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Abstract Several information mea.sures have been used as the criteria in informa-
tion theory, statistics and various frelds of engineering. Especially an information
divergence has been well used as the meâsure ofthe difierence between two proba-
bility distributions. In this paper, we propose the pseudo information divergence,
which functions a.s usual information divergence, if two measured probability distri-
butions are in some fa,rrily of specific distributions. We introduce an example of the
pseudo information divergence, and apply it to the problem of training multi-layer
perceptrons from the data with the gross error noise.
Keywords pseudo information divergence, f-divergence, direct on-line learning,
multi-layer perceptron, gross error model.

1 Introduction

One of the most widely used learning procedures is the method of lea.st squares
used in ma^ny technical applications (neural networlc, image processing, pattern
recognition and so on). Its method has been well used and has been developed
with adding several supplementary terms that bring an efiective improvement. For
example, one of these methods is the lea,rning algorithm with the regularization
term for multi-layer perceptrons. The theoretical background of the least squa^red
method is the statistical estimation using Gaussian model, which can be regarded
as the minimization of the difference between the target distribution and the model
distribution. Information divergences represent such the difference in the space of
all probability distributions. These mea.sures well used in information theory are the
pseudo distance between two probability distributions. The minimization of these

makes us to understand easily several statistical estimators in a space
of all probability distributions topologically. The minimum Kullback divergence on
the model of Gaussian distributions is correspoading to the method of lea.st squaxes,
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but the minimization of the other information divergences doesn't realize an effective
on-line learning algorithm. Fior example, the direct on-line learning algorithm using
the minimum a-divergence have not been derived. Thus, it will be important for
the progress of the learning theory to exa,rrine the direct on-line learning method
from the view of information theoretical measures.

In this paper, we introduce the theoretical framework of the pseudo information
divergence ( PID in short ) defined on the family of specific probability distribu-
tions. We use the word,pseud,o in the meaning that its measure is not efiective for all
probability distributions but some specific family of probability distributions. We
compose the axiom of pseudo information divergences. Using this franework, con
cretely we derive a kind of PIDs as a weak version of f-divergences (f-PID in short)
and show the properties concerning to the family of specific probability distributions
of the measure.

Moreover we introduce an example of pseudo information measures using o-
divergence (o-PID in short), and we clearly derive the fa,mily of specific distribu-
tions of a-PID and the learning algorithm used the minimum a-PID. We show an
experimental result using our learning method for training multi-layer perceptrons
from the data with the gross error contamination.

2 fnformationdivergence

Information measures are well used in information theory, which is a mathematical
theory of communication, namely data compression and data transmission [4]. An
information divergence is a kind of information measures and used in the space of
all probability distributions space. So it has the properties of the spatial meaning.
Information divergences are not used for generating the metric space but used for
generating the natural structure in the differential manifold defrned on all probability
distributions [1].

Let p be a finite measure dominating the probability measures defined on a set
X . A set of all probabilty distributions defined on I is:

- r
e : {p lJ *n@)du(x ) : r ,p ( r ) )0Vrex}  (1 )

For Vp, q € P , the Kullback-Leibler divergence [10J is given by

r n(r\
D*(pllq) : 

J* n@)tos"*du@). (2)

The Kullback divergence does not satisfu the axiom of metric. However, it's used
as a natural dista.nce-like mea.sure in the space of probability distributions. Let us
recall the fundamental property of an information divergence D( ll ) in the,following:
Forp and q satisfying p(B) > 0 ( where 3: {rlp(r) # q(*),re N }, D(pllq) is
positive, and D(pllq) : 0 if and only if p(r) : S@) (Vr e X ). There axe many
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kinds of functions satisfied its a:<iom, however few typical information divergences
a.re used in information theory and statistics. The a-divergence was an originator
of the generalized information divergence derived by A. Reniy[11].

D.(pllq)* 
æ!, lt 

- 
L p@)t-"q(r)"ap@)]. (3)

where a € .fi|. The relation betrryeen Do and D6 is denoted by the properties
limo,6 D"(pllù : Dx@llq) and limo*1 D"(pllq) : Dxkllp).

A main research on the generalization of information divergences wâs started by
I. Csiszdr t6] i7l. He derived the following f-divergences as a generalized class of
information divergences.

^ ,  , ,  ' d e f  / '  / ^ r - r \
Dr@|q)s: l* n@)r lffiJ 

ttp(r). (4)

where /(z) is a convex function defined on (0, oc), strictly convex at u:1, and sat-
isfies /(1) :0. A class off-divergences is useful for analyzing the general properties
of information divergences. However, it is difficult to derive the mea^ningful results
hom the analysis of f-divergences. because of the generality of its formulation.

