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Abstract

We discuss the global asymptotic stabilization of a continuous stirred chemical tank
reactor, using linear time invariant PD-control with full state feedback. The control
input is the feed temperature or the cooling temperature. The emphasis is placed
on the robustness of the design, i.e. the controller globally stabilizes the system’s set
point without requiring the exact knowledge of the process parameters. The control
parameters are tuned by means of a classical root locus analysis of the linearized
closed loop dynamics and by simulations of the closed loop transients and phase
portraits. The stabilization technique relies on the direct method of Liapunov.
Keywords : Process control, Stability, Robustness, PD-control, Liapunov’s method

We discuss the problem of stabilizing a nonlinear system which describes the dy-
namics of a continuous stirred chemical tank reactor (CSTR). Such a reactor is a
continuously operating mixing vessel, which produces large quantities of industrial
products and in which strong variations of pressure, flow and temperature during
operation are undesirable. Due to the Arrhenius law the process equations contain a
product type nonlinearity in which one factor depends linearly and the other factor
depends exponentially on the state variables. For a CSTR in which a single chemical

l 1 Introduction
‘ reaction takes place they have the general form :

z=Az+k—bf(c2)g'z+ du (1)

where the state z € R? and the input u € R. The state variables are reactor temper-
ature and concentration while the input is feed temperature, or cooling temperature.
Eventually feed concentration might be considered as a secondary input. Depending
on the parameter values there may exist either one or three equilibrium states in
the uncontrolled process dynamics [1], [2]. Typically in the latter case the desired
set point is open loop unstable, the stable open loop equilibria being unsuitable
operating points for technological reasons.
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Several types of nonlinear controllers for this process have been proposed in the
literature, including feedback linearization control [3], adaptive [4] or artificial intel-
ligence [5] control schemes etc. Our design method concentrates on the application
of simple linear control laws, without trying to compensate or to modify the process
nonlinearities.

A linear time invariant controller with full state feedback and PD-dynamics is
developed which globally stabilizes the desired set point, while the other equilibria
disappear in closed loop. The emphasis is placed on the robustness of the design,
i.e. the precise knowledge of the process parameters is not required. The set point’s
closed loop global asymptotic stability remains ensured if the process parameters
deviate from their nominal values. The admissible parameter deviations are not
infinitesimal but they may vary within certain bounds. In their previous work
6], [7] the authors have derived some alternative versions of their controller with
much weaker robustness properties, using a Liapunov approach different from the
one below. Furthermore we show that the robustness of the design can be further

-improved at the cost of restricting the system’s operation to some finite stability
region in the state space surrounding the set point.

The controller gain tuning problem is handled using classical root locus tech-
niques and simulations of the closed loop transients and phase portraits.

The proposed controllers constitute examples of weakly anticipatory dynamical
systems : They compute the evolution of their state taking into account the present
values of the controller’s and the controlled process’ states, but also the desired
future stationary and dynamic behaviour of the process. This behaviour is computed
from an analytical model of the closed loop.

2 Process Dynamics and Controller Structure

In dimensionless form the heat and mass balance equations of a CSTR for a single
chemical reaction [8] can be written in the form (1) where

é[] Aé[—UOH) _01], k.e_m, bé[:::z],

e [t] s [2

and f(y) £ exp(—10%/y). Time has been rescaled as 7 = t/(%).

Here
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The state variables are proportional to reactor temperature 7" and reactor con-

centration ¢. The input u = 10*£ ATy (t) represents a scaled increment of feed tem-
perature with nominal value Tp (or eventually cooling temperature, with nominal
value T;). The model parameters are the feed concentration co, the heat capacity
per unit of volume ¢,, the specific mass p, the molar reaction heat —AH, the heat
transfer coefficient U, the reaction speed per unit of volume kycexp (—E/RT) and
the reactor vessel time constant V/F. Corresponding to u = 0 there can be either

one or three equilibrium states [1], [2]. One of these, say z, = [ 215 ] is the set

22s
point.
Equation (1) implies that
my21 + Mazy = myr + my — my(1 + 8)2; — maze + mqu (2)
Choose u such that in closed loop
Moz = a2, + B2 + Yzo + 1 (3)

This is achieved using a PD-controller

mo + 7y 1
m

u = (1+5+%)21+(1+%)Zl+( )22+;;((5—77’L17‘—m2) (4)

as can be verified by substituting (4) in (2). Taking a > 0 ensures that there exists
a unique closed loop equilibrium point 2, which satisfies
Qzig —Mozogg+6 = 0 (5)
1= 235 =z f(z1) = 0 (6)
(see Figure 1). Letting u = 0 at z = 2, results in
a 1
1+s+ E)zls+—m—l(6—m1r—m2) =0 (M

