

r pel i=L

(25)

(26)

In ca.se of convergence, for each data x € RD that satisfies d;(x,Â;) > 0,
replace the x with a new vector xinBD+r in which the D + l-th elemeut of x
is ds(x,z\).

Repeat step 1 - 4 after giving misclassification data added new component to
next learning.
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6. Stop the procedure in case of s < M, where s denotes the number of transfered
data, M : the number of cla.sses.

It should be noted that, like the ca.se of 2BL, the training method used in the
last stage in MBL can be different from the MCE/GPD learning that is used in the
other stages.

7 Experiments

In order'ïo evaluate the classification performance of the proposed method, three-
layer feed-forward neural networks were employed. Since the MCE learning is com-
putationally expensive, the network was at first trained by the conventional error
back-propagation learning (EBP) that minimizes squared error given in (14), and
then the II4CE or mMCE learning was applied to the network.

In the experiments on real-world data, three data.sets of two-cla"ss problems,
"cancer", thouse" and "sonart'in the UCI Machine Learning Repository r from
University of California Irvine were used.

Table 1: Correct classifiça1ioa rate [%]

databa.se canceT house sonax
41r classes

f training data
S testing datâ
S attributes

$ hidden unit

2
a0
n9
I
12

2
265
170
15
72

2
141
67
60
t2

Bayes(ML)
NN(EBP)
NN(MCE)
NN(rnMCE)

Training
95.0
91.9
93.6
95.0

98.8
96.3
97.4
94.3

100.0
95.0
92.9
91.5

Bayes(ML)
NN(EBP)

NN(MCE)
NN(mMCE)

Test
95.7
90.3
94.3
95.7

96.4
96.5
95.3
97.7

74.6
82.7
85.1
89.6

Table 1 shows the experimental result for the four different learning algorithms,
Bayes+ML, NN(EBP), MCE and nMCE. Here, Bayes*ML dmotes the quadratic
discriminant functions in which single normal distribution with full-covariance ma-
trix is assumed for ea,ch category. It can be found that mMCE gives the best classifi-
cation performa^nce on each testing set. Compared to the performance improvements

of nachine learning database, lgg6.
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Fig. e Learning cunte{t
of training epochs.
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Httiflg epocft

of the loss ftrnctions fu, L and penalf function F in terms

from IVICE to 6MCE for the traiuing set and testing set, the inprovement on test-

ing set is larger than that of the training set. This certiûes that the employed

pÀ*ty term àf (23) is effective for improving the generalization performance of the

recognizer.
Èg- 6 shows the learning curves of the MCE loss frrnction .Lq. the penalty function

F and the mMCE's total loss function I in (21).

Fig. 8 shows the correct classification rates in terrns of the parameter { in (5).

Although { influences the correct rate, mMCE perbrms better than MCE for any

value of {.
The relationship between the para.meter 7 in (21) and the correct ciassification

rates on the test set "house" is shown in Fig. ??. It can be found in the figUre that

choosing the proper value of 7 is crucial to get good genenaralization-

Another recognition experiment wa.s conducted on a speech database of Japanese

five vowels. The speech data of each vowel were extracted from the ATR contin-

uous speech database (B-set) according to the phoneme transcription given to the

database. Among the data of six male subjects, the data of four subjects (msh,

mmy, mht, mho) wa.s used for training, and the data of the remained subjects (myi,

mtkl was used for testing. Table 2 shows the experimental results on the speech

databa^se.
It ca"n be seen in the table that nMCE shows better generalization performance

than MCE.
For the performance evaluation on real-world problem, three data.sets of two-

classes problem, "cancert', "houset and 'bonartt in the UCI macthine Learning repos-
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faHe A Correct classification rate for Japanese b vovæls

fl classes

I training data

I testing data

I attributec

I hidden wits

5
4000
1000
12
12

Beges(ML)
NN(EBP)
NN(MCE)

NN(mMCE)

training
E6-3 Yo
89.0 %
8e.0 %
8E.1 %

Bases(ML)
NN(EBP)
NN(MCE)

NN(InMCE)

t€st
79.3%
E3.1 %
87.7 %
9A.4%

itory 2 from University of California lrviræ were used.

Table 3: Recognition rate for ucl machine learning databases(unit: %)

2c.J.Marz and P.M.Murphy. ucl repository of machine lea,rnin8 databasee, 1gg6

I clasees

Ë train-
ing

B teet

fl hidden
rmits

2
265

170
15
t2

98.6
98.6
100.,
100.