3 Pseudo Information Divergences

An information divergence is a kind of pseuda distance between two probability
distributions. [n this way, vre consider a pseudo version of an information divergence.
In this section, we define the concept of Pseudo Information Divergences (PID) and
derive f-PID. We show an illustrative example of f-PIDs and its learning procedure.

3.1 Definition of PID

For the clefinition of a new information measure, the fundamental properbies of the
measure need to be provided. Therefore, we give the following definition of PIDs by
which the fundamental properties of an information divergence a.re weakened.

Deûnition I PID( ll ) is called the pseudo information diaergence defined, on ,A
(c P ) Lf PID(ellq) functions as an information diuergence in the case that p,q
e,A . Then,,A is colled, a family of specifi,c distributions for the PI D(ll ).

Definition 2 Let t4, be some family of specific distributions for PID( ll ). If any
subset of P \ "4 is not a family of specific distributions for PID( ll ), then t4, is
called the ma,rimal farnily of specific ilistributions for PID(ll).

The word "pseudo" means that the maximal specific distributions family is a
subset of.P .
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3.2 f-PID

In the previous, vre gave the definition of PID, but we have not given its concrete
formulation. For apresent, it is difficult to give quite a new formulation without us.
ing every known divergence. Therefore, we defrne the following information mea.sure
as an extended version of f-divergences in the following.

alptq)tr f* n@)stp",)u(ffi) dr,@), (5)

where / is a convex function used in the definition of f-divergences. g is an non-
negative and non-decreasing function on [0, oc), and /3 q@)gb@)]dp\r) < oc is
established forYp,q eP .

If g(u) is a positive constant C forVu € [0, æ), then Df@llq) : CD*pllq). Thus
we ea.sily see that .{ is a.n extended version of f-divergences. Moreover we easily
see that f-PIDs ca.n be rewritten as the expectation of Tkh) with respect to the
probability distribution p, as follows,

ry(pllq):U-p(s)stp(s)tdp,r"l] 
""" rr (i) t,

where

pn@) : .--^ * -r-  p(r)stp(r) | .  (7)- 
Jx p\s)glp\s)lap\s)

The formulation using the expectation [the right side of eq. 6] becomes to be
important in order to have the lower bound of f-PID using Jensen's inequality.
Therefore, we derive the ba.sic inequality of f-PID in the following lemma. It will be
used for the derivation of the family of specific distributions for f-PIDs.

Lemma 1 (Basic Inequality of f-PID) Let f (u) be a conuer function d,efined on
(0,cc) and, stri,ctly conaer at u: l. And fQ): 0 is satisfied,. In add,ition, we
suppose that f is a monotone d,ecreasing function on the intertsal [0. 1]. For p and
q, ue suwose that I p@)slp@)ldp(") and, f q(x)s[p(r)]dp,(r) are bound,ed. If

l* n@)sb(Qld'p,(r) - 
l* u@)sln(r)ldg,(r) > 0,

then the following inequality is established,.

ar(ellq) >
q(r) sl_e@)!a!,(r)), o.
p(r)slp(r)ldp,(*) ) 

-p(r)glp(r)ldp(r)

(6)

p(n)slp@)ld,p,t"l)f (U-

(8)

(e)Ix
lx
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The proof of this lemma is ea.sily showed by using the representation of eq. 6
and Jensen's inequality t5l. Eq. 9 is rega,rded a.s an extended version of the log sum
inequality. We need to exa,rrine the condition that the second term of eq. 9 is equal
to 0, because the assumption of above lemma is helpfirl for grving a family of specific
distributions. We have the following subset of P using eq. 8.

so H {ql f* n@)oln(n)ld,p,(r) - 
l* a@)dn@\dp,(r) > 0,q eP} (10)

We easily see that p e Ep, because of the equality of eq. 10.

4 o-PID

In this section, we introduce an exa,mple of f-PID using a-divergence eq. 3.

4.1 DeÊnition of a-PID

We consider the following case concerning to the pah t, g in the definition of f-PID:

f @) :/"(r) I 
æ5 

(1 - u") , s@): s,(u) I uo. (11)

(12)

where u,a e Lû,oo) and o € [0, l). Using .fo and go, we define o-PID as follows,

W,@llq)E ;G5 (f. Won*'dp(x) - 
l* n@tt@)l"ap@)) .

Lemma 2 ç iE a fomily of specifæ distributioræ for S,
uhere

str {pelpe(u) : 
h"*n (-}tv - q,) ,0 e R}. (1s)

In order to prove this lemma, we rewrite eq,. 12 using Gaussian ditsributions in
the following.