Now u can be expressed in terms of the deviation variables z = 2z — Zs as
: ma+7,.
2y, (T2E Ty ®

-7771 m;
In the next section we compute conditions on the controller parameters o, 3 and
7 which ensure closed loop global asymptotic stability of the set point 2 = z, (or
z =0). (6), (7) determine z, as a function of the choice for o and §. Combining (3)
with the second equation of (1) brings the closed loop state equations in the form :
Mz = Aoz + ko — bo [fi(21) + fa(21)(B41 + 722)] (9)

with
a8 7 al-am N 210
Ma[31] w2 [T T] w2 [F] we R,

m =10t m,y =10t
A2 2 azn + 0™, filz) 2 e
mo mey

u=(1+s+i):c1+(1+
m,
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Figure 1: Closed loop equilibrium for a reactor (Example 1) with parameter values
m; = 1.7685.10' m, = 7.8041.10'%, r=301.2696, s=0.1356 and controller parame-
ters a = 10'° and § = —2.476.107 (z, = 285.3567, 0.4837).

3 Stability Analysis

Let
A 2 /
V() & 2ZPz+ap /O £1(0)d6 + p'z (10)

be a candidate Liapunov function for the system (9). Recalling that we take a > 0,
V(2) is radially unbounded if P = P’ > 0 (positive definite) and ap > 0. Along the
solutions of (9) we have
V(z) = #Pz+2ZPi+aofi(z1)s +p'2
= #PAG Mz — ko + bofi(z1) + bofa(21)(B21 + v22))
5 . 3 -1/ .
+[Mz — ko + bof1(z1) + bofa(21) (B2 + v22)|'Ag Y Pz

taofi(z)h +p'% (11)
Choose p £ 2P Ak, and let
PAG'M + M'AGYP = —qd — phobly; p>0 " (12)
2PA; b0+ apc = 0 (13)
Then (11) simplifies to
V(z) = (—q'2)* — p(bp2)* ~ cwz1f2(21) (821 + 722) (14)

By a straightforward application of the Kalman-Yacubovich-Popov (KYP) lemma
[9] the system (12), (13) has a real solution P = P’ > 0, q € R? if

a _B _=(ytma)
AM=1¢ 3
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is a Hurwitz matrix, which is satisfied if g > 0 and if

QoReCI(ijo - M)_lb() + pb&(]on == M)_l*.
bob(’)(ij() — M)_lbo <0; VweR (15)
where A* £ 4’ (conjugate transpose).
Some calculations reduce (15) to the condition

Qp

m{w [maB +a(y+ma)] =87} > p; VweR (16)

Since a rational function gj_’g‘u‘)’z with ad # bc does not possess a minimum, (16) is
satisfied if

52( Bv) > (17)
and

a

—[maf+a(y+m2)] > p (18)
(17) and (18) can be written as

ﬂ<—'y<m2(1+ﬂ) e (19)

Qo Qo

Next let us return to (14) where 0 < f5(21) < 22 for all z; > 0 (Observe that by
definition, z; can not assume negative values). Assuming we choose

P = a2

P (20)

it is an easy exercise to see that V(z) < 0 for all z and that the largest invariant
set where V/(2) vanishes consists of the set where 2(t) = 0, i.e. the system’s unique
equilibrium point z = z,. Eliminating £ from (19) and (20) yields the condition

1my 1m; ,a
Z—’Y < —y<my(l+ =)= =7 (21)
my
For practical process parameter values the first inequality of (21) imposes the strongest
restriction on 7 :

0< —y <42 (22)
m
Since V/(2) is radially unbounded and V(z) is negative semidefinite all closed loop
trajectories remain bounded for increasing time. Standard invariance theory then
implies that the feedback law (4) or (8) renders the set point z = 2, globally asymp-
totically stable provided we choose a: > 0, 8 > 0 and + satisfies (22).
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4 Robust Design with a Finite Stability Region
By the analysis of Section 3, the control law
u= f}.’l?] + 52.’1)1 + 53.7)2 (23)

represents a globally asymptotically stabilizing PD-controller provided & > (1+s),
& > 1 and

= g = (24)

Tuning the controller does not require a precise knowledge of the process parameters,
however for practical parameter values the admissible interval for {3 is small. The
robustness of the controller can be improved if we restrict the system'’s operation to
some finite stability region in state space surrounding the set point. Define

