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Abstract.
Aiming at developing a theoretical framework for the formal study of NP-hard

optimisation problems, we have focused on structural properties of optimisation
problems related to approximative issue. From the observation that, intuitively,
there are many connections among categorical concepts and structural complexity
notions, in this work we present a categorical approach to cope with some ques-
tions originally studied within Computational Complexity Theory. After defining
the polynomial time soluble optimisation problems category OPTS and the opti-
misation problems category OPT, we introduce a comparison mechanism between
them following the basic idea of categorical shape theory, in such way the hierarchical
structure of approximation to each optimisation problem can be modelled.

Keywords: Structural Complexity, Category Theory, NP-Hard Optimisation Prob-
lems, Approximation Hierarchy.

1 Introduction

According to Holmberg (2000 ll0]), modellzng emerges as a core concept in antici-
pation and anticipative processes, and it becomes evident already from the Rosen's
work (1985 [tO]). However, modelling is an enormously rich concept.

Motivated by the current interest in Computer Science on Approximative Algo-
rithms Theory as a feasible alternative to those optimisation problems considered
computationally intractable, this paper has explored possible new avenues of future
research and development of theoretical framework for modelling structural proper-
ties of optimisation problems related to approximative issue. Heuristic techniques
for solving such problems in an approximate way have always been used throughout
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the history of computing, but without any guarantee on approximation quality. On
the other hand, approximative algorithms satisfying some specific quality criterion
provide an approximate solution which is probably close to an optimum one. Here
we âre assuming the concept of an approximative algorithm formalized in the early
seventies by Johnson (1974 [11]), which is necessarily polynomial and is evaluated
by the worst case possible relative error over all possible instances of the prob-
lem. Approximative algorithms have developed in response to the impossibility of
solving a great variety of important optimisation problems classified as NP-hard.
The analysis of approximative algorithms always involves deriving estimates on the
value of the optimum. As such, approximative algorithms and their analysis could
be useful in anticipating good feasible solutions through a properly approximation
process. According to Dubois (2000 [5]), anticipation is a very complex concept, and
the anticipatory effects, in many cases, can be obtained mathematically. In opti-
misation problems context, Hochbaum (1997 [9]) explored the limits of polynomial
approximative algorithms for NP-hard problems and investigated some criteria for
evaluating the quality of approximative algorithms. It is noted that various prob-
lems differ quite substantially in terms of the quality of the ratio or worst case error
bound. It is tempting to assess the difficulty of a hard problem as proportional to
the possible approximation.

According to Bovet and Crescenzi (1994 [3]), after the original success in obtain-
ing approximative algorithms to various problems, a great research effort has been
devoted in trying to find a uniform structure to deal with the notion of approxima-
bility to optimisation problems, under the Complexity Theory point of view. As the-
oreticians continue to seek more powerful methods for proving problems intractable,
parallel efforts focusing on learning more about the ways in which problems are
interrelated with respect to their difrculty and comparing the complexity of dif-
ferent combinatorial optimisation problems have been an extremely active research
area during the last twenty years. The different behaviour of NP-hard optimisation
problems with respect to their approximability properties is captured by means of
the definition of approximation classes and, under the "P I NP' conjecture, these
classes form a strict hierarchy whose levels correspond to different degrees of ap-
proximation.

Structural Complexity Theory is often concerned with the inter-relationships
between complexity classes. However, it seems that an attempt of organizing all
these results in a unified framework as general as possible is lacking. The aim of this
paper is to make a first step in this direction. Starting from the observation that,
intuitively, there are many connections among categorical concepts and structural
complexity notions, in Leal et. al. (2000 [12]) we have defined two categories: the
OPT category of optimisation problems and the APX category of approximation
problems. In this direction, a preliminary version of this paper appeared in Leal et.
al. (2001 [13], 2001 [14]), where a comparison mechanism between OPT and APX
categories has been introduced. The basic idea is based on categorical shape theory
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due to Cordier and Porter (1990 [4]) and is motivated by previous works by C.
Rattray (1e94 [16], 1995 [17]).

