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Abstract The paper presents a methodology based on Artificial Neural Networks
(ANN) to perform on-line a diagnosis of the health state of a machinery. The pro
cedure at issue permits to detect the presence of backlash and to determine possible

structural tailures inside a mechanical system. Backlash and damages are impor-
tant causes of vibrations in machines, therefore vibrations monitoring gives indirect
information on these para.site efiects. An ANN is used to dassi{y the system be-
haviour among a predefined mr:nber of classes, receiving as input vibrational sigrats
(simulated or measured). An application is discussed for devices purposely built for
indexing motion, where compliance plays an important role a,ffecting the dynamic
behavior of the whole machine. An analysis of parameters sensibility for the pro-
posed procedure on simulated cases highlighted the best values and choices for these
pa,ra,meters. Tests of the procedure on experimental data collected on actual devices
match closely the good results achieved with simulations.
Keynords : Mechanical Indocing Systems, ElastoDynamic Models, Vibrations,
Neural Network, I&ntiûcation.

L Introduction

The need to improve the standards of quality, to increase efrciency and to reduce
production costs hss led to an increment of the attention dedicated to diagnostic
problems of mechaoical systems.

In the past maintenance policy was based on repair afûer failure; users maintain
machines only when something breaks with consequmt costs elevation, productivity
reduction and, sometime, catastrophic consequences.

In recent years operators and companies have realized that a good maintenance
policy "is truly the single largest controllable cost in the operation of a plant or
machine" [10]. Difierent maintenance strategies were consequently developed: pre-

ventive, predictive and proactive maintenance.
Preventive mai-ntenance includes activities (i.e. regular care of such components

and machine systems, periodic inspections and actions to repair or replace compe
nents in impending failure) to prevent impending failure.
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Predictive maintenance, also known as condition monitoring, is based on the
monitoring of one or more conditions (visual, compliance, vibration and noise, wear
debris and heat monitoring) to determine whether material degradation is occurring.

The more recent approach of maintenance is proactive maintenance, an activity
performed to detect and correct root cause aberrations of failure.

Several works in literature deal qrith the development of methodologies to im-
plement condition monitoring rnaintenance [8, 7, 9j, some of them used an Artificial
Neural Network for an automatic identification of the system state by $ving to the
network the current value of the monitored condition. ANN can be successfully used
to perform non linear systems identification, while more traditional algorithm for
classification failed.

The application fields of these methodologies a,re manifold: paper-rraking in-
dustry economy, railway systerns, robotic penipulators, rotating machinery, civil
engineering, medical diagnosis, etc..

The proposed work deaJs with the development of a predictiw maintena,me
methodolory based on vibrations monitoring, where a Neural Network is empicryed
to identify the faulty operation and the da,rrage level of the condition-

Vibrations were chosen as condition to monitor due to the nature and to the
type of the mechanical s;,stem considered, a mechanical indexing s;rstem, formed by
a rotating table driven by a,n electrical motor through a gear speed reducer.

The existence of an effective link between machine vibrations and its health
conditions has been verified several times. Previous studies of the authors [1, 4]
demonstrated that backla.sh in mechanical components, particulariy in the speed
reducer, and the characteristic of the compliance, i:rside junctions of mathematical
models of the system, play an important role in the ampliÊcation of vibrations.

The development of systerns based on vibrations rræasurement &s mearl to detect
the condition of a machine, has been encouraged from the easy application of such
technology. Simply a common accelerometer and the respective instrumentation are
needed.

The collected acceleration data are usually preprocessed to better identify the
type of da,rrage in the system. Data preproc-essing techniques go from the analysis
of the Fast Fourier flansform (FFT), to the Power Spectral Density (PSD) or to
higher order statistics quantities (HOS) [?]. Moreover, identification of breakdovrn
is also carried out through analysis with Wavelet [7] or with algorithms like Dynamic
Time \Ma^rping (DTW).

