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Abstract
Difierent methods of system design lead to closedloop systems which property of
stability is unrobust. In the linear time-invariant ca.se it is proved that this fact
can be frequertly connected with anticipatory feedbacks. Given are the robust-
ness conditions with respect to negligible small timedelay and other para.rm.etric
perturbations.
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1 fntroduction

Representation of control systems in a state space was predominant in the 60's lit-
erature [1] (of the last century). During the 70's, the researchers' attention returned
to system analyses ba.sed on the stability notion of the input-output relations [2]
and so on. At that time many books were published in which the concept of a
state space is not employed. The main goal of these books and other similar works
[3, 4, 5, 6,7,8,9] was to extend the field of application of the classical frequency
approach well checked in practice and characterized by the set of rationally deûned
useful airns and problems. During the 80's this approach was enriched by studying
the robust problerns arisen when interna.l and external uncertainty takes ptace [10].
It resulted in ?l--design theory [1t], although their state-space consideration was
not late [12]. Here it is necessary to stress that the robustness problem has been
worked out in other settings in Russian academicians' works (with respect to small
non-linearity [13], internal parameters and initial data [14, ls, 16J, small time-delay
and discreteaess in feedbacks [17]).

Behavior of closed-loop systems depends on their transfer matrices and distur-
bances (among them, internal perturbations and initial data; any part ofclosed-loop
systems can posses properties that it is frequently considered as dangerous or un-
wanted [78], e.g. it can be unstable). This dependence caû be continuous or not.
In the first case there is preservation of some system properties, and then it is said
that the system under consideration is (parametrically or structurally) robust (more
exactly, the corresponding properties are robust with respect to some class of para-
metric perturbations). In most cases natural plant models possess this property of
continuous dependence, but demand of the last is often absent in applied problem
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settings when idealized feedbacks are synthesized. As a result the system properties
can fail for some small (small, but it is not necessary to be arbitrary) perturbation
of its parameters.

We will work with Laplace transform because the stability condition of linear
time-invariant differential systems is expressed as the property of its spectrum to
be in the open left half-plane and in the same domain there are poles of the system
transfer functions (when this transforn is used). Note that we might use Fourier
transform too because in the complex domain it differs from Laplace one with coul-
terclockwise rotation on the angle r/2,'i.e. s: iy, where s and z are the variables
of Laplace and Fourier transforms, respectively.

There are many design methods which leads to the loss of continuity (modal con-
trol, Wiener*Hopf method, the separation theorem and so on). Often, as the unique
condition which closed loop systems must satisfy it is used that their characteristic
equations must be Hurwitz, i.e. no their zero is in the closed right half-plane. As the
result of such approach to design we may obtain feedback transfer functions, which
are not physical rea,Iizable. Such feedbacks are called idealized. Remember that a
system (more exactly, its model) is physical realizable i-f its transfer functions (de-
fined with the help of Laplac:e transform) is bounded in the closed right haH-plane
and becomes zero ia point of infinity (zuch function is called also strongly proper).
As a rule models of free (from control) plants are physical realizable. The use of
idealized feedbacks can lead to anticipatory closed loop systerns but this possibility
depeuds on plants where such feedback are applied. Let us clarify the problems
connected with using idealized feedbacks and give the corresponding examples.

2 Anticipatorytrbdbacks

Consider the simplest linear coatrol system

d  " , . ,
4 U : u + l \ t )

with the negative unit feedback

u :  -a  
i 2 )

where u is the scalar input, g is the scalar output, /(f) is the disturbance.
Althougb the use offeedback (2) is widespread and ensures the stability ofsystem

(1), this feedback is only idealization. By opinion of A. Letov (one of the most known
authors in analytical design of closed-loop systems and the first vice-president of
IFAC (in the 60's of the last century)), there exists no teelnical device that can
realize feedback (2) while for any small positive z the following feedback

d
rTu  *  u :  -U

(1 )
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is realizable [19].
Feedback'(3) is the simplest fiuite-dimensional difierential approximation of the

next feedback [20]

y:  -y( t  -  r )  (4)

By this reason the idealized feedbacks are usual to be approximated by frnite-

dimensional difierential equations (in particular, it is of very importance for systemq

with proportional-differential feedback [21]). However finitedimensional approxi-

mation is not able to remove completely the control inertia, and a negligible small

time-delay ta^kes a place in the approximated feedbacks. This timedelay can be

rea.son why the approximated closed loop slstenrs fail to be stable'

