
Software for Simulation of Anticipatory Production Systems

Ivan Krivy*, Eugene KindlerT, Alain Tanguyt
* Department of Computer Science, Faculty of Sciences,

Ostrava University, CZ - 70103 Ostrava 1, 30. dubna 22, Czech Republic
F ax: +420-69-6120 478; e-mail : krivy@osu.cz

l Department of Mathematics, Faculty of Sciences,
Ostrava University, CZ - 7Ol 03 Ostrava 1, 30. dubna 22, Czech Republic

F ax: +420-2-2191 -4323 ; e-mail: kindler@ksi.ms.mff.cuni.cz
rmlOS CNRS FR.E 2239, Université de Clermont-Ferrand II

Complexe scientifique des Cézeaux, F - 63177 Aubière Cedex, France
e-mail : tanguy@isima. fr

Abstract
Two modes of weak anticipation are applied to production systems. When such a
system is being designed both the modes interact. If simulation support is applied, the
interaction causes that a system with simulating elements is simulated, i.e. one meets
nesting simulation models. In other words, when we anticipate the system existence we
should take into account the fact that anticipation will exist in the system during its
operation stage. Although the essential problems related to the nesting of simulation
models have been solved, some obstacles remain. They are rather of a psychological
character and they can exist during the design of any system. For the branch of
production systems, they are diminished by a simulation system REFLECTIVE QNOP,
the principles ofwhich are described in the present paper.
Keywords: Anticipation of anticipating systems, Simulation nesting, Object-oriented
programming, Anticipation in technology, QNOP.

I Development of technolory - Decomposition of Abilities

1.1 Things as Elements of Systems

The systems are composed of elements. An element can be present in the system
during its whole existence; such elements are called permanent elements or statians.
The other elements are called transactions; they can enter a system after the start ofits
existence and leave it before the conclusion of its existence. It is natural to view the
elements as images of the physically identifiable things that have their portions of
"materia prima", their volume, their instantaneous position etc.

Although many persons who have use of system viewing in their professions do not
explicitly express what we have just stated and although the above mentioned
"Aristotelian" aspects of the elements of the systems often disappear from the conscious
abstraction of such persons, many technical, social and biomedical branches are based
on the described conception and only in special boundary cases the elements of systems

International Journal of Computing Anticipatory Systems, Volume ll'2002
Edited by D. M. Dubois, CHAOS, Liège, Belgium,ISSN 1373-54f 1 ISBN 2-9600262-5'X

are viewed as images of entities that are not material things. Maybe physics made the
greatest step out from that manner, but the engineers can complain that the more distant
is that abstraction from the Aristotelian point of view the lesser relation between the
results and possible applications ofthem exists.

1.2 Things as Configurations of Abilities

We can observe that the physically identifiable things have abilities. The things are
able to do something. For instance, a laboratory desk has an ability l,l to sustain some
things on its surface, an ability A2 to contun some things in its inner and an abllity A3
to occupy a certain portion of space. Aa ironing plate has abilities AI and l3 and fails
to have A2,but has another ability l4 to serve for ironing. A bookcase has abilities 12
md A3 but has neither AI nor 14. (Note that the system viewing is applied in
professional activities - for example by designers of flat interiors or by heads of
laboratories - and such variants lie to iron at a laboratory desk or to perfbrm chemical
experiments at an ironing plate are out oftheir abstraction, contrary to the fact that they
are possible.)

other examples of abilities are those of humans - writing, speaking, walking, eating,
beating, thinking etc, Humans have no abilities like flying or producing honey, though
certain animals have them. Note the animals have some abilities similar to those of
humans - eating or walking. Since the old times humans have used tools to get more
and better abilities. In a certain way they have formed strucfures,S : <P,D (where P
was a person and I a tool) that operated in the same environment and context as P
should have to operate, but with abilities of I which were better than those of P or
which P did not possess. A couple man-horse or man-cudgel illustrates this matter.
Instead of a single tool, a set of several tools can be present (man-horsel-horse2-
carriage, man-sword-shield-armor).

