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Abstract
We discuss the global asymptotic stabilization of a continuous stirred chemical tank
reactor, using linear time invariant PDcontrol with full state feedback. The control
input is the feed temperature or the cooling temperature. The emphasis is placed
on the robustness of the design, i.e. the controller globally stabilizes the system's set
point without requiring the exact kuowledge of the process parameters. The control
para,meters are tuned by means of a classical root locus analysis of the linearized
closed loop dlrumics a.nd by simulations of the doced loop tra.nsients and pha.se
portraits. The sbabilization technique relies on the direct method of Liapunov.
KeSrwords : Process coutrol, Stability, Bobushess, PD-control, Liapunov's method

1 Introduc{ion

We discuss the problem of stabilizing 6 nenlinsar system which describes the dy-
nq.miçs of a continuous sti:red chenical tank reactor (CSTR)- Such a reactor is a
conti:auously operating mixing vessel, which produces la.rge quantities of industria,l
products and in which strong 'sariations of pressure, flow and temperature during
operation are undeshable. Due to the Arrhenius law tbe process equations contain a
product type nonlinearity in which one factor depends linearly and the other factor
depæds ecponætially on the state variables. For a CSTR in which a single chemic,al
reaction takes place they haræ the general form :

2 : A z + k - b f ( é z ) g ' z + d u

wbere the state z € .82 and the input u € R- The state variaNæ are reactor temper-
ature and concentrationwhile the input is feed temperature, or cooling ternpeature.
Eventually feed concentration might be considered as a secondary input. Depending
on the pararneter values there rnay exist either one or three equilibrium states in
the uncontrolled process dynamiæ I1], [2]. Typically in the latter case the desired
set point is open loop unstable, the stable open loop equilibria beiug unsuitable
operating points for technological reasons.
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Several types of noulinear controllers for this process have been propoeed in the
literature, iucluding feedback linearization control [3], adaptive [4] or artificial intel-
ligence [5] control schemes etc. Our design method concentrates on the application
of simple linear control laws, without tryrng to compensate or to modify the process
nonlinearities.

A linear time invariant controller with full state feedback and PDdynamics is
derrelop,ed which globally stabilizes the desired set point, while the other equilibria
disappear in closed loop. The emphasis is placed on the robustness of the design,
i.e. the precise knowledge of the process parameters is not required. The set point's
closed loop global asymptotic stability remains ersured if the process pa,rameters
deviate from their negrinel values. The admissible pa,rameter deviations are not
infinitesimal but they may vary within certain bounds. In their previous work
[6]' [7] the authors have derived some alterrnatirre versions of their controller with
much weaker robustness properties, using a Liapunov different from the
one belonr. Fbrthermore we show that the robustness of the design can be further
improved at the cpst of restricting the system's operation to some finite stability
region in the state space su:ounding the set poiut.

The controller gain tuning problem is hs'dled using classical root locus tech-
niques and simulations of the clæed loop transients and phase portraits.

Tbe proposed controllers constitute examples of weakly anf,icipatory dyuanical
systems : They compute the evolution of their state taking into accormt the present
values of the controller's rnd the controlled procese' states, but also the desired
future stationary and dynamic behaviour of the process. This behaviour is computed
from an analytical model of the closed loop.

2 Process Dynamics and Controller Stmcture

In dimensionless form the heat and ma^ss bale.ce equations of a CSTR for a single
chemical reaction [8] ""lr 

be written in the form (1) where

"t l : '1, /êf-(1+s) ol kêl:1, ,,2l-*,1,-  
L " r ) " ' -L  o  -1  j '  L ' l  LTnr j

and_"f(y) ê exp(-104 lù. Timehas been rescaled * 
" 

ê tl(f).
Here
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270



The state variables are proportional to reactor temperature ? and reactor con-
centration c. The input u ê roo#A?o(t) represents a scaled increment of feed tem-
perature with nominal value ?e (or wentually cooling temperature, with nominal
value ?i). The model paremeters are the feed concentration cs, the heat capacity
per unit of volnme c", tb€ specific nras"s p, the molar reaction heat -Af1, the heat
transfer coefficient U, the reaction speed per rni{ ef volume /cscexp (-E/ET) and
the reactor vessel time constant Vf F. Corræponding to r.t,:0 there can be either

on€ or three equilibrium states [1j, [2]. One of these, say z, : l'-'" I t" the set

point. 
L zz" l

Equation (1) implies that

m1/ * f lù222: rnf * m2 - m1(l * s)21 - trùzz2* mru

Choose u zuch that in closed loop

trùzz2: azr * Êh t làz + 6

This is achieved us'ng a PDcontroller

(2)

(3)

u:  (1+s+ * ) " r *Q+*)z '+ fY la* l ta  -nr r r - * r )  (4)'  
t T L l ' '  

'  
t T t 1 "  

' 1 T I 1  
"  m 1 '

a.s can be vsified by substituting (4) in (2). Taking o ) 0 enzuræ that there exists
a unique dosed loop equilibrium point z, which satisûes