The concept of a negligible small timedelay follows also from the correct defiai-

tion of differential equations 122,231. Let us consider again system (1) where a : uo

for t:0 and the input u is given as any integrable function on the set [0,t]' Then

it follows from equation (1) that

fi
y('J) :  y, + Jo fu + f)dï,d e [0,t)

and 

rt

u-( t )  :  l ime*1-sy(d)  :  ao* Jofu 
+ f )de

Any feedback is a functional of the output. but in time t the output is known

only as the left-side limit. That is why for putting in practice feedback (2) ne replace

g(r) with g-(t) or aQ - r) where r is the negligible srnall timedelay'

It is of importance to stres.s that in the case when synthesized systenrs a,re robust

to negligible small time-delay and involve themselves idealized feedbacks the concept

of time-delay giræs the natural way of physical realization for such feedbacks: the;'

can be realized with artificial timedelay or with the help of its approximation by

finitedimensional difierential equations [20].
As an example let us consider system (1) with the proportional-differential feed-

back

^ du: zrta(t) + u(t) (5)

By the deÊnition of anticipatory transfer functions [24], feedback (5) is anticipa-

tory. To realize this feedback, it needs calculating #a(t) i" the instant t. But it is

impossible as in result of the closed-loop system evolution we know g only on [0, t]

and we have no possibility to define ti*o-,*od*îlj). Instead of feedback (5) let us

use the following one

u( t )  :  f r * *  t )y ( t  -  r )
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with the small time--delay r > 0. Show that the closed loop sysrem (1) and (6)
has (as1'urptotic) eigenvalues in the neighborhood of the straight line ftp : ff lor
sufficiently small r, and therefore it is not stable. Indeed, its characteristic equation
takes ttre form

À[1 -  2exp(-Àr) ] -  exp(-Àr) :  g

and has zeros in the form À : 1s3l3Ets. The last follows from the characteristic
eguation that the complo< number s satisfies the equation "f(s) 

: 0 where "f(r) 
:

L - exp(-sr) - 0.5zexp(-sr)lQt2*%rlci * s), ,t is the integer number. The
condition of using the Newton-Raphson method l#l 5 q < 1 is fulfilled in the
ueighborhood of fts : 0 for r such that r I 0.512 /lln2 + (ln2)21 < q. At rhe same
time ignoring the timedelay z we have the "undelayed" system as being stable.

In the case where system (1) ha.s the following feedback

u(t) :10.s{ - gylt1 (T)' d t

let us use the followiag approximation

u(t) : (0.b9 - 1,)s(t - r) (8)' d t

It is easy to see by "sing the metlod above that the closed loop system has asymp-
totic eigenvalues ia the left half-plane (i.e. eigenvalues connected with small r). As
prorred in the theory of difference differential equations this system has not other
asymptotic eigenvalues. Thus the property of stability is reserved when vre pass
frour the anticipatory feedback (7) to the causal one (8) (* its finite-dimensional
apprrrrirnations).

Thus we see tùat "und€layed" idealized feedback can be used if the resultant
systc-rn witl negligible small timedelay feedback is (as-vmptotically) stable. If this
is not the case the corresponding closed loop system is not robust wit-h respect to
the oegligible sqell timedelay, a.nd we may call this feedback "bad" (for details -
see [t8]). Similealy to the sta.bility theory here it is not of very importance what
properties of parts of some syôtem are. It is more important what the properties
of the systern a.re â6 a whole when an arbitrarily smatl time-delay pnesents in its
feedback.

3 Siûgulâr Systems

Different metùods of closed loop system design leads not only to idealized a.nd an-
ticipatory feedbacls but and to closed loop systems of the kitd

çt-efr)z: r (e)
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where A and B are sqrure scalar matrices of dimension n; 0 < rcnkB : k < n; f is
any disturbance. Systeur (9) is called singular as that its characteristic equation he-s
the degree less than tùe state vector dimension. Assume that system (9) is regular,
i .e .

det(A-  ^B) H (10)

Let us show that system (9) is solvable for by far not all initial data, and therefore
there is no continuous dependence from ioitial data. To this end system (9) is
represented in the equirralent form

à
(A1- Epfi)21* A2z2 : ft

Aszz : fz

( 11)

(12)

where the knowu square scalar matrices Ar,Az, and A3 have the di:nensious & x Ë,
k x (n - É) and ("- k) x (n- k); f : coljt,fz); z: col(zt,zù; E* is tbe identity
matrix.