1.3 Abilities of Technologr Products

Yesterday the tools were things existing in the nature - non-living materials, plants
and animals - and their configurations (for instance caves and lakes). The technology
progress can be characterized by their replacement by artificial objects. Nevertheless
those objects have an essential property - their designers tried to produce them as
optimal structures of such things carrying the demanded abilities.

Evidently, an instrument ,S composed of things Ri (i : l, ..., n),R; having abilities l;;
(i= 1,..., &i) is often constructed for offering a rather small subset of these abilities.
Moreover, some abilities are applied only in some situation but must always be
managed and paid. An example is a truch viewed as a pair of abilities to move (HI) arrrd,
to carry material (H2) If it is loaded or unloaded its ability to move exists but one has
no use of it.

ln such a case the technology tends to produce a greater number of"simple" tools,
i.e. with small numbers of abilities and offers them to the users, expecting them to
combine the simple tools in configurations suitable to certain tasks and situations. The

321

mentioned truck example can serve as an illustration of that development: its ability to
carry material was transferred to container and its ability to move \ilas transferred to
container carrier. Ifa container waits to be loaded or unloaded the carrier can be used to
move and carry other containers.

The decomposition can be characterized as an essential aspect of the modern
development of technology. It can be met so far from logistics as in programming: as an
example we can present a decomposition of block: it was originally considered as
having two abilities - that to have "local" entities (variables and subroutines accessible
only inside it) and that of being "nested" (included) in another block @ackus et al.,
1960; Naur, 1963); but then the abilities were separated so that the first one was
connected withprocess (Buxton, 1968) and the second one with compound statement.

2 Abilities and Object-Oriented Programming

2.1 About Object-Oriented Programming

Object-oriented programming (further OOP) of computers is based on knowledge
representation and their use in producing program products. Its essential properties are
as follows:

2.1.1 general concepts are represented as ctcsses,

2.1.2 a class has its name, its attributes and its methods, and - in some OOP tools like
Simula (Dahl, Myhrhaug, and Nygaard, 1968; Simula Standard, 1989), Beta
(Madsen, Msller-Pedersen, and Nygaard, 1993), Java (Eckel, 2000) and ModSim
(Hening, 1990) - its life rules; the methods and the life rules have a form of an
algorithm (a subroutine);

2.1.3 individuals that can influence the computing process (i.e. models of things that
realize the concepts) are called ohjects and are generated asinstances ofclasses,

2.1.4 any instance of a class has its own attributes as they have been introduced in the
class; they reflect the properties ofthe instance;

2.1.5 any instance of a class is able to perform any method introduced for the class, in
case it is demanded by an object to do it; the demand is called message. It
contains the object that is demanded (called addressee), the name of the method
that the addressee should perform (called selector\ and sometimes parameters;

2.1.6 in case a class contains life rules they are performed by an instance of the class
immediately after it is generated;

2.1.7 the instructions to generate a new instance of a class can be present in the
formulations of the methods and of the life rules; according to the instructions,
new instances can be generated by any object when it performs such a method or
life rules;

2.1.8 if life rules are admitted by an OOP tool, they can obtain messages; thus an
object can turn to itself to do a method (in that case the object uses the method as
its own subroutine) or it can turn to another object;

322

2.L.9 if life rules are admitted by an OOP tool, they can interrupt their performing in
the computing process and transfer the computer run to the life rules of other
objects - so a parallel existence of things can be modeled at a monoprocessor
computer; it has an essential importance for computer simulation; the instruction
for intemrpting the performing of the life rules is called sequencing statement;
the set of objects that can mutually transfer the computing control one to the
other by using sequencing statements is called quasiparullel systern;

2.l.lO the sequencing statements can be present in the methods too; suppose an object ./
performs its life rules, sends a message to an object K to perform a method M
and suppose that K, performingM, meets a sequencing statement; in such a case,
an object (named K) causes the intemrption of the "active phase" of another
object (named.I);

2.l.ll aclass C can be used as aprcflr for another class D; that means the relation'.D
is C' (e.g. "dog is animal", "lathe is machine", "car is a transport tool") and is
interpreted so that the instances of D "inherit" all attributes, metiods and
possibly life rules introduced for C; D is called srôclass of Ç or specializtlion
ofq

