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Abstract

The Minimum Classification Error (MCE) / Generalized Probabilistic Descent
(GPD) learning proposed by Katagiri and Juang in 1992 has attracted a great deal of
attention for its high recognition performance and wide range of applications includ-
ing the case where the length of feature vectors is variable like speech recognition.
In this report, we propose a new method to improve the generalization performance
of the MCE learning by employing an regularization technique which is widely used
to solve ill-posed problems. Feed-forward neural networks are employed to evaluate
the performance of the proposed method.
Keywords : MCE/GPD, Generalization Ability, ill-posed problem, over-fitting.

1 Introduction

In the classical pattern recognition theory, if one can predict the exact probability
densities of the target categories beforehand, the Bayes decision rule would give the
optimum decision that achieves the minimum error risk. In order to estimate the
densities and design a set of classifiers, the maximum-likelihood estimation (ML)
is widely used in various areas of machine learning and pattern recognition. How-
ever, in the real-world pattern recognition problems, the number of data available
is restricted and therefore the Bayes-type classifiers trained by the ML method
sometimes result in insufficient recognition performance. Instead of estimating the
probabilistic distributions, one can employ the discriminative learning in which the
parameters of the classifier are adapted to minimize the classification error.

However, it is for the very limited situations of real-world problems that the
classical discriminative learning such as perceptron gives better classification per-
formance than the ML-based learning. This comes from the fact that the cost
function employed in the learning scheme is not differentiable in respect to the pa-
rameters that are to be adapted, and therefore parameter adaptation can not be
done adequately.
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In order to overcome the difficultly, Amari proposed Probabilistic Descent (PD).
In 1992, Katagiri and Juang generalized the idea of the PD learning and proposed the
Minimum Classification Error (MCE) / Generalized Probabilistic Descent (GPD)
learning{1]. The MCE/GPD learning successfully defines an object function that can
be optimized by means of the gradient descent technique. The key idea of the MCE
formulation is to employ a smooth loss function which represents the classification
error instead of using a hard decision function.

As a result, compared to other discriminative learning, the MCE/GPD learning
is crucial in the sense that it is applicable to arbitrary discriminant functions that
are differentiable in respect to the parameters that are to be adapted. To be specific,
it can be applied to discriminant functions that deal with variable record length of
data like speech recognition.

The superiority of the MCE learning to the conventional ML-based learning
has been shown for various functions such as linear-discriminant functions, multi-
layer perceptron (MLP), dynamic time warping (DTW) and hidden Markov model
(HMM). However, it suffers from a problem of generalization performance for testing
data as it is with other learning methods. This is due to the fact that the MCE
learning has an inclination to adapt the parameters specifically to the training data
in order to achieve the minimum classification error.

In this paper, we propose a new approach of improving the generalization per-
formance of the MCE learning and to use the information of mis classified data
by incorporating a new feature value derived from the misclassification measure of
MCE/GPD learning.

The proposed learning scheme easily combines MCE/GPD learning with other
different learning methods, which are expected to work supplementaly.

2 Minimum Classification Error Learning

Let gi(x;Ax) be a discriminant function with positive value to discriminate a data
of class C} from the other classes, where x, A; denote a vector in D-dimensional
feature space and the set of parameter of the discriminant function, respectively.
For an input vector x, if the following equation holds

gk(X; Ax) > gi(x; Ag) for all 1 #k, (1)

T is classified to class Cy.
In the framework of the MCE learning, misclassification measure for class Cj is
defined as

1/n

> 95(x Ax)" 2)
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di(x) = —gk(x; Ax) +
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where M represents the number of classes and 7 is a positive number. In an extreme
case where 7 goes to infinity, the misclassification measure becomes

di(x) = —gr (x5 Ag) + g4(x; As). (3)

Here, s stands for the class number with the largest discriminant value among the
rest of M —1 classes. Obviously di(x) < 0 in case of correct classification, di(x) > 0
in case of misclassification.

