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Abstract

In the present paper, for constructing the minimum risk estirnators of state of stochastic
systems, a new teclurique of invariant ernbedding of sample statistics in a loss function
is proposed. This technique rcprcsents a simple and computationally attrcctive statistical
method based ou the constructive use of the invariance principle in rnathematical
statistics. Unlike the Bayesian approach, an invariant ernbeclding technique is
independent of the choice of priors. It allows one to eliminate turknown parameters from
the problem and to find the best invariant estimator, which has smaller risk than any of
the well-known estimators. Also the problem of how to select the total nunrber of the
observations optimally when a constant cost is incurred for each observation taken is
discussed. To illustrate the proposed teclrnique, an example is given.
I(eywords: System; State; Estimation; Policy; Optimization.

I Introduction

The state estimation of discrete-tine systems in the presence of random
disturbances and measurement noise is an important field in modern control theoty (see
Aoki, 1967; Bertsekas, 1976; Nechval, 1984; Sage and White, 1977).The problem of
determining an optimal estimator of the state of stochastic system in the absence of
complete information about the distributions of ranclom distulbzurces and meastuement
noise is seen to be a standard problem of statistical estimation. Unfortunately, the
classical theory of statistical estimation has little to offer in general type of situation of
loss function. The bulk of the classical theory has been developed about the assumption
of a quadratic, or at least symmetric and analytically sirnple loss structure. In some
cases this assumption is macle explicit, although in most it is implicit in the search for
estimating procedures tlrat have the "nice" statistical properties of unbiasedness and
minimum variance. Such procedures are usually satisfactory if the estimators so
generated are to be used solely for the purpose of reporting information to another party
for an unknown purpose, when the loss structure is not easily cliscernible, or when the
number of observations is large enough to support Normal approximations and
asymptotic results. Unfortunately, we seldom are fortunate enough to be in asymptotic
situations. Small sarnple sizes are generally the rule when estimation of system states
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and the small sample properties of estimators do not appear to have been thoroughly
investigated. Therefore, the above procedures of the state estimation have long been
recognized as deficient, however, when the purpose of estimation is the making of a
specific decision (or sequence of decisions) on the basis of a limited amount of
information in a situation where the losses are clearly asymmetric - as they are here.

There exists a class of control systems where observations are not available at every
time due to either physical impossibility and/or the costs involved in taking a
measurement. For such systems it is realistic to derive the optimal policy of state
estimation with some constraints imposed on the observation scheme.

It is assumed in this paper that there is a constant cost associated with each
observation taken. The optimal estimation policy is obtained for a discrete-time
deterministic plant observed through noise. It is shown that there is an optimal number
ofobservations to be taken.

The outline of the paper is as follows. A formulation of the problem is given in
Section 2. Section 3 is devoted to characterization of estimators. A comparison of
estimators is discussed in Section 4. A general analysis is presented in Section 5. An
example is given in Section 6.

2 Problem Statement

To make the above introduction more precise, consider the discrete-time system
which, in particular, is described by vector difference equations of the following form:

x(k + l) = A(k + I,k)x(k) + B(k)u(k),

z(k) = H(k)x(k) + w(k), k =1,2,3,... ,
(2)

where x(k+l) is an n vector representing the state of the system at the (k+l)th time
instant with initial condition x(l); z(k) is an m vector (the observed signal) which can be
termed a measurement of the system at the kth instant; H(k) is an m x n matrix;
A(k+l,k) is a transition matrix of dimension n x n, and B(k) is an n x p matrix, u(k) is a
p vector, the control vector of the system; w(k) is a random vector of dimension m (the
measurement noise). By repeated use of (l) we find

x(k) = A(k,i)x(i) * le6.,i + l)B(i)u(i), j < k,
i= j

(3)

where the discrete-time system transition matrix satisfies the matrix difference equation,

( l )
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A(k+l, j)=A(k+l,k)A(k,j),  vk,j ;

A(k,k) = I;
k-l

A(k,j) = l[A(i+1,i).
i=j

(4)

From these properties, it immediately follows that

A- lG,)=A( i ,k) ,  vk, j ;

A(a,p)A(p,y) = A(cr,y), Vcr,F,y.
(s)

Thus, forj<k,

k_l
x(i) = A(i,k)x(k) - IA(i,i + l)B(i)u(i).

i = i

(6)

The problem to be considered is the estimation of the state of the above discrete-
time system. This problem may be stated as follows. Given the observed sequence, z(l),
... ,z(\), it is required to obtain an estimator d of x(k1) based on all available observed
Uutu r"={z(l), ... , z(k)} such that the expected losses (risk function)

R(0,d) = Ee{r(g,d)}
(7)

is minimized, where r(0,d) is a specified loss function at decision point d=d(zk),
0:(x(k1),ro), ro is an unknown parametric vector of the probability distribution of w(k),
kSkr.

