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Abstract The paper presents a methodology based on Artificial Neural Networks
(ANN) to perform on-line a diagnosis of the health state of a machinery. The pro-
cedure at issue permits to detect the presence of backlash and to determine possible
structural failures inside a mechanical system. Backlash and damages are impor-
tant causes of vibrations in machines, therefore vibrations monitoring gives indirect
information on these parasite effects. An ANN is used to classify the system be-
haviour among a predefined number of classes, receiving as input vibrational signals
(simulated or measured). An application is discussed for devices purposely built for
indexing motion, where compliance plays an important role affecting the dynamic
behavior of the whole machine. An analysis of parameters sensibility for the pro-
posed procedure on simulated cases highlighted the best values and choices for these
parameters. Tests of the procedure on experimental data collected on actual devices
match closely the good results achieved with simulations.

Keywords : Mechanical Indexing Systems, Elasto-Dynamic Models, Vibrations,
Neural Network, Identification.

1 Introduction

The need to improve the standards of quality, to increase efficiency and to reduce
production costs has led to an increment of the attention dedicated to diagnostic
problems of mechanical systems.

In the past maintenance policy was based on repair after failure; users maintain
machines only when something breaks with consequent costs elevation, productivity
reduction and, sometime, catastrophic consequences.

In recent years operators and companies have realized that a good maintenance
policy "is truly the single largest controllable cost in the operation of a plant or
machine” [19]. Different maintenance strategies were consequently developed: pre-
ventive, predictive and proactive maintenance.

Preventive maintenance includes activities (i.e. regular care of such components
and machine systems, periodic inspections and actions to repair or replace compo-
nents in impending failure) to prevent impending failure.
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Predictive maintenance, also known as condition monitoring, is based on the
monitoring of one or more conditions (visual, compliance, vibration and noise, wear
debris and heat monitoring) to determine whether material degradation is occurring.

The more recent approach of maintenance is proactive maintenance, an activity
performed to detect and correct root cause aberrations of failure.

Several works in literature deal with the development of methodologies to im-
plement condition monitoring maintenance [8, 7, 9], some of them used an Artificial
Neural Network for an automatic identification of the system state by giving to the
network the current value of the monitored condition. ANN can be successfully used
to perform non linear systems identification, while more traditional algorithm for
classification failed.

The application fields of these methodologies are manifold: paper-making in-
dustry, economy, railway systems, robotic manipulators, rotating machinery, civil
engineering, medical diagnosis, etc..

The proposed work deals with the development of a predictive maintenance
methodology based on vibrations monitoring, where a Neural Network is employed
to identify the faulty operation and the damage level of the condition.

Vibrations were chosen as condition to monitor due to the nature and to the
type of the mechanical system considered, a mechanical indexing system, formed by
a rotating table driven by an electrical motor through a gear speed reducer.

The existence of an effective link between machine vibrations and its health
conditions has been verified several times. Previous studies of the authors [1, 4]
demonstrated that backlash in mechanical components, particularly in the speed
reducer, and the characteristic of the compliance, inside junctions of mathematical
models of the system, play an important role in the amplification of vibrations.

The development of systems based on vibrations measurement as mean to detect
the condition of a machine, has been encouraged from the easy application of such
technology. Simply a common accelerometer and the respective instrumentation are
needed.

The collected acceleration data are usually preprocessed to better identify the
type of damage in the system. Data preprocessing techniques go from the analysis
of the Fast Fourier Transform (FFT), to the Power Spectral Density (PSD) or to
higher order statistics quantities (HOS) [?]. Moreover, identification of breakdown
is also carried out through analysis with Wavelet [7] or with algorithms like Dynamic
Time Warping (DTW).

The interpretation of results obtained with such analyses can be executed by
an engineer, but it is difficult to implement in traditional systems for faults auto-
matic acknowledgment. This derives from the limits connected to the structure of
the algorithms that come from the Touring’s machine, which are rather efficient in
classifying well known cases, but are not capable to generalize situations never seen
before or to continue learning even after the completion of the code writing phase.