Using the misclassification measure for a set of training data X = (xg,---,Xy),
the objective function to be minimized is defined as an empirical average loss func-
tion given by

Ba(AX) = = ife(dk(m) 1(x: € C). (4)

z=1 =1

Eo

Here, A = (A1, -, Apm),

1
1) = T 5)

and 1() of (4) is an indicator function which has a value of one when the argument
is true and zero otherwise.

In order to minimize the objective function of (4), the well-known gradient de-
scent method can be applied and the set of parameters of each discriminant function
is adapted by the following rule:

ACTD = A® _ ¢V Ly (A®|X) (6)

where A() denotes the set of parameters at the ¢-th iteration and ¢ denotes the
learning parameter of a positive small value.

3 Improvement of the Generalization Performance

The MCE learning using the object function given in (4) tries to minimize the
misclassification rate for the finite number of training data. As a result, the set of
parameters A of the discriminant function specifically adapted to the training data.
In consequence, this causes a decline of the generalization performance.

In order to improve the generalization performance of the MCE learning, the
parameter £ of (5) is expected to control the sensitivity of forming the decision
boundary against the distribution of training data. However, the relationship be-
tween £ and the shape of decision boundary in the feature space is not clear.
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From the view point of generalization for real-world problems, the function that
the recognizer tries to learn should be, in some sense, smooth. Based on this as-
sumption as an a priori knowledge, we propose a new approach to improve the
generalization performance by employing a regularization technique to the MCE
learning. In the framework of regularization, the new objective function L(A) can
be defined as

L(A|X) = Lo(A|X) +vF(A) (7)

where F is the penalty term, and the parameter v controls the extent to which the
penalty term F' influences the form of the solution.

Tikhonov proposed the class of Tikhonov regularizers to solve ill-posed problems,
whose form is given by

F= %é/b he(z) (g;ij)gax. (8)

Here, z,y denote input variable and output variable, respectively, and h.(z) > 0
forr =0,---,R—1 and hg(z) > 0. In the present study, as a simple case of the
Tikhonov regularizer, we have employed the following empirical term given in, which
is

: Oz,
where X, = (Zn1,---,Znp) represents the n-th training data in D-dimensional
space. The parameter updating rule of (6) is now

ACHD = A _ ¢ VL(AD|X). (10)

The MCE learning algorithm based on the proposed criterion will be referred as
mMCE in the following text.

4 Application to Neural Networks

The modified MCE learning criterion given in (21) can be applied to arbitrary
discriminant functions that are second order differentiable in respect to the variables
of the functions. For the present study, multi-layer perceptron type neural network
is employed as a platform of recognizer to evaluate the performance.

For the p-th training data z,, let IIS:-") and OI(,,'-") be the input and output of the
i-th cell of layer m, respectively, where 1 < m < M. Then the input value of the
i-th cell of layer m is given as

Nm—1

I =3 w0l 4 6im, (11)
Jj=1
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Here, w,(;""' = is the connection weight between the i-th cell of layer m and the

j-th cell of layer m — 1, 91(-"') is a constant and n,, represents the number of cells in
layer m. The output of each cell is given as

o = F(I) (12)
in which f() is a sigmoid function of the form
1
flo) = ——. (13)

In the framework of the conventional error back-propagation (EBP), the object
function is defined on the basis of least squared error (LSE), which is

IN"M

722 (tw— 04’ (14)

n_l =l

where t,,; denotes the desired output for the i-th output cell against the n-th input.
On the other hand, in the proposed mMCE learning, the objective function that
should be minimized is given in the form of (21). Under the new definition, the
minimization of the object function is done by adjusting the weights of the network
with the following algorithm.
N
wg-"m_l) — w,(]mm . - %Z Aw}(,:-';) (15)
=1

The weight adjustment Awl(,',-';-) is

" BL(A|X)
(mm—1)
Ow;
dLo(A|X)  OF(A)
= + (16)
(mm-—1) (mm-—1)
ow;; Ow;; ™

In case of the three-layer network, each term in (16) is given as follows. In the
output layer (m = 3),