(o/

(6)

(æe Figure 1). Letting a:0 at z = z, results in

a .  L . ^
( l * s *  

f i ) " t "  
+  - (ô  - I r l t r -mz ) :O  (7 )

Nw u can be in terms of the devlation uariables 
" 

! 
" 

- 
"" 

*

z  :  (1+  s+  g )c l  +  (1  +  L \ r ,  +  (? ' -F7 r '- Irtr1 TrLl î)ù'z 
(8)

In the nerct section we compute aouditions on the controller parameters a, B ar.d
'y vùich enrilxe dosed loop global asJrmptotic sta.bility of the set point z - z" (or
.r : 0). (6), (7) determine zs Às a function of the choice for a and 5. gestining (3)
wit'h the second equation of (1) brings the closed loop state equations in the form :

M2:hz +h-ôo[ / r ( r r )  +  lz(z) ( f là+t ,ù ]  (e)
with

iî ], "u Ii ], '. lî],
. /  r A ? I ù 1  

- l o a

I z \z r ) :æ ' ,

Q Z r e - m z z u t ï  -  0

L -zw- rn1z2 " f ( z )  =  0

*tl| 11, ^* [ï
frkr) !ff{o.,+ ee*,
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Figure 1: Clæed loop equilibrium for a reactor (Exanple 1) with paraneter value
rnr : 1.7685.t0r5,m2: 7.8041.1016, r:301.2696, s:0.1356 and controlkr params
ters o:1015 and 6: -2-476.10' ("":285.3567,0.4837).

3 Stability anabsis

Let

v(r) â z'pzi^ Io"' i lr)d,o+dz

be a candidate Liapunov function for the system (9). Recalling that
V(z) is radially unbounded if P: f/ > 0 (poaitive definite) and ao
solutions of (9) we have

'ûQ) : 2'Pzt /Pz+ aoh(z)i l+f2
: 2' p, or[M 2 - h + bfi (zr) + boîz(zù(0à + l2z)l

+lMz - ko + ôofi(zr) +hf2kù@h+t2z)l',4;"Pz
+o,o|{zt)h+f 2

Choæe p2zP"qo'ko and let

P,A}'M+ M'A;I 'P : -qd - fuUo; p>0
2Py'{-tfo* asc = 0

Then (11) simplifies to
't1"7 : e{ ù, - p(Uo2)2 - o.o\lz(z)(ph + 122)

By a straightforward application of the Kalman-Yacubovich-Popov

[9] the system (12), (13) has a real solution P: P'> 0, q e ^R2 if

I P -(r+mz) 'l

A; 'M:  l ^ ; -  s  I"  t0  -1  J

(10)

w e t a l c e c ) 0 ,
> 0. Along the

( 11)

(12)
(13)

(14)

(KfP) lemma
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is a Hurwitz matrix, which is satisfied if f > 0 a^nd if

asRnC(jufu- M)-'bo+ pbL1ah- M)-'*.
hUoUuAo- M)-'h <o; Vu e R

where A* ê,4' (conjugate transpose).

Some calculations reduce (15) to the condition

(p2 + d2u2) t' L'

Since a rational function # *rtn ad / bc does not possess a minimum, (16) is
satisfied if

e.û.

Uz\- l t t )  
> P

and
0 ,O ,

f i lmz7+a(7+m2) l>  p

(17) and (18) can be writtæ as

É._ - r<mz( t+ \ -P
Ag A '  Q,6

Next let us retum to (1a) wbere 0 < lz(zt) < ff for all z1 > 0 (Observe that by
definitiea, 21 @D not âss rme negative ralues). AsÈurning we choose

f = 4p-L*'
AOînt

it is an easy ecercise to see that 'ûQ) a 0 for atl z andthat the largest isvariant
set whse V(z) vanishes consists of the set wbere 2(t) : 0, i.e. the system's rmique
equilibrium point z - 2". Fliminating 

fr from (19) and (20) yields the condition

i#f < -? < m2(r + *, -i#+uu (21)

For practical process pa.râmeter values the ûrst inequality of (21) imposes the strongest
restriction oayy :

0 < *7 a4J
lTl'1

@)

Since V(z) is radially unbounded andV(z) is negative semidefinite all closed loop
trajectories remain bounded for increa.sing time. Standard invariance theory then
implies that the fbedback law (a) or (8) renders the set point z : z" globally asymp
totically stable provided we choose o ) 0, B > 0 and 7 satisfies (22).
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4 Robust Desigu with a Finite Stability Region

By the analysis of Section 3, the control law

u : € r s r * & ù * € s à z

#rt-*r.€".X

(23)

represents a globally asymptotically stabilizing PD-controller provided €r > (1+ s),
( 2 > l a n d