The great variety of situations likely in the mechanical systems diagnostic, com-
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bined to the casuality of such phenomena, leads to the research of new methods for
automatic inspection of machine health.

Algorithm based on parallel calculation instead of sequential one, like artificial
neural networks, could be effectively used to develop automatic diagnostic tools in
the presence of highly non-linear phenomena.

In [2] Lucifredi and others showed that structural failures could be associated
with bilinear behaviour, thus a bilinear characteristic in a joint of a model of a
mechanical system could be used to simulate a crack in the device.

The proposed procedure of diagnosis has been firstly calibrated and tested on
simulated data. Simulations were executed with elasto-dynamic mathematical mod-
els (arranged by the authors in previous researches), for which structural failures
and backlash were enclosed in opportune characteristics of the joints of the models.

An analysis of parameter sensitivity has been developed to adequately calibrate
the procedure.

Experiments executed in a second stage of the research permitted to collect
a database of measured acceleration. An actual mechanical system for indexing
motion was considered and structural failure and backlash in this case were actually
generated.

The rest of the paper is structured as follows:

e section 2 describes the mechanical system considered in the research;
e section 3 is devoted to a synthetic description of the feed-forward ANN;

e section 4 refers to the procedure of diagnosis for the simulated case: a descrip-
tion of the procedure, results of the analysis of parameters sensitivity and a
discussion of classification results are given;

e section 5 concerns the experimental case: experimental device, tests performed
and results achieved are presented in this order.

e section 6 resumes the main conclusions of the work.

2 The mechanical indexing system

A rotating table driven by an electrical motor through a gear speed reducer forms
the mechanical system considered in the work [18]. The table is connected to the
speed reducer through an indexing mechanism, formed by a spatial cam coupled
with roller followers, to obtain intermittent motion (figure 1).

Such mechanisms are generally used by the manufacturing industry, in produc-
tion lines which need an intermittent advance of the manufactured (figure 1). To
amortize the costs of such systems, it’s necessary to attain elevates levels of pro-
ductivity. The maintenance purpose is to assure high productivity through the
increment of the availability of the system and its conservation in the time.
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Table acceleration [rad/s’]

[z}

Time [s)

= Measured acceleration
* * Theoretical acceleration

follower of an indexing mechanism. c¢)Comparison between theoretical acceleration
of the rotating table (continue line) and real acceleration (dotted line): vibrations
of non negligible amplitude can be observed.

Frequently the motor used is a simple asynchronous triphase, with nominal speed
of 1500 RPM. To reduce the rotation speed and to transfer motion to the indexing
mechanism, it’s necessary to introduce a transmission, which is often source of mo-
tion disturbance (distributed clearances and backlash often cause vibrations)[22, 14].

The indexing mechanism is the device that concurs to transform continuous
rotatory motion in an intermittent rotatory one. The law of motion with dwells is
obtained through the coupling between a cam (on the left in figure 2) and a series of
rollers. The indexing mechanism is source of vibrations itself, caused by variations
of the follower acceleration joined to the imprecisions in coupling between the cam
and the follower.

Finally, also the load, commonly mounted directly on the indexing mechanism,
can be source of differences between waited and obtained law of motion.

Experimental measures on systems with different sizes and series of indexers
permitted to achieve a database of acceleration signals of the table. As example,
figure 2 compares the real acceleration (continue line) versus the theoretical one
(dotted line) in normal working condition. The amplitude of vibrations appears
clearly non negligible.