L m
Sy = S AG MU € g
kj
adk(I 2! s A) _
BI"fm)——O},;" K (17)
pk
oF e (mm 1) (m—1m—2)\2
T " 2% (2; (wi)
’ =
f”( (m—- )) (m Im— 2)f”(I(;'n—1)) (18)
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where II(,;-“) denotes the input to the j-th cell of layer m.
In the hidden layer (m = 2),

6L0 -y aL (m+1m)
61”(.’.7"""_1) = Z (aI(nH-l)wkj
Ji
m)
6d (Ip.?m)a ) 1(,;”..1)7 (19)
Bij
oF
6w§?m—1)
Z {2511‘f” I(m))’l_[)(mm 1) II(:;L—I)
m m 2
() s - s - 2]
Nom+1 (m+1m) m (m-1m) (mm—1) 2 ., (m)
X Wi D Wiy (wti ) ' (Iy”) (20)
k=1 t=1

where 0p,+ is the Kronecker symbol.

5 The 2-stage Building Learning

This senction describes the 2-stage Building Learning, which is the simplest case in
the framework of Model Building Learning.

5.1 Outline

Figure 1 shows a basis construction of the 2-stage Building Learning.

The 2-stage Building Learning (2BL) is a method which re-evaluates the miss-
classified data by using a classification method such as Bayes decision rule, Support
Vector Machines (SVM), Hidden Markov Models (HMM) and so on. In the first
step of 2BL, data that are difficult to classify correctly are chosen, and they are
examined closely for the following second stage. It is well-know that one of the
drawbacks of the MCE / GPD learning is its computational expensiveness. The
2BL makes it possible to decrease the computation time of the MCE/GPD learning
by supplementarily employing a comparatively inexpensive method such as Bayes
decision rule and K-nearest Neighbors in the second step.

Since the second stage of the 2BL is invoked only when misclassification error
occurs in the first stage, the 2BL gives the same learning result with that of the
MCE / GPD learning in case that there are no misclassification data found in the
first stage.
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Error Data

Correct Model Bayes Decision Rule
Support Vector Machine
Hidden Markov Model
Error Backpropagation

Principal Components Analysis
K-nearest Neighbor rule

Error Model

Fig. 1: a basis construction of the 2-stages Building Learning.

It is clear that simply applying the same classifier to the missclassification data
in the second stage has no effect on improvement of the recognition performance.
Additional features are needed to improve the classification performance. As a new
feature for classification, we propose to use the value given by the misclassification
measure of the MCE/GPD learing. As a result of adding a new feature to the original
feature space, the misclassified date in the first stage are dealt in the new feature
space.Figure 2 shows an idea on giving new features. The propesed 2BL can solve
the both problems of declining the generalization performance and computatinally
expensiveness as overlearning.

5.2 Evaluation

In case of two models based on input data and misclassification data, this section
describes the method to estimate two models eqnally.

The set of data can be classified into either clear zone or gray zone according to
the distribution of data.

The clear zone is the area where the distribution of the class data has no overlaps
with others, whereas the gray zone is the area where the distribution overlaps with
others. Most of the Misclassified data exist in gray zone. It is difficult to evaluate
the two models produced together.

The evaluation process of 2BL is given as follows.

1. Calculate the misclassification measure of (2), and give a number of class to
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Fig. 2: additional feature.
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Fig. 3: a concept of proposed evaluation.
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found data, if it has aa value of found data is negative.
2. Find the mean value p; of each misclassification measure.

3. Decision Parameter Q = 45 Zle pi, A > 2. Pis the

number of data.

4. If Q > d;(x, A;), class number of data decides i. Let reevaluate data in second
step, if Q < di(x, Ai).

5. Let component of data add the value of misclassification measure as new fea-
ture.

6. Decide recognition result used second model as class number of data.

The greater the value A takes, the more the recognition result depends on the
correct model. The smaller the value A takes, the more the recognition result
depends on wrong model.