Category theory is likely to be useful in providing framework within which to
explain basic universal notions from Structural Complexity such as "completeness",
"hardness" and "best approximation". According to D. Ellerman (1988 [7]), "the
category theory's foundational relevance is that it provides universality concepts to
characterize the important structures throughout mathematics." In this context, the
notion of uniuersal for a property represents the essentfal characteristics of such a
property without any imperfections, and category theory is a precise mathematical
theory of concrete uniuersals.

In this paper, optimisation problems categories OPT and APX are redefined,
a brief overview of a general theory of universals is.presented, and we discuss how
these properties can be applied to explain universality within structural complexity,
by means Category Theory.

This paper is organized as follows. In section 2 category theory is presented as a
suitable mathematical foundation to deal with the structural aspects of optimisation
problems, and in the context of a general theory of universals, category theory is
identified as a theory of concrete universals. In section 3 are introduced the OPTS
category - the polynomial time soluble optimisation problems category, and the
OPT category - the optimisation problems category. After that, the connections
with categorical shape theory are presented and a system approximation to each
optimisation problem is outlined in section 4. Finally, some conclusions are sketched
and directions for further works are suggested.

2 Mathematical Foundations

In order to make the paper self-contained, this section gives some basic categorical
concepts following the literature (Barr and Wells,1990 [2], Goldblat, 1986 [8]), and
introduces briefly the Theory of Universals, based on the paper by D. Ellerman
(1e88 [4).

But, why category theory?
According to Barr and Wells (1990 [2]), there are various view on what category

theory is about, and what it is good for. Category theory is a relatively young branch
of mathematics stemming from algebraic topology, and designed to describe various
structural concepts from different mathematical fields in a uniform way. Indeed,
category theory provides a bag ofconcepts (and theorems about those concepts) that
form an abstraction of many concrete concepts in diverse branches of mathematics,
including computing science. Hence, it will come as no surprise that the concepts of
category theory form an abstraction of many concepts that play a role in structural
complexity.
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2.1. Category

Quoting Goldblat (1986 [8]): "A category may be thought of in the first instance

as a universe for a particular kind of mathematical discourse. Such a universe is

determined by specifying a certain kind of objects, and a certain kind of. arrow thaL
links different objects."

Definition L. A category C is specified by a collecti,on obC, disjoint sets C(A,B)

for A, B €. ob0, and, an associatiue operation o, such that (i)(f o g) is defined for
g e C(A,B), f e C(C,D) if and only if B:C; (ii) for each A e obc, there erists

leç.C(A,A) such that fte" f ) 
- f and (5" Iù : g, wheneuer the compos'i,tion is

defined.

2.2 Functor

A functor is a mapping from one category to another that preserves the categorical

structure, that is, it preserves the property of being an object, the property of

being a morphism, the typing, the composition, and the identities. Functors are the

mathematically type of transformation between categories, and form a categorical

tool to deal with structured objects.

Definition 2. A functor F:C ---+ D for the categories C and D maps obQ into

obD and sets C (A,B) into D (FA,FB) such that 'it preserues (i') uni,ts, that is, 7rA :

F(Io), for each object of C; (ii) cornposition, thatis, F(to g) : (Ff o Fg), wheneuer
( l" i l isd,ef ined,.

2.3 Comma Category

Following (Goldblat, 19s6 [8]), commâ category can be thought of a particular

kind of arrow categories (categories denoted by C* whose objects are all the C-

morphisms, for a given category C), in which the arrows have a fixed domain or

codomain.

Definition 3. Let C be a category, and B any obiect of C. The comma category

C + B is the category of objects ouer B such that it has C-morphisms with codomain
B as objects, anil as rnorphisms Jrom f : A -+ B to g : At ---+ B the Q-morphisms
lc: A ---+ A', where gok: f .

2.4 Tbeory of Universals

The Theory of Uniuersals due to D. Ellerman (1988 [7]) is originally concerned to
explain many of the ancient philosophical ideas about universals, such as: (1)the

Platonic notion that all the instances of a property have the property by virtue of
participating in the universal, and (2)the notion of the universal as showing the

essence of a property without any imperfections.