Q. 2 {z€ R} 2z <a, V(2)<Vq} (25)

where a is a scalar, a > z;,. Choose V, such that if z(0) € Q, then z(t) € Q, for all
t > 0. We proceed as follows : It is straightforward to verify that in each point z
on the straight line segment {z; =a, 2z < b} with

N aa+6+7

b 26
ma + 7y + ym, f(a) 126)
we have z; < 0 (see Figure 2). Let 2, - [ z } and V, & V(z,). Obviously a tra-
2 [
2a
a 21
-~

Figure 2: Level sets { V(z)=constant} and stability region 2, under a state con-
straint z; < a.
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jectory starting in €, at ¢ = 0 remains in ), for all ¢ > 0 and 2, is a region of
attraction of the set point. For z € {2, we have

my -—10t

0 < fo(z1) < fa(a) = Ak (27)

It follows that if we restrict the system’s operation to the set €2, then the condition
(21) on « can be weakened to :

—10* 8

1 1ot
—E'yze a < —y<mo(l+ E) — Z————’yze_?— (28)

4m2

For practical process parameter values (28) holds if

4mg 10t
0< —y < —2¢%
v < = e (29)

5 Control Parameter Tuning

For the purpose of tuning the controller the influence of the control parameters
on the eigenvalue spectrum of the linearized closed loop system can be studied
using standard root locus techniques. After some manipulations the characteristic
equation of the linearized closed loop dynamics around z; is obtained as :

(s+g—)(s+l+bo)+%[(-—’y)s+m2] =B (30)
where
—10%
ao 2] mlzz,,-did(‘?b:m = mlzgslz(lz):ez—lf >0 (31)
b 2 mif(ze) =mea >0 (32)

Figure 3 displays the root locus plots of (30) for given values of § > 0 and (—7) >0
and for 0 < % < 400, as compared to the nonrobust case v = 0. With v < 0
the system’s time response is non-oscillatory for small and for large values of 8 and
oscillatory for intermediate values. The response dies out faster for increasing % and
for increasing % With v < 0 a better damping is achievable than in the nonrobust
case with v = 0. The authors have verified these results making some time response
simulations. Figure 4 shows a phase portrait of the system for two different initial
conditions and the transient response corresponding to one of these.
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Figure 3: Root locus diagrams for the linearized closed loop dynamics. (a) : robust
control (v < 0); (b) : nonrobust control (y = 0)

6 Two-~-input PD-control

An alternative method to improve controller robustness is to use the reactor’s feed
concentration as a secondary input to the control system. Then in the second

equation (1) an additional term u, 2 %Aco(t) appears. In (2), u is to be replaced
by u; + T2up. For example let

uy = —fhy (33)

(33) results in an additional term —/3;2? in the expression (14) of V(z), which
modifies the stability condition (21) to:

o T S

y mi o 0%
4 " maB+mif

B
< =< 1+=) - —_—
¥ < mag( +a) 47m2ﬂ+m1ﬂ1

(34)
For simplicity, assume ~ is chosen in the interval
O0<—y<my

Then a lower bound Bymin for 1 can be obtained from (34). The control law takes

the form :
uy = &1+ &y + 33 (35)
uy = —bGi (36)

|
T R R R R R
|

A A
where 6§ =1+s+;2, 6 =14 £ + ™p), ¢ = M2ty
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Figure 4: Transient response and robust PD-control signal for Example 1. a =
10'; 8 = 10'%; 4 = —0.1 ; 2(0) = (0.4; —0.6); set point : (285.3567; 0.4837) (a) Phase
portrait,(b) Temperature response,(c) Concentration response,(d) Control law wu;
(Single input control). (a) also displays the trajectory starting at 2(0) = (0.4;0.6).

Hence global asymptotic stability is ensured if in (35), (36) :

my

& > 1+s8 5 &>1+ —Pimn
my
m
2 > &>0 ;5 B> Bimin (37)
m

A root locus analysis reveals that the additional feedback loop, while improving
robustness, tends to slightly deteriorate stability.

7 Conclusion

We have discussed the global asymptotic stabilization of a chemical CSTR model
using linear time invariant PD-control. The system uses feed temperature or cool-
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ing temperature as the control input and applies full state feedback. The emphasis
has been placed on the simplicity and the robustness of the control law. Tuning the
control parameters to guarantee stability does not require a precise knowledge of the
process parameters. However the controller cannot be endowed with fully satisfac-
tory robustness properties unless the system'’s operation is restricted to some finite
stability region in state space surrounding the set point. Alternatively controller
robustness can be improved using feed concentration as a second input.

In their future work the authors intend to apply their approach to specific in-
dustrial examples to test the practical applicability of the design method.
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