2.1.12 it is possible to add any attribute and method when a subclass D of a class C is
introduced; the instances of D have these attributes (together with those
introduced for C) and are able to perform any method introduced for class D or
C; nevertheless:

2.1.13 in a subclass, it is possible to "redeclare" the meaning of a method introduced in
its prefix; such a method is called vûnual;

2.1.14 a subclass D of class C can be used as a prefix for introducing another class.E; so
we can introduce "trees" of classes - similarly as in Liné's classification of
living organisms; if E is a subclass of D, D is a subclass of C etc., then the
sequence {8, D, C, ...1 is called preftx sequence of E; the meaning of a virtural
method can be redeclared several times in such a prefix sequence; the
consequence is that when an object sends a message to perform a virhral method,
the addressee self decides what it should do: it looks for the nearest
(rQdeclaration of the method in its prefix sequence.

The possibility mentioned in 2.l.ll enables to compose very complex knowledge
systems and to apply them to model very complex situations. It can be popularly said
that the specializations can be cumulated so that from such a moment only the computer
knows what attributes and methods belong to particular objects. The possibility
mentioned in 2.1.10 enables to simulate very complex systems but carries problems
discussed in section 4.

2.2. Programming Languages lYith Three Orientations

The principles of OOP started by the proposal presented in @ahl and Nygaard,
1968) and by the implementation of it in the language of Simula (Dahl, Myhrhaug, and
Nygaard, 1968). The name object-oriented programming did not exist. It was introduced

323

in the 80-ies, when OOP was accepted by the world programming community and used
as the best method of making software products; so it has been used and preferred until
nowadays. The reasons of that situation are that - beside the possibility to model very
complex systems - the OOP enables to implement specialized programming languages
tailored to application branches, i.e. to certain classes of programming tasks; zuch a
language can be made so that it uses a similar terminology as the specialists of the given
branch use outside computer programming.

The programming tools (languages) inspired by Simula - among them the most
popular SmallTallq C+-r and Eiffel (Meyer, 1989) and several tens of languages derived
from them and from LISP - did not allow their users to include life rules and quasi-
parallel systems. Therefore the life rules and quasi-parallel systems are in general not
accepted as necessary aspects of the OOP: they relate to the concept of agent,
introduced into the programming practice at the end of the 90-ies as a certain
component that has its own existence during that it can '\ratch its environment
(containing other agents), evaluate it, decide about its own reactions to the
instantaneous situation and realize the decision'. So we can say that Simula, Bet4 Java
and ModSim are not only object-oriented languages but agent-orienledones, too.

The concept ofblock, mentioned at the end of section 2.1, has been already known
since the end of the 50-ies and perfectly introduced into the programming language
ALGOL 60 designed by an international commission (Backus et al., 1960). In 1966 it
was accepted into the first design of Simula and did not abandon it. Simula is therefore
also abloch-ortentudlanguage. At the beginning of the 70-ies, the concept of block was
criticized by the theoreticians of the structured programming (programming technology
that seemed to be good in that time). Later appeared that the blocks make no obstacle
for the structured programming. Moreover, the structured programming was abandoned
because of the qualities of the OOP (Meyer, 1989). Nevertheless the condemnation of
the blocks entered so deeply into the means of the designers of programming languages
that the concept of block offered to the users of new programming languages returned
only in Beta and Java (ModSim is not block-oriented).

Let the programming languages that are simultaneously object-oriented, agent-
oriented and block-oriented be called, languages with three ortentdions, shortly o3-
languages. Simul4 Beta and Java belong to them. The three orientations imply that in
the life rules of a class C a block B can occur in which classes are introduced as its local
entities. When an instance K of C influences the computation according to the life rules
of C and enters block ,B it presents a model of a being that 'thinks", using the abstract
concepts represented by the classes local in B. This "thinkingl' phase of the K's life
exists during the computing points into B. As soon as the computing leaves B, K forgets
all what could be expressed by the concepts represented by the classes local in B. The
thinking phase ofK can also be interpreted as a modeling phase - using the instances of
the classes local in B, K handles a certain model which exists and which can be
developed when the computing does not leave B. So K can be viewed as a human
having a computer on which he handles models and according to them makes decisions
about its future behavior. Similarly, K can reflect a machine facilitated with a computer

324

that in certain phases uses models and according to them controls the machine. Shortly
said, when.K enters B it becomes a modeling agent.