The interpretation of results obtained with such analyses can be executed by
an engineer, but it is difficult to implement in traditional systems for faults aute
matic acknowledgment. This derives from the limits connected to the structure of
the algorithms that come from the Touring's machine, which are rather efficient in
classifying well known cases, but are not capable to generalize situations never seen
before or to continue learning even after the completion of the code writing phase.

The great variety of situations likely in the mechanical systems diagnostic, com-
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bined to the casuality of such phenomena, leads to the research of new methods for
automatic inspection of machine health.

Algorithm based on parallel calculation instead of sequential one, like artificial
neural networks, could be effectively used to develop automatic diagnostic tools in
the presence of highly non-linear phenomena.

In [2] Lucifredi and others showed that structural failures could be associated
with bilinear behaviour, thus a bilinear characteristic in a joint of a model of a
mechanical system could be used to simulate a crack in the device.

The proposed procedure of diagnosis has been fustly calibrated and tested on
simulated data. Simulations were executed with elasto-dynamic mathematical mod-
els (arranged by the authors in previous researches), for which structural failures
and backlash were enclosed in opportune characteristics of the joints of the models.

An analysis of parameter sensitivity has been developed to adequately calibrate
the procedure.

Experiments executed in a second stage of the research permitted to collect
a database of measured acceleration. An actual mechanical system for indexing
motion was considered and structural failure and backlash in this ca.se were actually
generated.

The rest of the paper is structured as follows:

section 2 describes the mechanical system considered in the research;

section 3 is devoted to a synthetic description of the feed-forward ANN;

section 4 refers to the procedure of diagnosis for the simulated case: a descrip-
tion of the procedure, results of the analysis of parameters sensitivity and a
discussion of classification results are given;

section 5 concerns the experimental case: experimental device, tests performed
and results achieved are presented in this order.

section 6 resumes the main conclusions of the work.

2 The mechanical indexing system

A rotating table driven by an electrical motor through a gear speed reducer forms
the mechanical system considered in the work [18]. The table is connected to the
speed reducer through an indexing mechanism, formed by a spatial cam coupled
with roller followers, to obtain intermittent motion (figure 1).

Such mechanisms are generally used by the manufacturing industry, in produc-
tion lines which need an intermittent advance of the manufactured (figure 1). To
amortize the costs of such systems, it's necessary to attain elevates levels of pro-
ductivity. The maintenance purpose is to assure high productivity through the
increment of the availabilitv of the svstem and its conservation in the time.
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Fig. 1: a)Example of industrial application of indexers. b)Spatial cam and roller

follower of an indexing mechanism. c)Comparison between theoretical acceleration

of the rotating table (continue line) and real acceleration (dotted line): vibrations

of non negligible amplitude can be observed.

Frequently the motor used is a simple asynchronous triphase, with nominal speed

of 1500 RPM. To reduce the rotation speed and to transfer motion to the indexing

mechanism, it's necessary to introduce a transmission, which is often source of mo-

tion disturbance (distributed clearances and backlash often cause vibrations)[22, 14].

The indexing mechanism is the device that concurs to transform continuous

rotatory motion in an intermittent rotatory one. The law of motion with dwells is

obtained through the coupling between a cam (on the left in figure 2) and a series of

rollers. The indexing mechanism is source of vibrations itself, caused by variations

of the follower acceleration joined to the imprecisions in coupling between the cam

and the follower.
Finally, also the load, commonly mounted directly on the indexing mechanism,

can be source of differences between waited and obtained law of motion.

Experimental measures on systems with different sizes and series of indexers

permitted to achieve a database of acceleration signals of the table. As example,

figure 2 compaxes the real acceleration (continue line) versus the theoretical one
(dotted line) in normal working condition. The amplitude of vibrations appears

clearly non negligible.