339



The notion of uniuersalrfy is fundamental to the category theory. The founda-
tional role of category theory is to characterize what is important in mathematics by
exhibiting its concrete universality properties. The concrete universal for a property
represents the essential characteristics of the property without any imperfections,
and category theory provides the concepts to stress the universal instance from
among all the instances of a property. All the objects in category theory with uni-
versal mapping properties such as limits and colimits (see, for example, (Barr and
Wells, 1990 [2])) are concrete universals for universal properties. Thus the universal
objects of category theory can typically be presented as the limit (or colimit) of a
process of filtering out to arrive at the essence of the property.

Definition 4. A mathernatical theory is sai,d to be a theory of universals if it con-
tains a binary relat'ion p, and an equ'iaalence relat'ion = so that with certain properties
F there are associated entiti,es up satisfyi,ng the following conditions: (i,) universal-
ity: for any r, (, tt ur) i,ff F(r), and (ii) uniqueness.' if up and,u,'p are uniuersals
for the sarne F, then up x u'r.

A universal t.tp is said to be obstroci if it does not participate in itself, i.e.,
- (ur F up). Alternatively, a universal up is concrete if it is self-participating, i.e.,
ur F up.

2.5 Set Theory: Theory of Abstract Universals

Set theory readily is qualified as a theory of abstract universals. The universal rep
resenting a property F is the set of all elements with the property: up : {r I f (r)}.

The participation relation is the set membership relation usually represented by
€. The universality condition in set theory is the called the (naive) comprehensi,on
atiom: there is a set y such that for any r, r € y itr F(r).

Set theory also has an ertensionali,ty ariom which states that two sets with the
same members are identical: for all n, (r e y itr r e g') implies y: y'.

The naive comprehension axiom lead to inconsistency for some properties, yield-
ing contradictions such as Russel's Paradox. Thus, set theory cannot qualify as a
general theory of universals.

2.6 Category Theory: Theory of Concrete Universals

For the concrete universals of category theory, the participation relation is the
uniquely-factors-through relation. It can always be formulated in a suitable cate-
gory as: ", l" It" means "there exists a unique arrow t ---+ LL" .

In the universality condition it has that, for any r, (x pu) itr F(r).
The existence of the i,dentity arrow to u is the self-participation of the concrete

universal which corresponds with F(u), the application of the property to z.
In category theory the equivalence relation used in the uniqueness condition is

the isomorphism.
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Making a comparison, category theory as the theory of concrete universals has
quite a different flavor from set theory, the theory of abstract universals. Given
the collection of all the elements with a property, set theory can postulate a more
abstract entity, the set of those elements to be universal, while category theory must

find its universals among the entities with the property.

3 Optimisation Problems Categories

In this section a categorical approach to optimisation problems is presented in such
way that the notion of. reducti,on from a problem to another one appears, naturally,
in the conceptual sense of rnorph'ism between two objects. Reductibility provides
the key-concept to this approach. The recognition that the only structure that an
object has is by virtue of its interaction with other object leads to focus on struc-
tural aspects of optimisation problems. A preliminary and short version of this idea
appeared in (Leal et. al., 2000 [12]).

The introduction of an appropriate notion of reductibility between optimisa-
tion problems allows to formally state that an optimisation problem is as hard to
approximate as another one. In particular, the notion of approximation-preserving
reductictibility orders optimisation problems with respect to their difficult of being
approximated. Hard problems are the maximal elements in a class, with respect to
this order, and capture the essential properties of that class. In this sense, NP-hard
problems are uni,uersal to NPO class.

We assume that the basic concepts of computational complexity theory are fa-
miliar. We are following the notation of Garey and Johnson (1979 [6]), which is
universally accepted, as such as the known books by (Ausiello et. al., 1999 [1], Bovet
and Crescenzi,1994 [3], Papadimitriou, 1994 [15]). In the following, we briefly review
the basic terminology and notation.