It is assumed that a constant cost c ) 0 is associated with each observation taken.
The criterion function for the case ofk observations is taken to be

rk(e,d)=r($,d)+ck.

The optimization problem can be stated as

.oin *oh En{ru1e,O1}

(8)
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where the inner minimization operation is with respect to d:d(zk), when the k
observations have been taken, and where the outer minimization operation is with
respect to k.

3 Characterization of Estimators

For any statistical decision problem, an estimator (a decision rule) dr is said to be
equivalent an estimator (a decision rule) d2 if R(0,dr)=R(0,d2) for all 0e @, where R(.) is
a risk function, @ is a parameter space,. An estimator dr is said to be uniformly better
than an estimator d2 if R(0,d1) < R(0,d2) for all 0e@. An estimator dr is said to be as
good as an estimator d2 if R(0,d1) < R(0,d2) for all 0e@. However, it is also possible
that we may have "d1 and dz are incomparable", that is, R(0,d1) < R(0,d2) for at least
one 0e@, and R(O,dr) > R(0,d2) for at least one 0e@. Therefore, this ordering gives a
parlial ordering of the set of estimators.

An estimator d is said to be uniformly non-dominated if there is no estimator
uniformly better than d. The conditions that an estimator must satisfy in order that it
might be uniformly non-dominated are given by the following theorem.

Theorem | (Uniformly Non-dominated Estimntor). Let (\,; r:1,2, ... ) be a
sequence of the prior distributions on the parameter space @. Suppose that (d,;r:1,2, ...)
and (Q(€',d.); t:1,2, ... ) are the sequences of Bayes estimators and prior risks,
respectively. If there exists an estimator d* such that its risk function R(0,d*), 0e@,
satisfies the relationship

t im [q1q.,d*) - e(q,,d.)]= o,

(10)

where

Q(8.,d) =

( 1 1 )

then d* is an uniformly non-dominated estimator.
Proof. Suppose d* is uniformly dominated. Then there exists an estimator d**

such that R(e,d**) < R(O,d*) for all 0e@. Let

e: inf [nfe,oj - R(o,d * *)]t o.

Jn1e,a;E.1ae;,
o
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Then

Simultaneouslv.

T=1,2, ... , and

On the other hand,

Q(q",d*) - Q(6",d * *) > e.

Q(€r,d * *)  -  Q(6,,d.)  > 0,

"l3X 
[e{€,,0 * *) - e(6,,d.)]> o.

Q(q. ,d** )  -Q(€ , ,d , )

(1 3)

(14)

( l  5)

= h(8.,d*) - e(q.,d,)l- h(e,,d*) - e(8,,d* *)l

. [e(E.,on) - e(6.,d.)]- e
(  1 6 )

and

l im [e(q.,d * *) - e(E.,d,)]. o.

This contradiction proves that d* is an uniformly non-dominated estimator. I

(r7)

4 Comparison of Estimators

In order to judge which estimator might be preferred for a given situation, a
comparison based on some "closeness to the true value" criteria should be made. The
following approach is commonly used (Nechval, 1982). Consider two estimators, say,
dr and d2 having risk function R(O,dr) and R(0.d2), respectively. Then the relative
efficiency of dr relative to d2 is given by

rel.eff.* {d,, dz ; e } : R(e, a2 )/R(9, dr ) .
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When rel.eff.*{dr,Or;eo}<l for some 0s, we say that dz is more efftcient than dr at

0s.Ifrel.eff.*{a,,ar;e}<1 for all 0 with a strict inequality for some 06, then d1 is

inadmissible relative to d2.