3 Artificial feed-forward Neural Networks

Artificial Neural Networks (ANN) are structures that simulate the cognitive process
that happens in mammals [5]. These systems of ca]culation differ from the tradi-
tional ones, based on the Von Neumann architecture, starting from the structure:

6
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there is not, in the ANN, any division between elements dedicated to the calculation,
to the memorization or to the allocation of the rules, but the tasks are distributed
to all the neurons.

The base element of an ANN is the artificial neuron, which is connected to other
equal neurons, in order to form an organic structure capable to carry out numerous
tasks. The i-th artificial neuron receives n input ril,ti2,...,Tin.To every input it
associates a weight ari3, that is a value that keeps account of the influence of that
j-th input on the i-th neuron. The inputs, after weighted, are added. If the result
of this sum exceeds a value d, called activation threshold, the neuron proceeds with
the calculation, applying to the result a function called "activation function" and
obtaining the output of the neuron. This output is passed to all the neurons that
follow.

The para,rneters that i:r-flueuce the operation of an artiûcial neuron are: the
threshold, the weights and the activation function. The weights a^nd the threshold
a.re optimized during the training, whereas the activation function must be chosen
during the definition of the net.

Usually, the activation function is chosen among the hard limit function (binary
or bipoiar), the iinea,r function, the log-sigmoid fulction and the tan-sigmoid func-
tion. The choice of the activation function is made in relation to the tgre of code
selected for the data (binary [O t], or bipolar I-1 1]).

The training consists in the iterative modiûcation of the weights, until the net
is able to associate correctly input and target (output expected for that particular
input). The training used for the implemented fault diagnosis tool is called "with
supervisor", so to assign to every input the ta,rget, and then to estirnate the classi-
fication error coming from the net. With proper mathematical operations, deriving
from the rule of error back propagation, we calculate the a.mount of the correction to
apply to every weight to minimize the error. The modification of the weights should
termiaate when the error coming from the net is cancelled. This is not always po+.
sible, both because it's difficult to find the combination of weights that cancels the
error and because of the risk in the overfit of training data, due to the excessive
quantity of training epochs, which may limit the generaliz.ation abilities of the net.

Several routes have been proposed in order to reach the best combi:ration of
weights. Ali of them start from the randomization of tbe initial values, then every
one mov€s with different rules on the error surface.

(1 )a, :  d [à" , ,  ' , )
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Fig. 2: a)Model A of the mechanism; b)Model B of the Dechanisp

4 Simulated case

4.L The procedure

Eiasto-dyrremic models developed in a relevant research well simulate the real accel-
eration of the table, by fnking into account clearances and elasticity in the system.
Two diferent models are here considered: a one-degree of freedom model (after-
wards called A) and a two-degrees of freedom model (B). Model A introduces an
elasto-dynamic joint on the outside shaft of the indexer, while model B considers
also an elasto-dynamic joint on the input shaft of the indexer. The comparison
between measured and simulated acceleration for a great number of practical cases
allows to say that model B better explains the most evident dynamic phenomena of
systems with high operating speed and low rigidity, while model A is to be preferred
when high loads and high iuertias are involved.

The first phase of the developed procedure consists in the generation ofthe set of
training exa,rnples by simulation, adopting model A and model B. Table 1 contains
the nomenclature adopted throughout the work. The motion equation of the one-
degrees of freedom model A is eq. (2), while motion equations of the two.degrees of
freedom model B a,re (3).

I
s :  - ; lTn*kz (ç -  0 )+ rz ( (à -  gd) l  (2 )

J t

The acceleration of the rotating table (p) is the parameter achieved to monitor
the system. A Runge-Khutta of the fourth order method is used to solve the motion

I  
i t :  -T+;æ {k ' ( r t  -  o)+ h( r i  -  d)  +  P ' lk r (ç  -  0)+

{ + rz(Q - P'") - Jrî9"o2)} (3)
I
I  p :  - ] l r "+h@ -  É )+  r z ( i  -  0 , a ) l
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^t, t ll Motor and cam shaft rotation
0, g ll Follower a.nd table rotation