3 Artificial feed-forward Neural Networks

Artificial Neural Networks (ANN) are structures that simulate the cognitive process
that happens in mammals [5]. These systems of calculation differ from the tradi-
| tional ones, based on the Von Neumann architecture, starting from the structure:

|
|
|
Fig. 1: a)Example of industrial application of indexers. b)Spatial cam and roller
|
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|
there is not, in the ANN, any division between elements dedicated to the calculation,
to the memorization or to the allocation of the rules, but the tasks are distributed
to all the neurons.
The base element of an ANN is the artificial neuron, which is connected to other
equal neurons, in order to form an organic structure capable to carry out numerous
tasks. The i-th artificial neuron receives n input z;;, Zs,. .., Z;x. 10 every input it
associates a weight w;;, that is a value that keeps account of the influence of that
‘ j-th input on the i-th neuron. The inputs, after weighted, are added. If the result
| of this sum exceeds a value 6, called activation threshold, the neuron proceeds with

the calculation, applying to the result a function called ”activation function” and
‘ obtaining the output of the neuron. This output is passed to all the neurons that
| follow.

i N
‘ yizqﬁ(}:wif:cj) (1)

=0

The parameters that influence the operation of an artificial neuron are: the
| threshold, the weights and the activation function. The weights and the threshold
| are optimized during the training, whereas the activation function must be chosen

during the definition of the net.

Usually, the activation function is chosen among the hard limit function (binary
| or bipolar), the linear function, the log-sigmoid function and the tan-sigmoid func-

tion. The choice of the activation function is made in relation to the type of code
selected for the data (binary [0 1], or bipolar [-1 1]).
‘ The training consists in the iterative modification of the weights, until the net
is able to associate correctly input and target (output expected for that particular
input). The training used for the implemented fault diagnosis tool is called ”with
supervisor”, so to assign to every input the target, and then to estimate the classi-
fication error coming from the net. With proper mathematical operations, deriving
from the rule of error back propagation, we calculate the amount of the correction to
apply to every weight to minimize the error. The modification of the weights should
terminate when the error coming from the net is cancelled. This is not always pos-
sible, both because it’s difficult to find the combination of weights that cancels the
error and because of the risk in the overfit of training data, due to the excessive
quantity of training epochs, which may limit the generalization abilities of the net.
Several routes have been proposed in order to reach the best combination of
weights. All of them start from the randomization of the initial values, then every
one moves with different rules on the error surface.
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Fig. 2: a)Model A of the mechanism; b)Model B of the mechanism

4 Simulated case

4.1 The procedure

Elasto-dynamic models developed in a relevant research well simulate the real accel-
eration of the table, by taking into account clearances and elasticity in the system.
Two different models are here considered: a one-degree of freedom model (after-
wards called A) and a two-degrees of freedom model (B). Model A introduces an
elasto-dynamic joint on the outside shaft of the indexer, while model B considers
also an elasto-dynamic joint on the input shaft of the indexer. The comparison
between measured and simulated acceleration for a great number of practical cases
allows to say that model B better explains the most evident dynamic phenomena of
systems with high operating speed and low rigidity, while model A is to be preferred
when high loads and high inertias are involved.

The first phase of the developed procedure consists in the generation of the set of
training examples by simulation, adopting model A and model B. Table 1 contains
the nomenclature adopted throughout the work. The motion equation of the one-
degrees of freedom model A is eq. (2), while motion equations of the two-degrees of
freedom model B are (3).

§=—7 Ttha(p =)+ 7 (6= Fa) )
a= _m {ki(ry~a) +ki(r9 ~ &)+ B [ka (0 — B) +
+ r2 (¢ — f'a) — JpfB'B"6%)} (3)
p= =g [Ti+k(p—B)+ra(p—pFa)

The acceleration of the rotating table () is the parameter achieved to monitor
the system. A Runge-Khutta of the fourth order method is used to solve the motion
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v, & Motor and cam shaft rotation
B, ¢ Follower and table rotation
ImsJoyJr,Jy || Motor, cam, follower, platform moment of inertia
k1,m1,01 Stiffness, damping, backlash of joint 1
ko,72,00 Stiffness, damping, backlash of joint 2
T Speed reduction ratio
T Load torque

Table 1: Nomenclature adopted for the mathematical models.