Tlming the controllerdoes not require a precise knwledge of the process pa,remetens,
however for practical parameter values the admissible i.uterval for €s is small. The
robrrstness of the cootroller can be improræd if we restrict the system's operatiou to
some finite stability region in state space surrounding tbe seÉ poirrt. Define

dl,L {z e R2; ; ,11a, v(r)  <u"I (25)

wùere o is ascalar, o) 21". Chooee% $rchthat if z(0) eCà then z(t) e{1" brall
t > 0. We proeeed as foll€ffs : It is straightbrwa,rd to verify thet in each point z
on tbe straight line segment {zr: o, z2 < bl with

,  ̂  a a t Ô * 7
rn2+1+7m1f  @)

we have 21 1O (see Figure 2). Let z"A

{24)

(26)

axdu"2VQà. Obrviously a tra-
[ ; ]

Figure 2: Level æts {V(z):constant} aud stability region Qo under a state con-
straint z1 I o.
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jectory starting in Oo at t : 0 remains in Q" for all t > 0 and O" is a region of
attraction of the set point. For z € Oo we have

0<f r (z r )< !z@):#"4 (27)

It follows that if we restrict the system's operatiou to the set Qo then the condition
(21) on 7 can be weakened to :

5 Control Parameter T\rning

For the purpose of tuning the controller the influæce of the control parameters
on tbe eigenralue spectTum of the linearized closed loop system can be studied
using standa,rd root locus techniques. After some manipulations the characteristic
equation of tbe linearized closed l,oop dynamics a,round z, is obtained as :

! 9 - r " "# . -  B '  tm ,a ' - t&
4rnz '  1  < mz\L *  

; )  
-  

4*r  Pf  " -

For practical process parameter values (28) holds if

o < --v ..4*'"*.  
fTt1.

t" + filf' + 1 + h) + ffl?ù" * m2l - o

where

a iffb), lff .-roa
oo = nuz2"=#lÈzr6 = mta"fie=i > 0

h ê mtl(zr")-  - ,"ËS t  o

(28)

(2e)

(30)

(31)

(32)

Fignre 3 displays the root locus plots of (30) for given values of i > 0 and (-7) > 0
andfor0  <  à  (  -FF,  ascomparedto theuonrobus tcaseT:0 .  

'Wi th7  
<  0

the system's time reryonse is non-oscillatory fior small and for la,rge values of É and
æcillatory for intermediate values. The responee dies out faster for increa.sing fi and
for increa<ing à. \4/ith 7 < 0 a better damping is achievable than in the nonrobust
caæ with 1 : 0. The authors have verifred these results meking some time response
simulations. Figue 4 shovrs a phase portrait of the system for two different initial
conditions a,nd the transient respoffre corresponding to one of these.
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Figure 3: Root locus diqrams for the linearized closed loop dynanics. (a) : robgst
control (f < 0); (b) : noarobust control (f = 0)

6 Two-input PDcontrol

An alternative method to improve controller mbusbness is to use the reactor's fred
concentration as a secondary input to the control system- Then in the second
equation (1) an additional term u2g *4".(t) a,ppeanr. In (2), u is to be replaced
by u1 * ffuy For ercample let

u2: -8121 (33)

(33) results in an additional tæm -81à2, in the expressioa (14) of Ù12;, orUicU
modifies the stabitity condibion (21) to :

(34)

For simplicity, a$sume 7 is chosen in the interval

a < - 'Y <mz

Then a lower bound B1a6 for 0r can be obtained frorn (34). The control law takes
the form :

u1 :  €rcr *€zàt*€eùz
u 2  =  - Ê f t r

where (1 ê t + " * ft,, €z 2 t + # * ff&, €e : W

(35)
(36)
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Heuce global asymptotic. stability is ensured if in (3b), (36) :

€r
rrt2 

; gr>gr*r)
^

A root locus analysis reveals that the additional feedbarJ< loop,
robustness, tends to slightly deteriorate stability.

0 1 0 2 0
I

10 2A 30 40
I {o)

Figure 4: Tiansient reqpoffrc and robust pDcontror signal for Exa,mple 1. c :
I0r5;0 = 1016; ? : -0.1 ; z(A) : (0.a;-0.6); set poinr : (ZaS.SSOZ; 0.4$t) (a) phase
portrait,(b) Temperatr:re response,(c) concentration response,(d) Control law u1
(single input control). (a) also displsys the trajectory starting at z(0) : (0.4;0.6).

(37)

while improving

7 Conclusion
'We 

have discuæed the global aqrmptotic stabilization of a chemical CSTR model
using linear time invariant PD-control. The system uses feed temperature or cool-
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ing temperature asr the control input and applies firll state feedback. The empha.sis
has been placed on the simplicity and the robustness of the control law. Tining the
control parameters to guarantee stability does not require a precise hrowledge of the
process parameters. However the controller cannot be endowed with fully satisfac-
tory robustness properties u.less the system's operation is restricted to some finite
stability region in state space surrounding the set poid. Alternatively controller
robustness can be improved using feed concentration a.s a second input.

In their future work the authors iatend to apply their approach to specific in-
dustrial examples to test the practical applicability of the design method.
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