3.1 NP-Optimisation Problem

On the analogy of the theory of NP-completeness, it there has been more interest
in studying a class of optimisation problems whose feasible solutions are short and
easy-to-recognize. In an optimisation problem, one is given an instance to which
a finite set of feasible solutions is associated. A properly defined measure function
attributes an integer cost to any such solution, and the goal is to find a feasible
solution of optimum cost. Hundreds of natural problems from Computer Science,
Operations Research and Engineering (but also Discrete Mathematics, Theoretical
Physics, Molecular Biology,...) are formulated in this way.

Definition 5. An NP-opti,mi,sati,on problem p i,s a triple p - (1, S, Opt), such that
Opt: (I,S) ---+ Z+, where: (i)The set of instances I is recognizable in polynornial
ti,me; (ii)Giaen an instance r of I, all the feasi,ble solut'ions of r belongi'ng to the
set S* are short, that is, a polynomial p erists such that, for any U € S,,y < p(r).
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Moreouer,it is d,ecidable in polynomial time whether, for any r and for any y such
that y 1 p(r), y e 5". (iii)The objectiue tunction Opt is computable in polynomial
time.

Deffnition 6. The.lùPO class is the set of all NP-optimisation problerns, and, the
PO stands to the class of NPO problems that admi,ts a polynom'i,al algori,thm to find,
their opti,rnum s olution.

Similarly to "P:NP?" fundamental question in Computational Complexity, also it
is not known whether "PO:NPO".

By means of the notion of reductibility between optimisation problems it is
possible to define hard,ness to NPO class.

3.2 Reductions

In general, within complexity theory, a reduct'i,on from a problem A to a problem
B specifies some procedure to solve A by means of an algorithm solving B. In the
context of approximation, the reduction also should guarantee that an approximate
solution of B can be used to obtain an approximate solution for A.

Definition 7. .4 reduction between the optimization problems p : (1, S,Opt) and
9 = (1', S',Opt') 'is a pa'i,r of polynomi,al time computable functions (f,g), where
f , I ---+ I' and 9 : (I' ,,S') ---+ (I, S) are such that the diagram in the figure 7 com-
mutes.

(L s)

-l
I
Z+

Fig. 1. Reduction between Optimisation Problems

The meaning of that diagram commutes is that, in order to obtain the optimum
solution for the problem p, it is possible firstly to reduce the problem p to the
problem q, and secondly to solve the problem q. The solution obtained will be the
same solution given by some procedure which solve the problem p directly.

f
-+.-

c

reducao............-...--.'
( te )

id

(I" S')

I
lo*'
I
I
I
Z+
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Reductions are defined in such way that they are composable and they satisfy

transitiuity and refleriuzfg properties. Two problems âre said polynomiallg equ'iualent

whenever they reduce to each other. It follows that a reduction defines an equivalence

relation, and thus it imposes a partial order on the resulting equivalence classes of
problems.

Definition 8. Giuen a reduction, an NPO problemp i,s said to be NP-hard respect

to that red,uct'i,on, i,f for all NPO problems p' we haue that p' reduces to p.

It is important to observe thal hardness means different things to different peo-

ple. As a matter of convenience, the theory of NP-completeness was designed to be

applied on decision problems. To other kind of problems, such as optimisation prob-

lems or those problems not belonging to the NP class, should be used the hardness

term. On the other hand, hard and complete problems are defined for aII kind of
problems. Let p be any class of problems and x a given reduction. A problem p is

said to be phard if for all problems q irL p it ha^s q o( p. A phard problem p is said

to be 6>complete if in addition p is in p.
An approximation-preserving reduction is defined as a reduction between op

timisation problems adding some conditions that guarantee some property related

with approximation.

Deûnition 9. ,4 approximation-preserving reduction between the NP optimizat'i'on
problerns p : (f, S,Opt) and q: (I',5',Opt') is a triple of polgnornial-t'ime com'
putablefunct ions(f  ,g,c),  where T , I  ---+ I ' ,  g:  ( I ' ,5 ' )  -+ ( I ,S) andc" Z+ ---+ Z+

are such that the correspond,ent diagram commutes.

(r, s)

reducao
(l e, c)

c

Fig. 2. Apprordmation-preserving Reductiou

Here is introduced a function c, which role is that of preserving the quality of
approximation. Depending on the imposing relation between quality approximation
of problems, several different approximation-preserving reduction have been defined
in the last fifteen years, according tevisan (1997 [20]).