2.3 The First Experiences lvith Object-Oriented Programming and Abilities

One can meet rather recent definitions of agents (Schmidt, 2000; Savall et al., 2001).
They surprise so that they do not distinguish between computer software components
and somethiîg that exists independently of them (e.9. agents that are computers in a
computer network) or even independently of computers (e.g. in a factory, machines and
workers are viewed as agents). From one point of view it reflects the contemporary
programming practice in which one tries to describe the modeled reality and hopes the
description to be automatically translated into the corresponding computer model. But
from another point of view, one can see the definitions as conserving the abstraction
that a system element (in our case an agent) exists as a physically identifiable thing (see
the beginning of section l.l). Sometimes it is very explicitly expressed by emphasizing
the mobility of agents (Schmidt, 2000).

Although the OOP offers tools to express the properties of such viewed things it is
not limited to it. By means of the same tools it is possible to express the properties of
abilities and their configurations. The first attempt oriented to a commercial application
\ilas met in relation to a simulation of material flow systems in agricultural farms
(Kindler, 1983).

At the beginning we met systems with permanent elements like stores, fields and
roads and with transaction like trucks, sowing machines, combine harvesters and belt
conveyors. tile began to simulate such systems, using Simula that appeared an OOP tool
suitable for simulation. But after a lot of simulation studies we met systems using more
modern tools, like containers and trucks with special unloading facilities (dumping faci-
lity, manure dispenser). We discovered that the concepts of the new tools had many
common properties with similar concepts we used before, but sometimes the concepts
were surprisingly limited. As an example we can present a container as a concept
similar to that of a store, but without its connections to access roads, or a container
carrier as a truck but without its own ability to carry material (and with its special
ability to carry a container). Nevertheless, sometimes the properties were "inherited"
from more than one of the original concepts, like in the trucks with dumping facility or
with manure dispenser: to the properties of a conventional truck an unloading ability
entered and was similar to that of belt conveyor for the damping facility (the time of
unloading depends on its rate and on the size of the material placed in the truck) and to
that of sowing machine in case of the dumping facility (the time of the unloading is
either a constant or a random value, anyway independent ofthe size ofthe unloading
material, the rate is meaningless).

We discovered what is expressed at the end of section 1.2: the traditional tools
(viewed as physically identifiable things) are configurations of abilities and the modern
tools can be seen as new configurations of the same (or of similar) abilities. As an
examplg we can present the table I similar to that published in (Kindler, Chochol, and
Prokop, 1983); it demonstrates the use of some abilities to compose structures

325

corresponding to physically identifiable things. The heading in the bold letters presents

four names of abilities. Moving is the ability to change place, Serving is the ability to
load or unload a container or a tnrck, Box is the ability to contain material and lTaiting
is the ability to'r 'ait in queues. Note that although the connection of words waiting and
ability may sound a bit ironical, the waiting in queues is to be considered in that way
because the data of waiting in queues are often important information on the use of
resources and only computer simulation can give them.

Tabte 1: structures of abilities - an example

Usually a conventional truck has two of such abilities because it can wait for loading
and for unloading and the purpose of simulation demand to get separate data for each of
the cases. A usual container has even three abilities to wait in a queue: besides the
waiting for loading and unloading it can wait to be canied. The usual combine
harvesters wait only for being unloaded, the usual sowing machines wait only for being
loaded and the belt conveyors are commonly viewed as waiting for any work that is no
further structured (but it is clear that the "unusual" belt conveyors can be very simply
considered by adding another ability to wait).