J*,Jç,J7,J1 ll Motor, cam, follower, platform moment of inertia
kr,rr,gt ll Stiffness, dampirrg, backlash of joint 1
kz,rz,gz ll Stiffness, damping, backlash of joint 2

I ll Speed reduction ratio
T7 ll Load

Tabl,e 1: Nomenclature adopted for the mathematical models"

Fig. 3: Type of non-linearity and bacHash considered . a) linea.r; b) linear with
backlash; c) bilinear; d) bitinea,r with backlash

equations of the system, supposing constant the motor shaft speed. The values of
the pararneters of the model (kr, 

"t, 
gt, Iç2, 12 and gz) were previously established

through an optimization procedure by compa,ring simulations with errperimental
rneâsures of the accaleration {i. The non-linea,rities simulated are located at the
joints and are implemented with no+Iinear characteristics (as sbovrn in
figure 3). In details, at joint L jusb the linear case is considered with or without
baeklash, at joint 2 the characteristic can be linea.r or bili-near, with or without
clearance. The training examples were generated by solving the motion difterential
equations until transient condition is finished, several times with different values of
tbe para,meters of the elastodyna.nic model considered, in detail randonly changing
the para,meters in a range of !10%. The tangential accelsation on the table (cp)
has been cùosen a.s condition to monitor.

Step 2 of the procedure consists in the flainilg of the NN. The NN used in
this research is a multi-layer feed-forward NN, train€d using the back-propagation
algorithm (with momentum) and by adopting the early stopping rnethod ([S]). The
NN is trained using a first group of exa.rnples (the calibration set). 1as trsaining
is iteratively perforrred while monitoring the quality of classification on a second
group (control set). The filajniag is stopped when the error in the control set does not
decrease any more. As a further control, at the end of tbe calibration, a prediction
error is era,luated also on a third example sst (the validation set). A three layer NN
(with just one hidden layer) was chosen. It was assumed that a single hidden layer
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was sufi.cient; this is supported by the theorems of Cybenko and Funahashi which
show that a single hidden layer is su-fficient for the approximation of a polynomial
ftrnction to arbitrary accurâcy.

The perforrrance rating of a solution is evaluated as the meân squâre errols on
the control set, after the net training pha.se, so the performance improves if its value
decrea.ses.

In this context, parameters sensitivity analysis ha.s been executed, to determinate
the most suitable ANN for the diagnosis of the malfunctioning at issue, in a systen
for intermittent motion.

Lr details, para.nreters analyzed were different preproccessing techniques to crea.te
ANN inputs, rândom initialization, ANN hidden layer tra.nsfer function and number
of nodes a.nd the training rule.

In the course of the research, ANN were implemented with the Matlab Neural
Network toolbox

4.2 Analysis of parerneters sensitivity

Comparison betrreen FFT arld PSD Diferent choic.es could be made fæ the
pre-processing of the signal to supply as input to the ANN. Here the FFT (Fa.st
Fourier Tbansform) and the PSD (Power Spectral Density) of the acceleration signal
are comparerl. Experiments show that both FFT and PSD have an effectirne link
with the machine operatiag condition; in fact, different ca.ses haye differeot trans-
forms, and analogous cases, have similar transforms. Different classification and
generalization tests were executed with FFT, filtering the signal with different low
pass filters, with cut frequencies 100, 50, 25, 12.5,6.3, 3.1 Hz, the aim being to iden-
tify the optimal one. Band pass width reduction involves both information lose on
phenomena and dimensional reduction of the problem. The dirnensional reduction is
proportionally correlated with the input neurons mrnber, that is the required num-
ber of FFT frequencies (fixed the test time at 8.2 seconds, the spectral resolution is
0.122 Hz and cannot be changed). For example, with a band with of 100 Hz, 800
values are required (800 neurons in input to the ANN), so the combination of the
weights is searched in a 800 dimensional spaoe. Analogous different types of PSD
have been tried, changing the spectral resolution (approximately 0.5, 1,,2, 4,8, 16,
32, 64 Hz), to see how much the PSD can be coarse, without loosing net abilities in
classification and generalization.