{
Z+

f
....+
<- i;;; i

il"-i
ili
r:l i
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3.3 OPTS Category

The polynomi,al time soluble optim,isation problem category OPTS has PO optimi-
sation problems as objects and reductions between optimisation problems as mor-
phisms.

Theorem l. OPTS is a category.

Proof. S\nce reductions are defined as computable functions satisfying the reflexive
and transitive properties, it has that identity morphisms are guaranteed by means of
reflexivity, and composition with associativity is obtained by means of transitivity.

After we have given a first step in the categorical approach with the definition of
the polynomial time soluble optimisation problems category, it is natural to pursue
in this direction, aiming at extending to NPO optimisation problems considered
intractable. Next, considering the notion of approximation-preserving reduction as
morphisms between optimisation problems, it is possible to define an wider category.

3.4 OPT Category

The optimisation problems category OPT has optimisation problems as objects and
approximation-preserving reductions as morphisms.

Analogously to OPTS category, is easily verified that OPT is really a category.

Theorem 2. OPT is a category.

Proof. Approximation-preserving reductions are defined as computable functions
satisfying the reflexive and transitive properties. Thus it has that identity-morphisms
and composition with associativity are guaranteed by means of reflexivity and tran-
sitivity, respectively.

Theorem 3. NP-hard problems are concrete uniuersals to OPT category.

Proof. Given a reduction x, let [/ a NP-hard problem respect to x. We have to
show that U is a concrete universal object for some participation relation p and a
equivalent relation nr, according to Definition 4. Let the participating relation be:
@ p U) iff (p x [/), where F(p) :- "p reduces to (J" , and the equivalence relation ny
the polynomial equivalence relation defined in terms of the reduction oc.

It has that, U satisfies the universality condition, by NP-hard problem definition,
that is, for any NPO-problem p, (p p, U) îtr (p o U). Also, since the reduction induces
an equivalence relation, it has that if [/' is also a NP-hard problem, then U x [J'
anà U' x [/, that is, U is polynomially equivalent to U'. Therefore U is a concrete
universal object to OPT category, which concreteness condition corresponds to the
reflexivity property of reduction.
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4 OPTS Category x OPT CategorY

Having defined both the polynomial time soluble optimisation problems category
and the optimisation problems category, the next step is to identify the relationships
between them. We start from these basic questions:

1. How do OPTS and OPT categories interact with each other?
2. \Mhat does it mean to say that a problem A "approximates" an optimisation

problem B?
3. What is it understood by the "best approximation" for such an optimisation

problem?

The goal is now to provide mechanisms for the comparison between such cate-
gories. This will lead us to the categorical shape theory. A first version of this idea
is showed in (Leal et. al., 2001 [14]).

4.1 Categorical Shape Theory

Very often we wish to find a mathematical model of a structure in order to explain
its properties and predict its behavior in different circumstances. Related to the
approximability issue to optimisation problems, it is likely that the categorical shape
theory would be such a model. It does provide a comparison mechanism to establish
the meaning of an approximation system, identifying the universal properties in
the category theory sense, in order to describe how an object "best approximates"
another object. This section has been motivated from previous works by Rattray
(1994 [16], 1995 [17]). The basic idea of categorical shape theory due to cordier
and Porter (1990 [4]) is that, in any approximating situation, the approximation are
what encode the only information that it can analyze.

In the context of categorical shape theory it has:

1. a category B of objects of interest;
2. a category A of archetypes or model-objects;
3. a "comparison" of objects with model-objects, ie. a functor K : A, ----+ B.

Roughly speaking the idea behind categorical shape theory is that recognizing
and understanding an object of interest B via a comparison K : A ---+ B requires
the identification of the corresponding archetype A which best represents B.

Definition LO. Gi,uen category A of archetypes, category B of objects of interest,
and a compaTison K: A1B, an approximation lo an object B i'nB is the pai'r

$,A), where A in A. is an archetype and' f : B ----+ KA.