The discriminative learning such as the MCE / GPD learning has an inclination
to adapt the parameters specifically to the training data in order to achive mini-
mum classification error. The proposed 2BL method is able to avoid declining the
generalization performance by reevaluating data around the decision boundary.

Some data decided correct in first evaluation have possibility to be decided fault
in seeond evaluation according to circumstances, if input data are evaluated by this
proposed evaluation.

But from figure 4, data in area A, B and C have possibility to be misrecognized
by the conventinal methods. On the other hand, data in area C have possibility to
be correctly classified by the proposed method. Thus, recognition performance as
a whole is expected to improve, even if some data are decided correctly in the first
evaluation.

5.3 Decision Parameter Rule

This section describes how to determine the value of decision parameter @ = %pu.
Let B = % so that Q = Bp.
We, at first, calculate the average normalized within-class distance vy as

| gl t(c)—1
7=5 2 (% — )= (g — ) (21)
p=1
aﬁ) 0120) . 052
o) o ... o9
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Fig. 4: reason of misevaluation.

0$) = El(z — u{¥)(z!? - i) (23)

where the X, = (Z1p, %32, -, Tpp) denotes the p-th training data, u( denotes the
mean vector of class ¢, and £(°) denotes the covariance matrix of class c.
Using the distance vy, the parameter B is given by

PC 1
B= _—
Ps-l 1+ e’

0>0,s=1,2,---,n (24)

where C represents the number of classes, P; represents the number of pattern
vectors used in the s-th model. In case that « takes a big value and B is close
to P,C/P,_, , the distribution of each class probably overlaps with others. Hence,
further inspectation of misclassified data is important to improve the classification
performance.

6 Multi-stage Building Learning

This section describes Multistage Building Learning (MBL), an extension of the 2-
stage Building Learning (2BL). Figure 5 shows a basis construction of Multistages
Building Learning.

The MCE / GPD learning has a problem of overlearning.

MBL incorporates the misclassification measure into the feature vector space
used in the former stage. As a result, the dimension of feature space increases as
the stage progresses. On the other hand, the number of data given to the next stage
decreases. The stage-building process terminates when no more data remains for
the next stage.
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Training DATA

t Correct Model [: MCE Learning ]

[ l Error Data
l Error Model TMCE Learning J

Fig. 5: a basis construction of Multistages Building Learning.

. Let gk(x;Ax) be a diseriminant function with positive value to discriminate
a data of class C}, from the other classes, where x, A; denote a vector in D-
dimensional feature space and the set of parameter of the discriminant func-
tion, respectively.

. For each data with feature vector x, calculate the following misclassification
measure

i/n

dx(x) = —gi(x; Ae) + M i(x; Ak)" (25)
T Gtk
. convergent decision
P M
Lo(A) = ZZ (di(%p, As))1(xp € C*) (26)
p— =1

. In case of convergence, for each data x € RP that satisfies di(x,A;) > 0,
replace the x with a new vector xinRP+! in which the D + 1-th element of x
is dk (X, A,)

. Repeat step 1 ~ 4 after giving misclassification data added new component to
next learning.

308




6. Stop the procedure in case of s < M, where s denotes the number of transfered
data, M : the number of classes.

It should be noted that, like the case of 2BL, the training method used in the
last stage in MBL can be different from the MCE/GPD learning that is used in the
other stages.

7 Experiments

In order to evaluate the classification performance of the proposed method, three-
layer feed-forward neural networks were employed. Since the MCE learning is com-
putationally expensive, the network was at first trained by the conventional error
back-propagation learning (EBP) that minimizes squared error given in (14), and
then the MCE or mMCE learning was applied to the network.

In the experiments on real-world data, three datasets of two-class problems,
“cancer”, “house” and “sonar” in the UCI Machine Learning Repository ! from
University of California Irvine were used.