Elastic torgue Elastic torgque Elastic torque Elastic torque
gE=k gE=k
wgn=k
S P R B = Vi
T T \ g \
Twist angle Twist angle Twist angle Twist angle
a) b) c) d)

Fig. 3: Type of non-linearity and backlash considered . a) linear; b) linear with
backlash; c) bilinear; d) bilinear with backlash

equations of the system, supposing constant the motor shaft speed. The values of
the parameters of the model (ky, 71, ¢1, k2, 2 and go) were previously established
through an optimization procedure by comparing simulations with experimental
measures of the acceleration ¢. The non-linearities simulated are located at the
joints and practically are implemented with non-linear characteristics (as shown in
figure 3). In details, at joint 1 just the linear case is considered with or without
backlash, at joint 2 the characteristic can be linear or bilinear, with or without
clearance. The training examples were generated by solving the motion differential
equations until transient condition is finished, several times with different values of
the parameters of the elasto-dynamic model considered, in detail randomly changing
the parameters in a range of +£10%. The tangential acceleration on the table (¢)
has been chosen as condition to monitor.

Step 2 of the procedure consists in the training of the NN. The NN used in
this research is a multi-layer feed-forward NN, trained using the back-propagation
algorithm (with momentum) and by adopting the early stopping method ([5]). The
NN is trained using a first group of examples (the calibration set). The training
is iteratively performed while monitoring the quality of classification on a second
group (control set). The training is stopped when the error in the control set does not
decrease any more. As a further control, at the end of the calibration, a prediction
error is evaluated also on a third example set (the validation set). A three layer NN
(with just one hidden layer) was chosen. It was assumed that a single hidden layer

259




was sufficient; this is supported by the theorems of Cybenko and Funahashi which
show that a single hidden layer is sufficient for the approximation of a polynomial
function to arbitrary accuracy.

The performance rating of a solution is evaluated as the mean square errors on
the control set, after the net training phase, so the performance improves if its value
decreases.

In this context, parameters sensitivity analysis has been executed, to determinate
the most suitable ANN for the diagnosis of the malfunctioning at issue, in a system
for intermittent motion.

In details, parameters analyzed were different preproccessing techniques to create
ANN inputs, random initialization, ANN hidden layer transfer function and number
of nodes and the training rule.

In the course of the research, ANN were implemented with the Matlab Neural
Network toolbox.

\
\
|
|
|
|
|
|
|
4.2 Analysis of parameters sensitivity
Comparison between FFT and PSD Different choices could be made for the
pre-processing of the signal to supply as input to the ANN. Here the FFT (Fast
Fourier Transform) and the PSD (Power Spectral Density) of the acceleration signal
are compared. Experiments show that both FFT and PSD have an effective link
with the machine operating condition; in fact, different cases have different trans-
forms, and analogous cases, have similar transforms. Different classification and
generalization tests were executed with FFT, filtering the signal with different low
pass filters, with cut frequencies 100, 50, 25, 12.5, 6.3, 3.1 Hz, the aim being to iden-
tify the optimal one. Band pass width reduction involves both information lose on
phenomena and dimensional reduction of the problem. The dimensional reduction is
proportionally correlated with the input neurons number, that is the required num-
ber of FFT frequencies (fixed the test time at 8.2 seconds, the spectral resolution is
‘ 0.122 Hz and cannot be changed). For example, with a band with of 100 Hz, 800
| values are required (800 neurons in input to the ANN), so the combination of the
| weights is searched in a 800 dimensional space. Analogous different types of PSD
| have been tried, changing the spectral resolution (approximately 0.5, 1, 2, 4, 8, 16,
| 32, 64 Hz), to see how much the PSD can be coarse, without loosing net abilities in
| classification and generalization.
| For every case, 100 tests have been executed to achieve as much as possible
| insensibility to the initial randomization of the weights and both medium and best
| value obtained in every test has been reported on graph in fig. 4. Dotted lines
| visualize the mean values on 100 tests, while solid lines are related to the best
| performance both for the PSD and the FFT techniques.
One can notice that the nets which elaborate data obtained from the PSD achieve
better performances than those trained with data preprocessed with FFT. When
the PSD becomes excessive coarse, or when information on a sufficient number of
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Fig. 4: Comparison between different