5 General Analysis

5.1 Inner Minimization

First consider the inner minimization, i.e., k is held fixed for the time being. Then
the term ck does not affect the result of this minimization. Consider a situation of state
estimation described by one of a family of density functions, indexed by the vector
parameter 0:(p,o), where p=x(k) and o=ot(>0) are respectively parameters of location
and scale. For this family, invariant under the group of positive linear transformations:
z-+az+b with *0, we shall assume that there is obtainable from some informative
experiment (a random sample of observations zk:{z(0), ... , z(k)}) a sufficient statistic
(mr,sr.) for (p,o) with density function p(mp,sp;p,o) of the form

p(ml,ssilr,o) = o-2fr[(mk - p)/o, s1 /o].
( le)

We are thus assuming that for the family of density functions an induced invariance
holds under the group G of transformations: rrt-)amr4b, sç-àâsp (a> 0). The family of
density functions satisfying the above conditions is, of course, the limited one of
normal, negative exponential, Weibull and gamma (with known index) density
functions.

The loss incurred by making decision d when F=x(kr) is the true parameter is given
by the piecewise-linear loss function

cr(d-P)  
1p<d) ,o

cz0r-d) 
1p > d).

o

(20)

The decision problem specified by the informative experiment density function (19) and
the loss function (20) is invariant under the group G of transformations. Thus, the
problem is to find the best invariant estimator of p,

d' = ars min R(O.d).-  
d e Q

r(0,d) =
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where @ is a set of invariant estimators of p, R(O,d) = Es{r(O,d)} is a risk function.

5.2 Best Invariant Estimator

It can be shown by using the invariant embedding technique (Nechval, 1982,1984)
that an invariant loss function, r(0,d), can be transformed as follows:

r(0,d) = i(v,n),

where
(v1 2 -t1v2),

) (vr < -îvz),

(23)

v:(v1,v2) ,  vr : (mk -p) /a,  V2:s1/6,  n: (d -  m1)/sp .

It follows from (22) that the risk associated with d and 0 can be expressed as

R(O,d) = Ee{r(g,d)}= Br {T(v,q)}= c1 Jdv2 fiu1 + nu2)fr(v1, v2)dv1
0 _nv2

a _nv2
- c, !dv, J{u1 + nv2Xr(v,,v2)dv1,

0 -co

(24)

which is constant on orbits when an invariant estimalor (decision mle) d is used, where
fç(v1,v2) is defined by (19). The fact that the risk (24) is independent of 0 means that a
decision rule d, which minimizes (24), is uniformly best invariant. The following
theorem gives the central result in this section.

Theorem 2 (Best Invariant Estimator a/ p). Suppose that (vr,vz) is a random
vector having density function

(v1 real, vz > 0),

(2s)

where fp is defined by (19), and let Gr be the distribution function of vrlvz. Then the
uniformly best invariant linear-loss estimator of p is given by

(22)

[ c1 (v1+qv2 )
T(v,q) = j

l -c2(v1+r1v,

v2fç 1u1,v2;[]urau, ]ç1',0,, urp.,o,]'
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where

d': mk+î*sk,

Gr. (-t]*) = c1l(c1 + c2).

(26)

(27)

(2e)

The

Proof. From (24)

aeu{ i tv ,n ) }  æ æ @ - rvz
--: = c1 Jv2dv2 Jfu (vr, v, )dv y - c2 lv 2dv 2 Jf* (vr, v2)dvt

o l 1  P - r 1 v 2 o - -

=  Jv2dv2  J f *1v r , v r )dv , [ c1Pp{ (v1 ,v2 ) : v1+ r1v2  >0 } - c2Pe{ (v1 ,v2 ) : v1+ r1v2  <0 } ]
0 - æ

= lv2dv2 Jfo(v,,vr)dv1[cy(1 
-Gp(-n)) --c2ck(-n)] .

o -æ 
eB)

Then the minimum of Ei{ï(v,q)} occurs fot tl* being determined by setting
ôEr{ ï (v,n)} lôr1= 0 and this reduces 1o

c1[1 - Gs(-q*)] - czGr.(-1*) = 0,

which establishes (27). I
Coroflary 2.1 (Minimum Risk of the Best Invarisnt Estimotor of p).

minimum risk is given by

= ., îdu, ]v1fç (v1, v2) du, - 
"r-!du, 

nii,r* 
1u,, u, ;ou,

0 -n*vz 0 -æ

with 1* as given by (27).

-  (  - )
R(0,d.)  = Eo lr(e.d-) |= e. { i '1v.4*1}
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Proof. These results are immediate from (24) when use is made of ô&{ i(v,q)}/Arl
: 0 .  !