Table 1: Correct classification rate [%)]

database cancer | house | sonar
# classes 2 2 2

# training data | 420 265 141

# testing data 279 170 67

# attributes 9 15 60

# hidden unit 12 12 12
Bayes(ML) 95.0 | 98.8 | 100.0
NN(EBP) Training 91.9 96.3 | 95.0
NN(MCE) 93.6 97.4 | 92.9
NN(mMCE) 95.0 94.3 | 91.5
Bayes(ML) 95.7 | 96.4 | 74.6
NN(EBP) Test 90.3 96.5 | 82.1
NN(MCE) 94.3 95.3 | 85.1
NN(mMCE) 95.7 97.7 | 89.6

Table 1 shows the experimental result for the four different learning algorithms,
Bayes+ML, NN(EBP), MCE and mMCE. Here, Bayes+ML denotes the quadratic
discriminant functions in which single normal distribution with full-covariance ma-
trix is assumed for each category. It can be found that mMCE gives the best classifi-
cation performance on each testing set. Compared to the performance improvements

1C.J. Merz and P.M. Murphy. UCI repository of machine learning database, 1996.
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Fig. 6: Learning curves of the loss functions Lo, L and penalty function F in terms
of training epochs.

from MCE to mMCE for the training set and testing set, the improvement on test-
ing set is larger than that of the training set. This certifies that the employed
penalty term of (23) is effective for improving the generalization performance of the
recognizer.

Fig. 6 shows the learning curves of the MCE loss function Lo, the penalty function
F and the mMCE?’s total loss function L in (21).

Fig. 8 shows the correct classification rates in terms of the parameter & in (5).
Although ¢ influences the correct rate, nMCE performs better than MCE for any
value of &.

The relationship between the parameter v in (21) and the correct classification
rates on the test set “house” is shown in Fig. ?7. It can be found in the figure that
choosing the proper value of 7 is crucial to get good genenaralization.

Another recognition experiment was conducted on a speech database of Japanese
five vowels. The speech data of each vowel were extracted from the ATR contin-
uous speech database (B-set) according to the phoneme transcription given to the
database. Among the data of six male subjects, the data of four subjects (msh,
mmy, mht, mho) was used for training, and the data of the remained subjects (myi,
mtk) was used for testing. Table 2 shows the experimental results on the speech
database.

It can be seen in the table that mMCE shows better generalization performance
than MCE.

For the performance evaluation on real-world problem, three datasets of two-
classes problem, “cancer”, “house” and “sonar” in the UCI machine Learning repos-
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Table 2: Correct classification rate for Japanese 5 vowels

i classes 5
# training data | 4000
} testing data | 1000
f attributes 12
# hidden units 12
Bayes(ML) 86.3 %
NN(EBP) training 89.0 %
NN(MCE) 89.0 %
NN(mMCE) 88.1 %
Bayes(ML) 79.3 %
NN(EBP) test 83.1 %
NN(MCE) 87.7 %
NN(mMCE) 90.4 %

itory ? from University of California Irvine were used.

database | Cancer] Housq Sonar

f classes | 2 2 2

f train- | 420 265 | 141

ing

B test 279 170 | 67

dimension| 9 15 60

f hidden | 12 12 12

units
Bayes(ML) 95.0 | 98.8 | 100.0
NN(EBP) | training | 99.3 | 99.6 | 98.6
NN(MCE) 97.8 | 100.0| 98.6
NN(2BLno 99.3 | 100.0( 100.0
NN(2BL) 100.0 | 100.0( 100.0
Bayes(ML) 95.7 |96.5 | 74.6

. NN(EBP) | test 91.8 [95.3 |79.1

NN(MCE) 925 [958 |86.6
NN(2BLno) 91.8 |95.8 | 88.1
NN{(2BL) 94.6 | 96.5| 88 /1

Table 3: Recognition rate for UCI machine learning databases(unit : %)

2C.J.Marz and P.M.Murphy. UCI repository of machine learning databases, 1996
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Table 3 shows the experimental results for the four different learning methods,
Bayes(ML), Error Back Propagation learning (NN(EBP)), MCE, 2BL and 2BLno.
Bayes(ML) denotes the quadratic discriminant function in which single normal dis-
tribution with full-covariance matrix is assumed for each category. 2BLno is same
with 2BL excepting that the step of adding a new feature to the original feature
vector is discarded. Both 2BL and 2BLno use the MCE / GPD learning in the
first stage and the second stage. It can be seen that 2BL and 2BLno give good
classification performance on each testing set. Specially, 2BL gives very good clas-
sification performance on “sonar”. It can be said that the misclassification measure
is effective to improve the classification performance, especially for the case when
the dimension of the feature is smaller enough than the number of data.