types of PSD and FFT, changing spec- Fig. 5: Influence of net initialization on
tral resolution and cut frequency. Mean  the final performance. Number of tests,
(dotted) and best (solid) performance among 1000, capable to approach the
value on 100 tests. " same performance.

frequencies is not supplied from FFT to the net, the performance get worse. In
particular, lower limits to achieve acceptable performance are 12.5 Hz for the FFT
and 8 Hz for the PSD. The PSD is clearly better than FFT not only for a better
performance but also for the great reduction of the problem size; in fact, the FFT
with band with 12.5 Hz requires 100 input nodes while the PSD with 8 Hz as band
resolution, requires only 12 nodes.

Initialization influence The weights initialization influences remarkably the clas-
sification and generalization performance of the ANN. Test were performed repeating
the training 1000 times, starting from random values of the weight, to verify the
influence of this parameter on results. Figure 5 shows the distribution of the number
of tests versus the achieved performance (in abscissas). The histogram shows that
the influence of the initialization can be remarkable. The more frequent value is
about 0.06 (a low value for the considered case) and more than the 80% of the cases
fall in an acceptable range around this value, so if a reasonable number of tests is
executed, the probability to find a satisfactory result is high.

Number of hidden neurons An element that has high influence on the abilities
of classification and generalization of the net is its architecture; an important pa-
rameter is the number of neurons of the hidden layer. In order to verify the hidden
neuron number influence, several tests have been executed, searching for a possi-
ble optimal value. A configuration clearly better of the others has not been found
(see fig. 6, and moreover, in this case, there are not great differences between the
performances of the several net with a number of nodes equal or higher than 15.
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Code influence In this section, the difference between the performance obtainable
with bipolar or binary codifies is analyzed. Although often bipolar coding gives
better results, thanks to the possibility to attribute no value to the zero, in our case
the binary one allows the net to achieve better performances. This, probably, is due
to the particular type of data used as input of the net, that are all positive values.

Performance

68 10 12 14 161820 22 24 26 2830 Wz 4 Hz 16Hz 64Hz 100Hz 25Hz 6.3Hz
Number of hidden neurons PSD FFT

Fig. 6: Number of hidden neuron in- Fig. 7: Influence of binary and bipo-

fluence on net performance. The mean lar target representation on the perfor-

(dotted) and best (solid) performance mance of the net. Binary: solid line

value on 100 tests are plotted. (mean and best), bipolar: dashed line.

Transfert functions Two configurations of the ANN in terms of hidden and out-
put layer transfer functions were compared: the first one with logsigmoid functions
for both the hidden layer and the output layer, the second with a logsigmoid for
the hidden layer and linear for the output level. In figure 8 the achieved results are
plotted. Better results are achieved with equal logsigmoidal functions.

Training rule The influence of the training rules on the net performances is at
least tested. Several types of ”trainers” have been compared. They are: variable
learning rate backpropagation (traingdx and traingda), resilient backpropagation
(trainrp), conjugate gradient (Fletcher Reeves updates - traincfg, Polak Ribire up-
date - traincgp, Powell Beale restarts - traincgb, scaled conjugate gradient - train-
scg), quasi Newton algorithms (BFGS algorithm - trainbfg, one step secant - train-
oss), and Levenberg Marquard (trainlm). Although there are remarkable differences
in the training durations, important differences in performances between the sev-
eral tests have not be found (just trainrp algorithm has a very poor outcome. The
| best choice in terms of both performance and time cost was considered the traingdx
algorithm.
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4.3 Tests and numerical results

| Six possible classes have been considered and five output nodes have been chosen,
| as described in Table 2.