For every case, 100 tests have been executed to achieve as much as possible
insensibility to the initial randomization of the weights and both medium and best
value obtained in every test has been reported on graph in fig. 4. Dotted lines
visualize the mean values on 100 tests, while solid lines are related to the best
performance both for the PSD and the FFT techniques.

One can notice that the nets which elaborate data obtained from the PSD achieve
better performances than those trained with data preprocessed with FFT. When
the PSD becomes excessive coarse, or when information on a sufficient number of
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Fig. 4: Comparison between different
types of PSD and FFT, changing spec-
tral resolution and cut frequency. Mean
(dotted) a.nd best (solid) performance
value on 100 tests.

performance

Fig. 5: Influence of net initialization on
the final performance. Number of tests,
among 1000, capable to approach the
sa,ure performâ.nce.

frequencies is not supplied from FFT to the net, the performance get worse. In
particular, lower [mits to achieve acceptable performa,nce are 12.5 Hz for the FFT
and 8 Hz for the PSD. The PSD is clearly better than FFT not only for a better
perforrnance but also for the great reduction of the problem size; in fact, the FF I
with band with 12.5 Hz requires 100 input nodæ while the PSD with 8 Hz, as baad
resolution, requires only 12 nodes.

Initialization influence The weights initialization influences remarkably the clas-
si-fication and generalization performance of the ANN. Test were performed repeating
the training 1000 tirnes, starting from random vdues of the weight, to verify the
hfluence of this pararneter on results. Figure 5 shows the distribution of the number
of tes'bs versus the achieved performance (in abscissas). The histogram shows that
the influelce of the initia.lization ca.n be remarkable. The more frequent value is
about 0.06 (a low value for the considered case) and more than the 80% of the ca.ses
fall in an acceptable range around this value, so if a reasonable number of tests is
executed, the probability to find a satisfactory result is high.

Number of hidden neurons An element that has high influence on the abilities
of classification and generalization of the net is its architecture; an important pa-
rameter is the number of neurons of the hidden layer. In order to verify the hidden
neuron number influence, several tests have been executed, searching for a possi-
ble optimal value. A configuration clearly better of the others has not been found
(see fig. 6, and moreover, in this case, there are not great differences between the
performances of the several net with a number of nodes equal or higher than 15.

lHz 4 Hz 16Hz 64Hz 100H2 25Hz 6.3H2
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Code influence In this section, the diference between the performa^nce obtainable
with bipolar or binary codifies is analyzed. Although often bipola,r coding gives
better results, thanks to the possibility to attribute no value to the zero, in our case
the binary one allows the net to achieve better performances. This, probably, is due
to the particular type of data rrsed as input of the net, that are all positive values.

(l)

(€
H

H

cit
k
c)

H

Fig. 6: Number of hidden neuron in-
ftuence on net performance. The mean
(dotted) and best (solid) performance
value on 100 tests are plotted.

Fig. 7: Influence of binary and bipo-
lar target representation on the perfor-
ûratrce of tbe net. Binary: solid line
(mean and best), bipolar: dashed line.

Tbansfert functions Two configurations of the ANN in terms of hidden and out-
put layer tra,nsfer functions were compaxed: the first one with logsigmoid ftinctions
for both the hidden layer and the output layer, the second with a logsigmoid for
the hidden layer and linear for the output level. In figure 8 the achieved results are
plotted. Better results are achieved with equal logsigmoidal functions.