W@,llpr") E 
#U"br,@))'*"dp(u)
l^*,@)br,@)ldp@)), (14)

where p0, Md p02 æe Gaussian density functions with the variance 1, both d1 and
02 represent the expectation. The proof of this lemma is easy as follows:

[Proof]: I1fu - 02, then we ea.sily have

ry(pt,llpù :0.
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Aind the following is established-

4@tJlPt) :
æ= lf*t*,{o))'*'ap(s)

"* t- ffiI | *(n r'r" @))'*" a rfu)l

d-l('-"*t-ffir)

with equality ifr û : dz. Thus I is the fa,mily of specific distributions for o-PIDs.
[Q.E,DJ

We ea.sily have the following corollary concerning to the relation between Dfi
and Dn.

4.2 Learning Algorithm of o-PID
'lil'e 

consider the learning algorithm conoerning to the minimum a-PID. Because
the specific probability distributions family for a-PID is Gauss model, its learning
algorithm will be applied to information systems used the lea.st quared method.

Let u be the pa,ra,rreters vector of some input output system, rD : (wt,. . - ,w^)
e H". Let the system be denoted by h(c: ul), where æ (e .Rr) and g (e .R) a,re
an input vector and the output of the system respectively. Let y* be the output of
unknown target system h(æ;u.) where ro* is unknown target parameters. Ix:tÏff.
be a subset of. H".

When some input o is given at the system h( : a:), we have the conditional
probability function with respect to the output gl in the following:

p@lh(æ: u,)) dS 
fi"*ê* 

- h(,. -)),) . (1e)

The negative log-likelihood function of eq. (19) is well-used loss function. In the
fact, we easily have

l*(nr*,@))'*" d'u(n)
) 0 ,

where 0!2 : qff. Thus we have

DnÊ(pt,llpr,) > o

Corollary 1 The relation between Uyi and Dp is:

M ryn(pe,llpù : D *(pe,llpe,).

'|
- logp(glà(æ : u)) : 

i{g 
- h(, t ,tt)}2 * constant.

(16)

(t7)

(18)

(20)



From the view of the minimization of an information divergence, the minimum
squared error loss can be explained by the minimum Kullback divergence, that is,

*cJ2t*Dr(p-.llp-) : rox, (21)

where p- : p(Ulh(æ : to)). As the sâme way, we easily have the minimization of
a-PIDs with respect to the system parameters ur in the following.

*c#rrl, trÊ(p*,llp-) : ùo, a € [0,1) (22)

The gradient function of DJi@-" llp-) with respect to the network weights vector
rr is:

v-UÊ(p--lipà : 
#b l*ntuln{*: u-)\lp(slh(æ: u)l-d,1t(y)

lexo{-ot(ult.u)}v-t(ur*,ùf . ez): 4". 
l--ï" r

Thus the learning algorithm using the minimum c-PID is the following.

wn*t : ,tn - ef +)" "T{-î{i o-, (24)
\ t / n r 1  ( 1  - o )

where n is update frequency using the learning procedure and I is the square error
loss.

By using the weights update [eq. 241, we easily have the direct onJine type
learning algorithm. However, an effective on-line lea.rning algorithm using the min-
imum o-divergence estimator has not been derived, because the gradient function
V-Dr(p-.llp-) can not be expressed in the expectation with respect to the target
probability distribution p-. That is, there does not exist the function F ( defined
on .R ) satisfying Y -Do(p-.lip-) : Er-"lF(p-)].

We describe the Hellinger distance which is denotcd by Ds :0.5Do:0.s. In the
theoretical framework of the minimum Hellinger distance estimation, the target data
distribution is generated by the empirical data using the smoothing technique [2].
Its distribution is used as target probability distribution in the process ofcalculating
the estimation function for the minimum Hellinger distance estimator.

5 NumericalExperiments

In the previous section, we introduced o-PID as an illustrative example of f-PID.
We examine the effectiveness of the learning procedure using o-PIDs in this section.
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5.1 Tbaining Multi-Iayer Perceptrons

Let the input-output system be the multi-layer perceptron (MLP), which consists
the input, hidden and output layers. We suppose that all MLPs used in this study
have the sa,rre network architecture. The activation function of each network node
is (1 - exp[-u])/(t + exp[-z]), where u is the linear sum of the inputs and the
network weight vectors.

As the input-output system used the least squared method is rega.rded as Gaus-
sian distribution in the meaning of the stochastic modeling,

(25)

where h(æ : u) is the output of the MLP with the parameters to and the input c.
The lea.st squa^red method is well used for training &ILPs.