Class | Model Joint 1 Joint 2 Code
1 model A - linear without backlash | 01111
2 model A - linear with backlash 01110
3 model B | linear without backlash | linear without backlash | 11111
4 model B | linear without backlash linear with backlash 11110
5 model B | linear without backlash | bilinear without backlash | 11101
6 || model B | linear without backlash | bilinear with backlash 11100

Table 2: Classes considered and related codification.

The main properties chosen for the network are: PSD of the simulated ac-
celeration with 1 Hz of spectral resolution as ANN input, 20 hidden neurones,
back-propagation with momentum and variable learning rate as training algorithm
(traingdx), logsigmoidal activation functions and binary representation of the tar-
get. The examples generated by simulations are 126, equally subdivided for the
training, for the control and for the validation. After 170 epochs the percentage er-
ror of the classification on all the three subsets considered is 0.3%. An experimental
acceleration signal passed to the model has been classified in a very plausible way.
The output of the network is: 0.9901, 0.9805, 1, 0.9989, 0.0032, 0.0011 [1 1 1 0 0],
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that is the network sentences that the system is simulated by the two degrees of
freedom model, where joint 1 is linear without backlash while joint 2 is bilinear with
backlash. This classification is very probable because, in the considered case, the
backlash in the speed reducer is high and a roller follower of the indexer is cracked.
Figure 10 compares the experimental acceleration with that simulated by model B
with the configuration identified.

Table Acceleration Output of the fifth node
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Fig. 11: Dependence between the NN
Fig. 10: Experimental acceleration ver- output and the backlash amplitude. The
sus that simulated and identified by the fifth node value changes quite linearly
NN. with the backlash value in joint 2.

An interesting result is that the amplitude of the NN output is an index of the
backlash in the joint. The output of the node related to the presence (1) or absence
(0) of backlash in a joint changes quite linearly with the backlash amplitude (as
shown in figure 11 for the backlash in joint 2 and for the fifth node). Such a property
appears very useful for monitoring how clearances change during the working of the
system, when wear phenomena occur.

5 Experimental case

5.1 The procedure

The experimental device to collect training data was formed by an indexing system
(similar to the one described in section 3), an extensometric accelerometer with the
respective instrumentation and a PC for data collection.

Three types of damaging of the indexing system have been tested: some rollers
of indexer mechanism breaking, base screw loosening and backlash. In particular
the backlash in the speed reducer has been made varying between 0 and 20 degrees,
with a step of 5 degrees. The variable clearance was achieved by mounting a speed-
reducer with very low nominal backlash and with a special joint (on purpose built)
with adjustable backlash.
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Each possible combination was considered, obtaining 20 different cases and for
everyone, 10 tests for each case have been executed for statistical validity.

The code used to identify each case is formed by 3 bits: information about
the indexer are contained in the first bit (0 intact, 1 damaged), about the screw
in the second bit (1 lose, 0 tighted) and about the backlash in the third bit (0:
zero backlash, 1: backlash 20/, and intermediate values proportional with backlash
amplitude). For example code 1 1 0 means: index mechanism broken, screws loose
and no backlash while code 1 1 0.5 means: index mechanism broken, screws loose
and 10/ of backlash.

Similarly with the simulated case, the tangential acceleration on the table has
been chosen as condition to monitor. The acceleration values have been acquired for
8,2 seconds, equal to one turn time of the rotating table; 1000 Hz has been chosen
as sample frequency.

5.2 Tests and numerical results

In the light of the above analysis of parameters sensitivity, a net with 20 hidden
neurons, logsigmoid for both transfer functions, traingdx as training rule, binary
representation of the target and PSD with about 1 Hz of spectral resolution was
chosen to create an automatic diagnostic system.