Amorphismbetweenapproximationsh: (/,4) --+ (s,A') isamorphismlt": A---+ A'
of the underlying archetypes, such that K(h)of - L ie.the triangle
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A'

, K A

/l
B/ I  *nr
\ l

\l
KA'

commutes.
Approximations with their morphisms form a category B tr K, the comma cat-

egory of K-objects under B. The cone-like form of the morphisms in B giving the
approximations for some object B, suggests that taking the limit object of the di-
agram would result in an archetype A* "as near as possible" to B. See figure 3
below.

/t\
/ 'l \

*o/-J J*"
Ki Kj

Fig. 3. Approximations to B

The notion of "most closely approximates" is given by a universal object.

Definition ll. Let K : A' ----+ B be a comparison functor. An archetype A of
A is said to be K -wiversal for an object of interest B of B if there erists an
approrimation (f ,A) to B such that, for each approrirnation (g,A,) to B, with A,
in A, there erists a unique morph'ism h: A-+ At in A with g: K(D"f .

Definition 12. Category A is said to be K -universal in B i! euery object oJ interest
of B has a K-universal archetype i,n A,.

4.2 Connections with OPTS and OPT Categories

In the scenario of categorical shape theory, we may consider the OpT category
as the category of objects of interest B, the OPTS category as the category of
archetypes A, and K: OPTS---+ oPT would be a comparison mechanism related



to an approximation method (for instance by using the relaxation). Through this
theory it is possible to identify the best approximation to an optimisation problem

B, if it exists. In fact, the existence of optimisation problems not allowing any kind
of approximation makes the proposition below consistent.

Proposition t. OPTS category 'is K-un'iuersal in OPT if and only if PO:NPO'

4.3 ApproximationsCategory

In order to characterize approximation degrees by means of categorical shape theory,
the basic idea is the construction of a system approximation to each optimisation
problem using limits (or colimits). A limit construction provides a meâns of forming
complex objects from patterns (diagrams) of simpler objects. By using colimits, a
hierarchical structure can be imposed upon the system of approximation.

Definition 13. Gi,uen a comparison functor K: OPTS-+ OPT and an opt'imiza-
tion problern B in OPT category, an approximation problem to B in OPT is the
pair (f ,A), where A in OPTS d,s a polynomial time soluble optimization problem
a n d f : B - - - + K A .

In this ca,se, the comma category of K-objects under B give the approximations
for the problem B.

In this direction, other properties are being investigated at the present moment,
regarding some aspects of categorical shape theory which have not been dealt here.

5 Conclusion

The main objective of this work is to develop a formal theory to approximative al-
gorithms, considering them as a feasible alternative to intractable problems in such
way that integrates the Structural Complexity's conceptions to the fundaments of
suitable semantic model. The recognition that the notion of reductibility between
problems substantiate in a specialization process of Category Theory, led to an in-
vestigation on structural aspects of approximation classes through of categorical
approach, focusing over the approximation preserving reductions between optimisa-
tion problems.

Category theory provides basic notation and a universal language for explaining,
investigating and discussing concepts and constructions from different fields, in a
uniform way. It allows this from a viewpoint different to that of set theory in which
an object is described in terms of its "internal" structure. In categorical terms the
only structure that an object has is by virtue of its interaction with other objects,
described in terms of "external" features. Through categorical approach we have
improved our understanding and development of many concepts within structural
complexity related to approximation for optimisation problerns. Theory of universals
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ha"s provided a mathematical foundation to explain basic universal elements from
complexity theory in an elegant way.

A comparison between OPTS and OPT categories has been motivated from pre-
vious work by C. Rattray (1994 [16], 1995 [17]), based on categorical shape theory.
The study that we have started in this paper is an attempt in this direction. Along
this line, a number of important questions remain to be studied, and we think that
in order to establish connections among optimisation problems and their approx-
imability properties, it may be fruitful to find relationships with other results drawn
from other approaches, at the same level ofabstraction, such as the one developed in
(Rattray 1998 [18]). The work is still on-going and involves many aspects of categor-
ical shape theory. The study of approximation hierarchy to optimisation problems
identifying problems with intermediate degrees is in order for further works.
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