Tlaining rule The influence of the training rules on the net performances is at
least tested. Several types of "trainers" have been compared. They are: rariable
learning rate backpropagation (traingdx and traingda), resilient backpropagation
(trainrp), conjugate gradient (Fletcher Reeves updates - traincfg, Polak Ribire up
date - traincgp, Powell Beale resta^rts - traincgb, scaled conjugate gradient - train-
scg), quasi Newton algorithms (BFGS algorithm - trainbfg, one step seca.nt - train-
oss), and Levenberg Marqua.rd (trainlm). Although there are remarkable differences
in the training durations, important differences in performances between the sev-
eral tests have not be found (just trainrp algorithm has a very poor outcome. The
best choice in terms of both performance and time cost was considered the traingdx
algorithm.

6  8  1 0 1 2 1 1 1 A 1 8 2 0 2 2  2 4 2 6 2 8 3 0
Number of hidden neurons
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4.3 Tlests ând nurrrerical results

Six possible ciasses have been considered and five output nodes have been chosen,
as described in Ta,ble 2.

Class Model Joint L Joint 2 Code
1 model A linea.r without backla.sh 01r1 i
2 model A linear with bafkiash 01110
3 model B Iinear without backlash linear without backlash 1 1 1 1  1
4 model B linea,r without backlash linear with barklash 11110
b model B linea,r without backlash bilinear without backlash 11101
6 model B linear without backla.sh bilinear witù backlash 11100

Thble 2: Clasm considered and related codification.

The main properties chosen for the network are: PSD of the simulated ac-
celeration with 1 Hz of spectral resolution as ANN input, 20 hidden neurones,
back-propagation with momentum and variable learning ra,te as training algorithm
(traingdx), logsigmoidal activation functions and biaary representation of the tar-
get. Tbe exa,mples generated by simulations are 126, equally subdivided for the
training, for the control and for the validation. After L70 epochs the percentage er-
ror of the classification on all the three subsets considered is 0.3%. An e>cperimental
acceleration signal passed to the model has been classified in a very plausible way.
The output of the network is: 0.9901, 0.9805, 1, 0.9989, 0.0032, 0.0011 [1 1 1 0 0],



that is the network sentences that the system is simulated by the two degrees of
freedom model, where joint I is linear without backlash while joint 2 is bilinear with
backlash. This classification is very probable because, in the considered case, the
backlash in the speed reducer is high and a roller follower of the indexer is cracked.
Figure 10 compares the experimental acceleration with that simulated bv model B
with the configuration identified.

Table Acceleration

a
a

o.o o.1 0.2 ().3 0.4

Simulated Acceleration
- - Measured Acceleration

Fig; 11: Dependence between the NN
Fig. 10: Experimental acceleration ver- output and the backla.sh nmplitude. The
sus that simulated and identified by the fifth node value changes quite linearly
NN. with the backlash value in joint 2

An interesting result is that the amplitude of the NN output is an inden of the
backlash in the joint. The output of the node related to the preserce (1) or absence
(0) of backlash in a joint changes quite linearly with the backlash amplitude (as
shown in figure 11 for the backlash in joint 2 and for the fifth node). Such a property
appears very useful for monitoring how clearances change during the nrorking of the
system, when wear phenomena occur.

5 Experimental case

5.1 The prncedure

The experimental device to collect training data was formed by an indexing system
(similar to the one described in section 3), an extensometric accelerometer with the
respective instrumentation and a PC for data collection.

Three types of da,maging of the indexing system have been tested: some rollers
of indexer mechanism breaking, base screw loosening and backlash. In particula,r
the backlash in the speed reducer has been made varying between 0 and 20 degrees,
with a step of 5 degrees. The va^riable clea,rance was achieved by mounting a speed-
reducer with very low nominal backlash and with a special joint (on purpose built)
with adjustable backlash.

- 10

-20

-30

Output of the fifth node
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Eactr possible combination was considered, obtaining 20 different cases and for
everyone, 10 tests for each case have been executed for statistical validity.