However, the model of MLPs is not parametric, that is, there exist various net-
work weight vectors expressing the target MLP. Let us consider the learning of the
training data from the MLP with the weights ur*. Wè suppose that an initial net
work weights vector is in the neighborhood of u'. Let {tsx be the weights vector
of the trained MLP obtained by either the least squa,red method or o-PID method,
where N is the number of the training data. Then dlry converges to u;* as N --* cc.
In the numerical experiments in this section, we do not see the difference between
the ro" and the weights vector of the trained i\'ILP, but examine the ability of rep
resentation of the trained MLP for the training data. In addition, we avoid an
excessive adjustment to the training data with the proper setting of experiments.

The essential problems of the learning and generalization of multi-layer perceF
trons are very important and have been studied flom a mathematical approach (

[t2] and so on).

6.2 Mixture Model of MLPs

The lea^rning problem of this simulation is to train MLPs from the gross error con-
taminated data. Let u;" be the weights vector of the target MLP and u" the weights
vector of the noise MLP.

The mixture model of two MLPs can be represented in the following:

P!h@,-),h(x,.-"1(g) : (L -t)pn@,-r(g) + tpnt',*;(a) (26)

where 0 < t < 7. The mixture distribution I eq. 261is called the gross error model

[S]. The training data used in this simulation consists the target data and the noise
data with the mixture probability p(I - t,t). The number of the hidden unites is
determined without an excessive adjustment to the training data.

Using the each noise rate f and the noise parameter -El, we examine the a-PID
learning and the least squared learning from the noise contaminated data. We
use 10 kinds of the initial weights vectors. The details of the setting of numerical
experiments are showed in Table 1.

Pn@.-)(a): **"*n (-|tu - h(a ' -)) ') ,
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'fable I of ments
Architecture of MLP (input-hidden-output) 2-2-L

Number of the taining data 100
a 0 ( a ( 1

Mixture rate t :0.3. 0.1. 0.01
Weights of the noise MLP lDz :  \ I l "  *  B

B :  ( 8 , .  . .  , 8 ) , .B  >  0
Stop condition of the learnins (vDn#)'< 0.001

Tlaining rate e : 0.01

5.3 Results
'We 

examine the error of the trained MLP for the target data. The results are
showed in Figure 1, Figure 2 and Figure 3- We explain about the graph points in
these figures using the general notation "*+-##.dat". "*+)' indicates the percent
rate of the target deta in the training data. When "#*" is "k1" , the result is obtained
by the lea.st squa^red method. If "**" is a number (* 0), the result is obtained by
the a-PID learning method with o :##. We use the log scale at the average error
because of the large amount of the error.

In the case of using the least squa.red method, there is an immediate increase
for the error in the proportion to B. This means that the difference between the
ta"rget output and the outpuù of the noise MLP becomes to be large. However,
the phenomenon of an excessive adjustment to the training data reduces such the
difference. In this simulation, the setting of experiments is comidered to avoid such
the phenomenon.

./r' ,\

8.Ù

Fig. 1: average error for the target data in the case of the noise rate 1%.
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Fig. 2: average error for the target data in the case of the noise rate 10%.

'æBtr+
reff+'

A{ft

Fig. 3: average error for the ta,rget data in the ca.se of the noise rate lTo.

We can see that the trained MLP by using the o-PID learning @ # 0 becomes
to fit the ta,rget data for the large Il. Especially there exists an influence in the case
of the lea.st squa,red learning in Figure 3, but the a-PID lea,rning is successful to get
rid of an inf.uence of the gross error noise.

6 Conclusion

In this paper, we derive pseudo information divergences (PIDS), and derive the
fundamental properties of the PIDs. We give a kind of PIDs using f-divergences.
For showing the effectiveness of out measures, we introduce a-PIDs as an example

,
I 0.@
!
t

! o.ots
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of f-PIDs. We derive the learning algorithm procedure with respect to the minimum
a-PID, a,nd show the effectiveness of our method using the problem concerning
to the learning of MLPs from the gross error contaminated data. Statistically, the
effectiveness of the minimum c-PID is the same as the robustness which was studied
in the minimum Hellinger distance estimator [2]. The minimum Hellinger distance
estimator has not given the direct on-line learning procedure, but however, in our
framework of PIDs, an example of PIDs gives the direct on-line learning with such
the effectiveness.

The concept of our pseudo information divergences have not been treated too
much in information theory. It is seemed to give the proper criteria for various
applications of engineering. In a word, it seems that this becomes one of the methods
to generate a suitable criterion for engineering applications. As the first research we
have mentioned the fundamental properties of PID, but the practicing application
research will be one of our future works.
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