5.3 Outer Minimization

The results obtained above can be further extended to find the optimal number of
observations. Now

Es{k(0,d*)}= Ee{r(0,d*) + ck}= Epft(v,q*) + ck}

= cr jdvz ]v1fç(v1,v2)au, -"2]dur-niiir*1ur,u2)dv1 + ck
0 -n*v"  0  -æ

(3  1 )

is to be minimized with respect to k. It can be shown that this function (which is the
constant risk corresponding to taking a sample of fixed sample size k and then
estimating x(kr) by the expression (26) with k for k*) has at most two minima (if there
are two, they are for successive values of k; moreover. there is only one minimum for
all but a denumerable set of values of c). If there are two minima, at k* and k*+1, one
may randomize in any way between the decisions to take k* or k*+l observations.

6 Example

Consider the one-dimensional discrete-time system" which is described by scalar
difference equations of the form (l)-(2). and the case when lhe measurement noises
w(k), k :1.2, ... (see (2)) are independently and identically distributed random
variables drawn from the exponential distribution with the density

f(w;o) =(1/o)exp(-wlo), we (0,0o),
(32)

where the parameter o>0 is unknown. It is required to frnd the best invariant estimator
of x(k1) on the basis of the data sample z^--(z(l),... ,z(k)) relative to the piecewise
linear loss function

d ) p ,

otherwise-

where 0:(p,o;, p=x(kr), cr>Q, cz:1.
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The likelihood function of zk is

L(zk ;1t,o)= 
**r[- à 

e0 -u11.9;r 
"]

= 4"*o[- Èuo)00) - p)/o'],
o" L i=r _J

y0) = ta(j)l-'[ou. ti9!'o6,,*r",,,",,,J, j < kr,

yû) = Ia(j)r- 'f o, -"1.;y ! o1;,, + r)n(i)uol, j > k1 ,
( '=n' )

if kl < k (estimation of the past state of the system), and

k
mr = 4iq y(i),  sr. = Ia(j)[y(j)-mr].

tsJ<k i=l

The probability density function of (mç,sç) is given by

(34)

(35)

(36)

y(i)=449,
AUJ

a(i) = H(i)A(i,kr), b0) = H(j)l'o6,t * 1)B(i)u(i),
i=j

(38)

if either k1 = k (estimation of the current state of the system) or k1 > k (prediction of the
future state of the system).

It can be justified by using the factorization theorem that (m1,sç) is a sufficient
statistic for O=(p,o), where

(37)

(3e)



. n(k) _ n(k)[mr-p]

h(mp,Spip,6)  = : :e  6
o

r(o,d) = ï(v,r1) = {ttl"t 
+qv2)f a'

L- (vr  + \vù lc ,

tdf"-sf-2e-*'

ûk ) t l ,  Sk  >0 ,

(40)

k
n(k) = Ia(j).

j= l

Since the loss function (33) is invariant under the
changes, it follows (see (23)) that

(41)

group G of location and scale

vt > -1'1v2,

otherwise,

(42)

where v:(v1,v2),

m r . - F  S p  d - m u
v l  = - ,  Y 2 = : ,  l = - .

o o s k

(43)

Thus, using (26) and (27), we find that the best invariant estimator (BIE) of p is
given by

d B I E  = m g  * { * S 1 ,

where

rt* = [l - (cr + t;r/k1ln1t<; - are i1f Ep{T1v,q;},

eo{r1v,q;} = [(c1 + lxl -qn(k))-(k-r) - t ] /n(k) -nG -l).

The risk of this estimator is

(44)

(4s)
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R(e,dBrE) = E6{r(0,dsyr)}= e*{ i1v,r t*)}= k[(c,  + l ; t r t  -  1] /n(k).
(47)

Here the following theorem holds.
Theorem 3 (Cltaracterizcrtion of the Estimotor d61p). For the loss function (33),

the best invariant estimator of p, dera, given by (44) is uniformly non-dominated.
Proof. The proof follows immediately from Theorem 1 if we use the prior

distribution on the parameter space @,

; re ( -oo , r ) ,  oe(0 ,0o) .