The code used to identify each case is formed by 3 bits: information about
the indexer are contained in the first bit (0 intact, 1 damaged), about the screw
in the second bit (1 lose, 0 tighted) and about the backlash in the third bit (0:
zero backlash, 1: backla.sh 20/, and intermediate values proportional with backlash
amplitude). For exarnple code 1 1 0 means: index mechanism broken, screws loose
and no backlash while code 1 1 0.5 means: index mechanism broken, screws loose
a,nd 10/ of backlash.

Similarly with the simulated case, the tangential acceleration on the table has
been chosen as condition to monitor. The acceleration values have been acquired for
8,2 seconds, equal to one turn time of the rotating table; 1000 Hz has been chosen
as sample frequency.

5.2 Tests and numerical results

In the iight of the above analysis of parameters sensitivity, a net with 20 hidden
neurorls, logsigmoid for both transfer functions, traingdx as training rule, binary
representation of the target and PSD with about 1 Hz of spectral resolution was
chosen to create an automatic diagnostic system.

Ffustty, the net ability of classification for remarkable câses was tested. Among
the 10 collected series of data for each case, 7 have been used for training, and 3
for validation (to verify the net's ability in recogniziag cases of the same type of the
ones used in training). The net has demonstrated good ability in classification (the
100% ofthe cases) and any user, during test, would tre able to assert, with certainty,
in which case the slstem is.

Fig. 12: Classification cases: 100, 101,
1 0 0.24,1 0 0.48 and 1 0 0.76. Gener-
alization câses: none. Expected results
dot, achieved results rle.q[ 61 s6[d.

Fig. 13: Case a: Classification cases:
100, 101. Generelization cases: I 0 0.24,
1 0 0.48 and 1 0 0.76. Faç€cted ræults
dot, achieved results dash or soiid.
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Figure 12 shorrs (for example) how the net classifies cases with indexer broken
(value 1 for the first bit), tight screw (value 0 for the second bit) and variable
backlash between zero and maximum value (value between 0 and 1 for the third
bit). Circles in the graph represent the net result for each output node and adjoining
circles correspond to repetitions of analogous cases. The mean value is considered
and solid lines are plotted with the reasonable assumption of a linear transition
between neigbboring cases.

Afterwards, the generq.lization abilities have been tested, supplying a rising num-
ber of cases to the net in the training phase. Three tests were executed: by supplying
only extreme ca.ses (case a, fig. 13), an additional intermediate one (case ô, ûg. 14)
and two intermediate cases (case c, fig.15).

Figure are relevant to the same damaging conditions considered in figure 12.
Ll case a it is evident that the elTor on generalization data for the third output

node is high, in spite of this we have the inforsration that the backla.sh is rising.
Cases ô and c highfuht that the trsaining information density increment allows

the ANN to become more and uxrre expert both in classification and in generaliza-
tion.

Fig. 14: Case à: Classification ca.ses:
100, 101 and the middle one 1 0 0.48.
Generalization curses: | 0 0.24 and 1 0
0.76. Expected results dot, achieved re-
sults dash or solid.

r_u_ v r_u*u.24 ï_(J_o.40 1_0_0.76 1_0_1

Fig. 15: Case c: Classification cases:
100, 101,1 0 0.24 and 1 0 0.76. General-
ization cases: 1 0 0.48. Expected results
dot, achieved results dash or solid.

6 Conclusions

The proposed ANN based approach to make a dynamical diagnosis on a mechanical
system achieved good results, both for the simulated case and the experimental one.
It is capable to classify various types of faults and has demonstrated generalization
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abilities, which improve if the density of the information given to the net is incre-
mented. It is therefore clear that, in a,n industrial system case, with the passing of
time and the increasing of the cases met, ANN progressively become more and more
expert, both in the classiûcation and in generalization.

When experiments with different causes of da,rnage could be developed clea,rly
the best solution is to train the ANN with experimental data, but when these test
are not possible to use training data simulated by the use of mathematical models
could be a,n effective alternative.
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