Hence z2 : Asr fz as system (9) is regulax. Thræ the next statemeut is true'

Lemma L In the regtlar singuJar systern (9) there is not continuovs dependence
from initial data, i.e. this system is not robust nith ruspect to initiol data.

The characteristic polynomial det(,,{ - ÀB) can be Hurwitz, but for the system
stability it means nothing becawe there is the conflict with the fact that the set of
initiâl data is open according to control objective setting (here initial data for the
variable z2 a^re fixed). By this reason the singular systems cannot be used.

The situation with system (9) is complicated by the fact that the matrix B
proves to be singular due to the idealization which connects with ignorance of some
parameters of the system under consideration (e.9. proportional feedback (2) is the
idealization of the physical realizable feedback (3)). If this ignorance is not made
then their stability has not already followd from the old characteristic polynomial
det(A-ÀB). New characteristic polynomial can be Hurwitz or not in the dependence
from the idealization which ha.s led to the singular matrix B.

Often, synthesized systems are obtained in the form

à
F( | ) z ( t ) :  f  ( t )  ( 13 )'d t '  "

where z(t) € R' is the system vector in the time , € R+ : [0, oo); /(t) is the
external disturbance; F(.) is the polynomial with square scalar matrix coefficients

n

F(s) :  D tooo (14)
&=O

where s is the variable of Laplace transform. m is some natural number.
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In the case of system (13) we might use the above result after the corresponding
transform into the form of system (9). Let us show how the degeneracy of system
(13) is discovered without this tra"nsform. The degree of the polynomial matrix f"(s)
is termed as the degree of the polynomial entry of highest degree in F(s). Hence it
is obviously what the degree of the i-th column of F(s) (as one-column matrix) is.

Let it be noted by d6. Below we shall ûeed also in the regulating matrix

F,(s)  :  d iagl (s  + 1)d ' ,  (s  + 1)d ' , . . . ,  (s  + 1)d" ] (15 )

It is easy to define the column D1 consisting of the coefficieuts of the highest degree
s terms in the r,-th column. The matrix

D ( F ) : [ D r , D r , . . . , D n l

is called pivot.

Theorem L In system (13) there is not continuous depenilence from initial data i'f

det D(F) : O.

It foilows from the fact verified by induction that

clet F(À) : det D(F) Àd + lower degree terms in À (16)

where  d :Dù .
As said above some negligible smali time-delay r is present always ia synthesized

systems. Consider the ctraracteristic quasi-polynomial det F(s, p) where

F(t, tù: ptt)(5) + F@(s)1t, /r: exp(-sr) (17)

ptt)(s) -6 ptz)(s) a.re matrix polyromials of kind (14).
Assume that matrices (14) and (17) have the same degrees (in s) of their cor-

respondiag columns and D(1t) : D(F(s,p)) is the pivot matrix in tàe variable s.
Then

det F(À, ,.l) : det D(p) À" * Iower degree terms in À (18 )

Theorem 2 Let the polynomial detF(),0) be Huruitz then quasi-polyn'omi'al (18)
is Hurwitz for sufi.ciently small r if no zero of the polynomial' detlD(p')l is in the
closed unit c'hr,le.

The theorem proof can be easily be obtaiaed with Newton-Raphson method and
Rouche theorem (see [25]).

In the case where detD(p) = 0, the polynomial det.F"(),0) is singular a.nd thus
there is not the contiauous dependence of system solutions from initial data for
r : 0. But, in general, the system workability for $nall time-delay r can have no
in common with lack of the continuous dependence of "undelayed'' system solutions
from initial data.

Singular dosed-loop systems can be considered in such way as in the classical
mechanics (the Lagrange formalism). To this end the feedbacks (which lead to
equations of the kind (12)) must be considered as constraints [26]. Then we may
preserve the continuous dependence from initial data.
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4 Estimation of Robustness Domarn

For robust systems the estimation of their robustness domai:o is of greai importance.
Assume that polynomial (14) is obtained the polynomial incremeat AF(') with
sufficiently small squa.re scalar matrix coefficients of its terms. Then system (13)
takes the form

ro1{ry"çt1: y1ty

where .Ç(') : F(') + ^r(').
Is system (1-9) stable if non-perturbed system (13) possesses this property? Does

system (19) depend contiauously on iaitial data if it is true for system (13)? We
give the positive ânslryers with using some properties of transfer fuactions.