This ends the proof. !-,
Consider, for comparison, the following estimators of p (state of the system):

The maximum likelihood estimator (MLE):

dy lE  =  mç l

The minimum variance unbiased estimator (MVUE):

I  - I : l '  I  /  ' 1 l / r  -  I

i , ( d 0 ) = : e " '  ; ; _ , ; l ' l e o r d p r d o ,
or  l - -11 / r ;o " t * '  \  t , /

dvvuE - mtr ;-+ -,
( K  -  l ) n ( k )

The minimum mean square error estimator (MMSEE):

dr ' *use,E - rnç--1. ,
Kn(K)

The median unbiased estimator (MUE):

dHauE =  mk - (21 l (k - l '  -  l ) ;b

(48)

(4e)

(50)

(51)

361

(s2)



Each of the above estimators is readilv seen to be of a member of the class

v  = { d : d = l n k  + î s n } ,  
( 5 3 )

where q is a real number. A risk of an estimator, which belongs to the class fr is given
by @6).If say, k:3 and c116, then we have that

rel.eff.p {dyrB , ds';0} = 0.23 l,

rel.eff.p {dryus, ds' ; 0} = 0.5,

rel.eff.q {dnarsrr, d"yE ; 0} = 0.404,

rel.eff.p {d"uE, ds16 ; 0} : 0.45.

In this case (3 I ) becomes

E0{ç(0,d*;}= Es{r(0,ds1s) + ck}= E*{T(v,q*) + ck}

= k[(cr + l)r/k - l]/ n(k) + ck = Jr .

Now (58) is to be minimized with respect to k. It is easy to see that

J r  -  J r - r  =  - ( t r .  -  l ) [ (c r  +  1 ; r / t t - t )  -  l ] i  n (k  -  l )  -  k [ (c1  +  r ) r /k  -  r ] /  n (k ) )+  c .

Define

q(k) = (k-1)[(c1 +1;t / t t - t )  - t ] /n(k - t)  *k[(c1 + t)r /  - l ] /n(k).

(54)

(ss)

(s6)

(s7)

(58)

(se)
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Thus

c ieG)  ë  Jk :Jk- r .

(61)

By plotting g(k) versus k the optimal number of observations k* can be determine,J.
For each value of c, we can find an equilibrium point of k, i.e., c:rp(k'). The

following two cases must be considered:
l) k' is not an integer. We have 1(t)aç'4{l)al:k(2), where k(l) and k(2) are

neighboring integers. Since gft) is monotonically decreasing, we know that gft(t))t.
and <p(k(2))<c. Then, by using these properties, (59) becomes

Jol ry  -  Jr l r l -1  = -g6( l ) ;+c < 0,

Jurzr - Jpor = -<p1k(z); + c > o,

(62)

(63)

(64)

the optimal

Thus

Jnrz l  >Jor r r  <Jp , ' , - , .

Therefore, k(r) is the optimal number of observations. We conclude that
number k* is equal to the largest integer below the equilibrium point.

2) k' is an integer. By the same sort of argument, we know that k' is as good as k'-
1. Consequently, both k'and k'-l are the optimal number of observations. Notice that in
this case, Jp carl be computed directly and precisely from (56).

7 Conclusions

In this paper we construct the minimum risk estimators of state of stochastic
systems. The method used is that of the invariant embedding of sample statistics in a
loss function in order to form pivotal quantities which make it possible to eliminate
unknown parameters from the problem. This method is a special case of more general
considerations applicable whenever the statistical problem is invariant under a group of
transformations, which acts transitively on the parameter space.

For a class of state estimation problems where observations on system state vectors
are constrained, i.e., when it is not feasible to make observations at every moment it is
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possible to do so, the question of how many observations to take must be answered.
This paper models such a class of problems by assigning a fixed cost to each
observation taken. The total number of observations is determined as a function of the
observation cost.

Extension to the case where the observation cost is an explicit function of the
number of observations taken is straightforward. A different way to model the
observation constraints should be investigated.

It should be noted that the technique proposed in this paper allows one to find also
the optimal control of a discrete-time linear system with unknown parameters. The
control of linear systems with unknown parameters is a problem of major theoretical
and practical importance. The development of adaptive control for this class of
problems has been an area of extensive research. According to the theory of dual
control, introduced by Feldbaum (1965), the control has two purposes that might be
conflicting: one is to help leaming about unknown parameters and/or the state of the
system (estimation); the other is to achieve the control objective. Thus the resulting
control sequence exhibits the closedloop property, i.€., it antiôipates how future
learning will be accomplished and how it can be fully utilized. Thus, in addition to
being adaptive, this control also plans its future learning according to the control
objective. This subject will be treated in a later paper.
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