NN(EBP)
NN(MCE)
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Table 3 shows the experimental results for the four different learning methods,
Bayes(ML), Error Back Propagation learning (NN(EBP)), MCE, 2BL and 2BLno.
Bayes(ML) denotes the quadratic discriminant function in which single normal dis-
tribution with full-covariance matrix is a.ssumed for each category. 2BLno is same
with 2BL excepting that the step of adding a new feature to the original feature
vector is discarded. Both 2BL and 2BLno use the MCE / GpD learning in the
first stage and the second stage. It can be seen that 2BL and 2BLno give good
classification performance on each testing set. Specially, 2BL gives very good clas-
sification performance on 'sonar". It can be said that the misclassification measur€
is effective to improve the classification performance. especially for the ca.se when
the dimension of the feature is smaller enough than the number of data.

I classes
f training data
$ testing data
I attributes

I hidden units

26
6238
1559
617
32

NN(EBP)
NN(MCE)
NN(28L)

training
99.39 %
96.94 %
99.94 T

NN(EBP)
NN(MCE)
NN(zBL)

test
94.29 %
95.45 %
e5.e6 7ô

Table 4: Recognitioû rate for UCI machine learning database ,,Isoletn

Learning Method Time ratio object/McE
NN(EBP) 24180 sec 0.935
NN(MCE) 25860 sec 1.000
NN(LBL) 16320 sec 0.631

ïable 5' fteining time for UCI mâÆhhe learning database "Isolet"

Table 4 shorrs the experimerbial results of multiclass problem for the three differ-
ent learning algorithms, NN(EBP), MCE and 2BL. Table 5 shows the computation
time of training for the dataset "Isolet". lFrom these ræults, it can be sem tÀat
2BL gives both the best test-set recognition performance and fastest learning speed.

Table 6 shows the experimential results used speech database ofjapanese
five vowels a"s real-world data. The speech data used in this experiment consists
of cutting speech sections of five vowels based on inspected labels from six spe a

kers in ATR speech database (B-set). Training data consists of speech data from f
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I classæ
fi training data
fl testing data
I attributes

$ hidden units

5
4000
1000
t2
12

Bayes(ML)
NN(EBP)
NN(MCE)
NN(LBL)

training
86.3%
89.0 %
89.0 %
89.4%

bayes(MI')
NN(EBP)
NN(MCE)
NN(zBL)

test

79.3 %
83.r %
87.7 %
88.2 %

Thble 6: Recognition rate for 5 vowels speech data from japanese speakers

our speakers (msh, mmy, mht, mho), and test data doee of speech data from two sp
e a,kers (myi, mtk). It can be seen in the table that 2BL shows the best recognitio
n performance of all methods.

E Conclusisn

Improvement of generalization performance of the Minimum Classification Error
(MCE) learning was proposed by employing a regularizer to the objective func-
tion. Three-layer feed-forward neural networks were emplolæd to demonstrate the
efiectiveness of the proposed method. Compared to the original MCE learning, the
proposed mMCE learning showed better recognition performance on testing data
while it showed comparable performance on training data. This implies that the
proposed regularizer is effective for improving the generalization performarrce of the
recognizer.

Since the weight parameter 7 for the penalty function was heuristically deter-
mined in the experiments, further investigataion should be taken in order to develop
a criterion for determining the parameter.

Thereto, 2-stage Building Learning (2BL) and Multi-stage Builrting Learning
(MBL) were proposed. Both methods consists of more than one recognition models
by using misclassification mea.sure. The three.layers feed-forward neural networks
were employed to demonstrate the effectiveness of the proposed 2BL. Comparing
with other learning methods, the proposed methods shows generally good recogni-
tion performance for test data than that for training data. Specially It could be
found that the proposed method give high recognition performance for hard cla,s-
sification data in ca.se of using other learnng methods. It is conceivable that one
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of reason to give high recognition performamce is to employ the miscla.ssification
measures as n€w features for few elements.

There is a method to decide to stop learning well-timed in previous step as
one of problems to be solved from these experiments. If the the learning process
of the previous stage stops very early the model can not have good recognition
performance. on the other haud, if it takes much time to converge, the proposed
method is computatinally expensive and has a possibility of overlearning.

So we have to establish a criterion to stop the learning in previous step. This
problem ca.n be solved by using mMCE to the last learning stage of MBL.

Authors wish to thank Dr Gunner Riitsch and Dr Kanad Keeni for
diacussions in preparing tùe form of the paper
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