Firstly, the net ability of classification for remarkable cases was tested. Among
the 10 collected series of data for each case, 7 have been used for training, and 3
for validation (to verify the net’s ability in recognizing cases of the same type of the
ones used in training). The net has demonstrated good ability in classification (the
100% of the cases) and any user, during test, would be able to assert, with certainty,
in which case the system is.

1 1
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Fig. 12: Classification cases: 100, 101,
100.24,100.48 and 1 0 0.76. Gener-
alization cases: none. Expected results
dot, achieved results dash or solid.
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Fig. 13: Case a: Classification cases:
100, 101. Generalization cases: 1 0 0.24,
100.48 and 1 0 0.76. Expected results
dot, achieved results dash or solid.



Figure 12 shows (for example) how the net classifies cases with indexer broken
(value 1 for the first bit), tight screw (value 0 for the second bit) and variable
backlash between zero and maximum value (value between 0 and 1 for the third
bit). Circles in the graph represent the net result for each output node and adjoining
circles correspond to repetitions of analogous cases. The mean value is considered
and solid lines are plotted with the reasonable assumption of a linear transition
between neighboring cases.

Afterwards, the generalization abilities have been tested, supplying a rising num-
ber of cases to the net in the training phase. Three tests were executed: by supplying
only extreme cases (case a, fig. 13), an additional intermediate one (case b, fig. 14)
and two intermediate cases (case ¢, fig.15).

Figure are relevant to the same damaging conditions considered in figure 12.

In case a it is evident that the error on generalization data for the third output
node is high, in spite of this we have the information that the backlash is rising.

Cases b and c highlight that the training information density increment allows
the ANN to become more and more expert both in classification and in generaliza-
tion.

08}
0.8} :
o.ar
0.6} § A~
0.4 . 3
0.4 5 e
: ! : : : 0.2 g : . H
10_0 10024 10048 10076 101 J\i

100 10024 10048 10076 101
Fig. 14: Case b: Classification cases:
100, 101 and the middle one 1 0 0.48. Fig. 15: Case c: Classification cases:
Generalization cases: 1 0 0.24 and 1 0 100, 101,1 0 0.24 and 1 0 0.76. General-
0.76. Expected results dot, achieved re- ization cases: 1 0 0.48. Expected results
sults dash or solid. dot, achieved results dash or solid.

6 Conclusions

The proposed ANN based approach to make a dynamical diagnosis on a mechanical
system achieved good results, both for the simulated case and the experimental one.
It is capable to classify various types of faults and has demonstrated generalization
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abilities, which improve if the density of the information given to the net is incre-
mented. It is therefore clear that, in an industrial system case, with the passing of
time and the increasing of the cases met, ANN progressively become more and more
expert, both in the classification and in generalization.

When experiments with different causes of damage could be developed clearly
the best solution is to train the ANN with experimental data, but when these test
are not possible to use training data simulated by the use of mathematical models
could be an effective alternative.

References

[1] R. Bussola, R. Faglia, G. Incerti, P.L. Magnani, M. Tiboni (1999). Indexing Cam
Mechanisms: a Complex Mathematical Model for Simulation. In Proceedings of
the X World Congress on the Theory of Machines and Mechanisms (IFToMM),
Oulu, June 1999.

[2] Zhi-Qiang Hou, A. Lucifredi (1995). On the use of Neural Networks for iden-

‘ tification of linear and nonlinear systems. In Meccanica 30, Klower Academic
Publisher, pp. 377-388, 1995.

‘ [3] K. Worden, G.R. Tomlinson (1992). Classifying linear and nonlinear systems
using neural networks. In Proceedings of the 17th International seminar on Modal

| Analysis, Leuven, pp. 903-922, 1992.