1 classes 26
f training data 6238
f testing data 15359
1 attributes 617
# hidden units 32
NN(EBP) 99.39 %
NN(MCE) training 96.94 %
NN(2BL) 99.94 %
NN(EBP) 94.29 %
NN(MCE) test 95.45 %
NN(2BL) 95.96 %

Table 4: Recognition rate for UCI machine learning database “Isolet”

| Learning Method | Time | ratio object/MCE |
NN(EBP) | 24180 sec 0.935
NN(MCE] | 25860 sec 1.000
NN{2BL) 16320 sec 0.631

Table 5: Training time for UCI machine learning database “Isolet”

Table 4 shows the experimential results of multiclass problem for the three differ-
ent learning algorithms, NN(EBP), MCE and 2BL. Table 5 shows the computation
time of training for the dataset “Isolet”. ;From these results, it can be seen that
2BL gives both the best test-set recognition performance and fastest learning speed.

Table 6 shows the experimential results used speech database of japanese

five vowels as real-world data. The speech data used in this experiment consists

of cutting speech sections of five vowels based on inspected labels from six spe a
kers in ATR speech database (B-set). Training data consists of speech data from f

313




t classes 5
f training data | 4000
f testing data 1000
f attributes 12
# hidden units 12
Bayes(ML) 86.3 %
NN(EBP) training 89.0 %
NN(MCE) 89.0 %
NN(2BL) 89.4 %
Bayes(ML) 79.3 %
NN(EBP) 83.1 %
NN(MCE) test 87.7 %
NN(2BL) 88.2 %

Table 6: Recognition rate for 5 vowels speech data from japanese speakers

our speakers (msh, mmy, mht, mho), and test data does of speech data from two sp
e akers (myi, mtk). It can be seen in the table that 2BL shows the best recognitio
n performance of all methods.

8 Conclusion

Improvement of generalization performance of the Minimum Classification Error
(MCE) learning was proposed by employing a regularizer to the objective func-
tion. Three-layer feed-forward neural networks were employed to demonstrate the
effectiveness of the proposed method. Compared to the original MCE learning, the
proposed mMCE learning showed better recognition performance on testing data
while it showed comparable performance on training data. This implies that the
proposed regularizer is effective for improving the generalization performance of the
recognizer.

Since the weight parameter v for the penalty function was heuristically deter-
mined in the experiments, further investigataion should be taken in order to develop
a criterion for determining the parameter.

Thereto, 2-stage Building Learning (2BL) and Multi-stage Building Learning
(MBL) were proposed. Both methods consists of more than one recognition models
by using misclassification measure. The three-layers feed-forward neural networks
were employed to demonstrate the effectiveness of the proposed 2BL. Comparing
with other learning methods, the proposed methods shows generally good recogni-
tion performance for test data than that for training data. Specially, It could be
found that the proposed method give high recognition performance for hard clas-
sification data in case of using other learnng methods. It is conceivable that one
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of reason to give high recognition performance is to employ the misclassification
measures as new features for few elements.

There is a method to decide to stop learning well-timed in previous step as
one of problems to be solved from these experiments. If the the learning process
of the previous stage stops very early, the model can not have good recognition
performance. On the other hand, if it takes much time to converge, the proposed
method is computatinally expensive and has a possibility of overlearning.

So we have to establish a criterion to stop the learning in previous step. This
problem can be solved by using mMCE to the last learning stage of MBL.

Authors wish to thank Dr Gunnar Ritsch and Dr Kanad Keeni for
discussions in preparing the form of the paper
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