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Abstract In this paper, we deal with intuitively simple properties of the limit figures of
two-dimensional inhomogeneous quadratic transformations. The divergence-
convergence boundary of homogeneous quadratic transformations was investigated in
detail in Da-te (1978). In an inhomogeneous case, there exist, possibly, the region of
initial points converging to a fixed point other than the origin due to the linear terms.
Then, there appears a boundary with a finite area as a limit figure. Next, in certain cases,
the convergence regions or the divergence regions consist of infinite number of separated
regions. We show the examples of the properties, and investigate them.
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1 Introduction

The behavior of a point in iteration processes of a quadratic transformation depends not
only on the coefficients of the transformation but also essentially on the initial point. It is
the difference in kind from a linear transformation and brings about the complexity of its
behavior. It was investigated in detail in Da-te (1978), especially in a two-dimensional
real homogeneous case, and the properties of the limit figures were exhaustively cleared.
In the one-dimensional complex inhomogeneous quadratic transformations, illustration
of nice fractals can be found in Mandelbrot (1982), etc.

In this paper, we deal with intuitively simple properties of a divergence-convergence
boundary (DCB) in the two-dimensional real inhomogeneous quadratic transformations.
And we illustrate some DCBs, and investigate their characteristic properties. When a
transformation has a stable fixed point other than the origin, there exists a set of initial
points converging to the fixed point, which forms a region. Then, there appears a region,
which is neither a convergence region nor a divergence region. Or in certain cases, the
convergence region separates the divergence region into infinite number of regions, and
vice versa. These properties come from the influence of linear terms, and they are not
observed in the case of DCBs of homogeneous quadratic transformations.
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2 Quadratic Transformation and its DCB

In this section, we introduce a quadratic transformation, its divergence-convergence
boundary (DCB), and an algorithm to illustrate DCB.

2.1 Divergence-Convergence Boundary of Homogeneous Case

An n-dimensional homogeneous quadratic transformation is written in the form:
x*=fHo) = PAox xf
k=1,2,..mr,s=12..nxecR;P,ecR), 1)
where f can be considered a mapping from R” into itself.

Many properties and canonical forms of homogeneous quadratic transformations were
investigated in Date and Iri (1976).

A divergence-convergence boundary (DCB) is defined in Date (1978), and the shapes
of DCBs in two dimensions are investigated and classified in detail.

For a homogeneous quadratic transformation, we introduce a convergence region C as

C={x®|lim | f" () || = 0 for m — w0}, ©)
where x@ is the coordinates of initial point. Then, we can define a
divergence-convergence boundary B as

B={r(0) O | () <xj, (3)
where (@) = sup{a | a® € C} for ® € §is a mapping from the unit sphere S = {x | |[x|| =
1} into R U{x}. A divergence region D is defined as D=R"-B-C.

The DCB is a limit figure, which is obtained by infinite number of iterations of a
transformation.

There are many algorithms to illustrate images of DCBs, and an algorithm that gives
the images more quickly by using the properties of the DCB in a homogenous case was
introduced in Da-te (1978). The algorithm used in this paper is shown in the next section.

We show two examples of the approximate image of convergence regions in
homogeneous quadratic transformations in Fig. 1. In these figures, the black region
represents a convergence region and the white region does a divergence region. The
boundary of these two regions corresponds to a DCB. In Fig. 1(a), the upper and the lower
curves of the DCB are smooth. On the other hand, the left and the right curves are
complicated and considered to have a self-similar structure. In Fig. 1(b), the convergence
region has many spikes, and they are considered to extend to infinity.

2.2 Divergence-Convergence Boundary of Inhomogeneous Case

An n-dimensional quadratic transformation is written in the form:
x*=froe) = Pl x X'+ Phx
k=1,2,..mrst=12, . nmxeckR; P, PeR), 4
where f can be considered a mapping from R” into itself.
In an inhomogeneous case, we modify the definition of a DCB of homogenous
quadratic transformations. The DCB is, intuitively, a set of initial points that neither
converge to the origin nor diverge to infinity in transformation process.
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(a) (b)
Fig. 1: Examples of DCB in homogeneous quadratic transformations

In this paper, we illustrate the images of DCBs by the following process.
1. choose a pixel for initial point x©
2. form=1,2,..., M,
if | £ () | > INF, then x® € D,
if | " () | <EPS, then x” € C,
where INF (€ R) is a sufficiently large fixed number, EPS (& R) is a sufficiently
small fixed number, and M (e N) is fixed.

We apply the same procedure for all pixels.

The values of INF, EPS, M are given in consideration of the programming language
system or the coefficients of transformation, etc.

Fig. 2 is an example of the images of DCBs in inhomogeneous quadratic
transformations. As shown this figure, in inhomogeneous cases, there exist, generally,
many points of DCB on a certain straight line through the origin. The convergence region
in Fig. 2 has a self-similar structure, i.e. the shape of its portion at the end of each branch
is similar to the whole.