[4] R. Bussola, M. Tiboni (1999). Parametrical identification for a complex math-
ematical model of indexing cam mechanisms by means of a Genetic Algorithm.
In Proceedings of the EUROGENY9: Short Course on Evolutionary Algorithms in

‘ Enginering and Computer Science, Jyvaskyla, June 1999.
[5] Haykin S.(1999). Neural Network: A Comprehensive Foundation, Prentice-Hall,
| New Jersey, 1999.
‘ [6] A.V.Oppenheim and R.W.Schafer (1989). Discrete-time signal proccesing, Pren-
‘ tice Hall,London,1989.
| [7] B.A.Paya, 1.1.Esat and M.N.M.Badi (1997). Artificial Neural Networks Based
Fault Diagnostic of Rotaring Machinery using Wavelet Transforms as a Prepro-
cessor, title = ”Mechanical Systems and Signal Processing”, vol 11, Accademic
Press Limited,1997.

[8] A.T.Vemuri, M.M.Polycarpou and S.A.Diakourtis (1998).JEEE Transaction on
Robotics and Automation,Neural Networwk Based Fault Detection in Robotic
Manipulators,Publisher Item Identifier 1042-296X/98,pp. 342-348,1998.

[9] J.N.K.Liu and K.Y.Sin (1997). IEEE Transaction on Neural Networks,Fuzzy
Neural Networwk for Machine Maintenance in Mass Transit Railway System,
Publisher Item Identifier 1045-9227/97,pp. 932-941,1997.

[10] D.J.H.Wilson, G.W.Irwin and G.Lightbody (1999). IEEE Transaction on Neu-
ral Networks, RBF Principal Mainfolds for Process Monitoring,Publisher Item
Identifier 1045-9227/99, pp. 1424-1434,1999.

267




(11] P.J.Edwards, A.F.Murray, G.Papadopoulus, A.R.Wallace, J.Barnard and
G.Smith (1999). IEEE Transaction on Neural Networks, The Application of Neural
Networks to the Papermaking Industry,Publisher Item Identifier 1045-9227/99,pp.
1456-1464,1999.

(12] S.D.G.Smith, R.Escobedo, M.Anderson and T.P.Caudell (1997). IEEE Transac-
tion on Neural Networks, A Deployed Engineering Design Retrival System Using
Neural Networks, Publisher Item Identifier 1045-9227 /97,pp. 847-851, 1997.

[13] V.R.deAngulo and C.Torras (1997).IEEE Transaction on Neural Networks, Self
Calibration of a Space Robot, Publisher Item Identifier 1045-9227/97, pp. 951-
963,1997. .

[14] R. Bussola, R. Faglia, P.L. Magnani, M. Tiboni,(1999). Proceedings of the X
World Congress on the Theory of Machines and Mechanism (IFToMM), Indexing
Mechanism: a Complex Mathematical for Simulation, 1999.

[15] Zhi-Qiang Hou, A. Lucifredi (1995). Meccanica 30, On the use of Neural Net-
works for identification of linear and nonlinear systems, pp. (377-388), "Klower
Academic Publisher”,1995.

[16] K. Worden, G.R. Tomlinson (1992).Proceedings of the 17th International sem-
inar on Modal Analysis, Classfying linear and nonlinear system using neural net-
works, pp. 903-922.

[17] R. Bussola, M. Tiboni (1999). Proceedings of the EURO-GEN99: Short Course
on Evolutionary Algoritms in Engineering and Computer Science, Parametrical
identification for a complex mathematical model of indexing cam mechanism by
means of a Genetic Algorithm,1999.

(18] P.L.Magnani and G.Ruggieri (1986). Meccanismi per Macchine Auto-
matiche,UTET, Torino,1986.

(19] E.C. Fitch (1992). Proactive Maintenance for Mechanical Systems, Elsevier
Science Publisher, Oxford UK,1992.

[20] S.S. Rao,(1995). Machanical Vibration,Addison-Wesley Publishing,1995.

[21] A.V. Oppenheim and R.W. Schafer (1975). Digital signal processing, Prentice
Hall,London,1975.

(22] J. Reeve (1995). Cams for Industry, Mechanical Engineering Publications Lim-
ited, London,1995.

268




	Casus_v15_pp253-268_Faglia