To this end we write the matrix ftmction Ç(s) in the form F'o(t) : F(s)[/" +
F-r(s)AF(s)]. Hence the transfer ftmction Wo$) ot the perturbed system takes the
form

æ
wo@) :rfr(s) : t(-1)tlr-11s;ar1s;1ew1s;

k=O

which converges uniformly over the imagina.ry a><is if the next condition

sup llr'-r(s)AF(s)ll : q < 1
Ds=O

is fulfilled. If this is the case for a.ny sufficiently small coefficients of the terms of
the increment AF(s) then formula (20) defines the function ld(s) satisfuing the
inequality

ess sup lwr(")l < -! ess sup llw(")ll :.!ttttt" * @)
n s = o  " " - I - q  F s {  L - q "

where I/* is Hardy space of matrices analytical in the right half-plaue.
Thus due to relation (22) the transfer matrix Wo of. the perturbed system is

bounded. Function (20) uniformly converging consists of functions analytical in the
right half-plane. That is why the function fizo(s) is analytical in the same half-plane
and it defines the stable transfer matrix Wp.

Condition (21) guarantees the nondegeneracy of the characteristic polynomial
det fo(À) in the sense that its degree does not change for any small coefficients of
the increment terms. Indeed, in order to be robust the transfer matrix tr4lo mrst be
bounded, i.e. the transfer matrix l4lo(s) must be bounded in the right half-plane.
If polynomial det.Ç(À) is singular then the transfer matrix of system (i9) is not
bounded as in any its neighborhood there a.re unbounded tra"nsfer matrices. Thus
condition (21) ensures also the solution continuous dependence of equation (13) from
initial data.

Let us change the perturbed system assuming that the corresponding incrernent
AF'(s) takes the form f'"(s)A.F1(s) where the matrix F'.(s) is defined by relation

( ie)

(20)

(21)
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(15), the matrix ^.Fr(s) is analytical and bounded (small) in the closed right half-
plane. Then expaosion (20) converges uniformly over the imaginary axis if the next
conditioa

sup llF-t(s)F"(s)Ar(s)ll - q < 7
Ss=0

(23)

is fulûiled. This is the case for any suficiently small matrix AFr(s) if the regularized
matrix .F.-l(s)f].(s) is bounded over the imaginary arcis (a.nd admits to be extended
a^nalytically in the right hatf-plane). It is easy to see that the system (9) does not
satis{y this conditioa as in this case F,(s) : (s-F 1).E" a,nd the matrix F-t(s)fl(s)
is similâr to tÀe matrix

-(At - Eps)-lA2Arl
Ai' (24)

unbounM over the imaginary axis.
For the c-qe'when t,he negligible srrall time-delay r is ia t-he perturbed system

its i.ncrement is Fr(s)[t - erç(-sz)] where F2(s) is the matrjx polynomial. Assuure
that the transfer matrix of tÀe non-perturbed systeur is bounded over the imaginary
aris. Tlen the trander matrix of the psturbed system is bounded for the suficientlv
mall timê-delay r too if the next condition

sup lllr(s) + f'z(s)l-l&(s)[t - exp(-sr)]ll S q < 1
nF0

is fulfiIled. This is the ccse when

sup ll[F(s) + rz(s)j-'.Fz(")ll < t
nFO

The last c@diticn is more restricted one that tÀe condition of the theorem 2.
Thus5 ahhough causality of the systems under consideration is equivaleat to

a,nalyticity of their traasfer matrices in the elosed right half-p]â,ne fts ) Q, a^nd their
bor,rndness in this half-pla,ne means the systems stabirty, but tÀis boundness does
not automaticnlly ensure the parametric robustness.

5 Conclusions

In tÀe time-.invariant liaea"r ca.se with the help of complex analysis method and
Laplace transfqm it has aboræ been shown that idealized feedber.ks being antici-
pâ.tory caa be put in practice if their time.delay appro>cimations lead to (*y*p-
toilcally) stable dosed loop systems. The a.nticipation of "badn idealized feedbacks
might be elimiaated only if the control problem setting would be changed. That is
why the approach proposed in [24] is seem to be a^rtificial: any part of a sysrem can
be unsta.ble or anbicipatory but it does not deflne the system properties at a whole.
And therefore a^ny efforts to do them stable or causal are zuperfluous in general.

]  r , *  t lI 
t'a' --eo")-'

(25)

(26)
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Realizability of anticipatory feedbacks is considered as a part of the common
problem of robwtness. Above given are some new results connected with the fol-
lowing aspects of this problem i:r the time.invariant linear case, namely; singular
systems and estimation of their robustness domains.
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