For certain inhomogeneous quadratic transformations, a set of initial points converging
to a fixed point other than the origin forms a region. We call the set a boundary region in
this paper. When there is a boundary region, there is a region that is neither a convergence
region nor a divergence region as a limit figure.

3 Simple Properties of DCB

For a homogeneous quadratic transformation, there exists only one point of DCB on
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Fig. 2: An Example of DCB in inhomogeneous quadratic transformations

any straight line through the origin. On the other hand, in an inhomogeneous case, there
are generally many points of DCB on certain directions (Fig. 2).

Moreover, r(©) defined in 2.1 was proved to be lower semicontinuous with respect to
@ in Da-te (1978), and every DCB of homogeneous transformations doesn’t form a
region. Then, there doesn’t exist a boundary region in homogeneous cases.

In this section, we investigate these characteristic properties of the DCB in an
inhomogeneous case.

3.1 DCB of Quadratic Transformation with Stable Fixed Point Other than the
Origin

Certain inhomogeneous transformations have a stable fixed point other than the origin.
In this case, there exists a set of initial points converging to the fixed point, i.e. a boundary
region.

For example, the transformation

X =x'+ 0.7x-12y,

y =x*+xy-0.008333x+0.7y (5)
has three fixed points, (x, y) = (0, 0), (0.4, 0.23333), (-0.2, 0.08333), and two fixed
points, (0, 0), (0.4, 0.2333) are stable. We show the DCB of the transformation in Fig. 3.
In this figure, the black region represents a convergence region, the white region does a
divergence region, and the gray region is a set of initial points converging to the fixed
point (-0.4, 0.23333), i.e. a boundary region.

The boundary region in Fig. 3 has many spikes, and they are bounded. At the end of
each spike, there appears the convergence region. In the divergence region, there are
many doted curves, but in reality they form stratified curves.
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Fig. 3: A DCB with boundary region Fig. 4: A DCB without boundary region

The number of fixed points and their stability depend on the parameters of a
transformation. It seems to change largely the shape of DCB at the bifurcation
parameters.

For example, the transformation

X =x+ 07x-12y,

Yy =x*+xy+001x+0.7y (6)
has no fixed point other than the origin. We show the DCB of this transformation in Fig.
4.

As shown in this figure, there doesn’t exist the gray region, and the convergence
regions have highly similar structure to the union of the convergence regions and the
boundary regions in Fig. 3.

As mentioned above, if there exists a fixed point (x*, y*), satisfying x* = x* and y*’ =
y*, other than the origin, and this fixed point is stable, then there exists a boundary region.
Then, there appears a boundary region as a limit figure.

3.2 DCB Consisting of Many Separated Regions

In Fig 5, we show the images of DCBs of the transformations
X’ =xy,
y=x'+y+ax (7
witha =2.0,2.05, 2.1. All of these transformations don’t have any stable fixed point other
than the origin.

In all of these figures, many convergence regions and divergence regions appear in turn
on the direction from the origin to (x, y) = (-1, 1). In homogeneous cases, there exists only
one point of DCB on any direction, and there doesn’t exist the above property. This
property is one of the characteristic properties in inhomogeneous cases.

In case of a = 2.0, the divergence regions consist of many regions (Fig.5(a)), and in
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case of a = 2.1, the convergence regions consist of many regions (Fig.5(c)). In this
context, “many” means “more than one” or “infinite number of ”, and in both above
examples, it seems to exist countable infinite number of the regions. As the value of the
parameter a increases from 2.0 to 2.1, the divergence regions separate the convergence
regions into infinite number of regions.

Y

(a) parameter a = 2.0 (b ) parameter a =2.05

( ¢) parameter a = 2.1
Fig.5: DCBs consisting of many separated regions
We have not yet obtained the conditions for the existence of these properties in the

shape of DCBs. In the DCB with these properties, it seems to exist always countable
infinite number of convergence regions or divergence regions experimentally, but we
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have not yet investigated it theoretically.
4 Conclusion

We have dealt with the divergence-convergence boundary of two-dimensional
inhomogeneous quadratic transformations, and extracted some characteristic properties.
In general the shape of DCBs of inhomogeneous transformations has more complicated
structure than that of homogeneous cases. Certain inhomogeneous transformations have a
stable fixed point other than the origin, and a set of initial points converging to the fixed
point forms a region. Then, there appears a boundary with a finite area as a limit figure.
Certain transformations have convergence regions or divergence regions consisting of
infinite number of separated regions. These properties come from the influence of linear
terms, and they are not observed in the DCBs of homogeneous cases.

When a transformation has a stable fixed point other than the origin, there exists a
boundary region in the DCB of the transformation. When a transformation has a stable
periodic points or pseudo-periodic points, there exists a boundary region for the
transformation.

For certain transformations, there exist many points of DCBs on a certain direction. In
the special case of them, convergence regions or divergence regions consist of infinite
number of separated regions. The conditions for the existence of these properties have not
been cleared.

And we have not yet sufficiently investigated the validity of approximate images of
DCBs.
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