An opinion can arise that the abilities can be represented as methods. An experience
tells that such a case is rather rare. The abilities are composed of attributes and methods
and sometimes have life rules. It can be observed at the heading of Table 1. For
example, the ability of moving has several attributes, among them a list Trace of places,
along which a truck has to move, and a certain "teader" of the trace, called Place,
because it really identifies where an element with the given moving ability is being. The
ability Bor has two attributes - Volume of the material actually placed in the element
having that ability, and Capacity (maximum possible value of Volume), and two virtual

\ilities
Structures\-

Moving
Trace, Place,
MakeStep,...

Serving
Portion, Tserving,
Regeneration, . . .

Box
Volume, Capecity,

Empty, Full,...

Queuing
Tstart, Tspent,
Enter, Leave,...

Conventional truck 1 1 2

Special truck 1 1 1 1

Container 1 3

Container carrier 1 1

Storage 1

Belt conveyor 1 1

Gombine harvester 1 1

Sowing machine 1 1

326

methods Full and EmpU telling whether the element is full/empty. Note that in a
commercial case Full can mean "almost full" (to wait for loading into the remaining
empty space would not be economical), and - similarly - Empty can mean "almost
empty'' and both the fuz.zy expressions must be algorithmically formulated. The ability
to wait in a queue has two attributes Tspent (cumulated time spent in the queues) and
Tstwt (for storing the moment of entering a queue) and two methods Enter and Leave
that correspond to entering a queue and leaving it, but they must handle the mentioned
attributes in order to compute the cumulated waiting time.

From the other point of view, although the abilities don't need to be identical with
physically identifiable things their configurations must be so and therefore some
abilities are to be considered as carrying some "materia prima". Let us call them
noferùally sapported abilities. They are meaningfully connected with the other abilities,
because they must form elements that we view as physically identifiable things.
Therefore there must be comnunication abilities that realize that. Other communication
abilities realize a communication that we see among the physically identifiable things.
In some methods of the communication abilities, certain laws must be respected, which
correspond to general principles and laws of logic, mathematics and natural sciences.
Let us call them (rather metaphorically) logic rules.

In the computer simulation studies oriented to material flow systems, which were
mentioned in the present section" it appeared that a differentiation among the materially
supported abilities and the communication ones is not necessary. Nevertheless in the
recent times the differentiation appeared is very suitable, as it will be presented in the
next section.

3 Simulation and General Viewing to Production/Logistic Systems

3.1 A Systematic Handling With Abilities

What was described in 2.3 can serve as an illustration of the "prehistory" of the
ability analysis and as simple and transparent example that could introduce into the
studied matter. The old attempts rilere not systematic and rather chaotic; one of the
reasons of that situation was that things of different character have very different
abilities - for instance the abilities of a human considered as an object of a medical care
are in general very different from those of a car with a dumping facility or from those of
the economic development of a continent.

The systematic research is possible when it is limited to a certain branch that is
sufiiciently reduced to systems composed of elements with similar abilities; naturally
there is another pressure to the research, namely from the commercial application: it
demands the branch to be as large as possible in order the results would be applicable in
a rather great cases.

The best fruits in that direction \ilere accessed by analysis of productior/logistic
systems (further PLS): the results were presented e.g. in (Gourgand and Kellert, 1991;
Gourgand, Grangeon, and Norre, 2001; Tchernev, 1997). They show that it is
convenient and effective to view any PLS as a system composed of three subsystems:

327

the physical one, the logical one and the decision one. Shortly said, the physical
subsystem contains the materially supported abilities, the logical subsystem contains the
communication abilities liable to the logic rules, and the decision subsystem contains
abilities for expressing the intended decisions. If a system ,S is being designed the
abilities of the decision subsystems of the variants of ^l can be more or less
independently introduced in the variants (e.g. in order to discover the optimal variant).
In the analysis (and in the simulatiorL too) of the variants, the separation of decision
subsystem from the logical one allows to separate the material base of S, which is often
supposed not to be modifïed, from the control of it. (Note that the optimal control is
often the main task of the analysis and simulation of a PLS.)

3.2 Simulation System QNOP

The viewing on the PLS mentioned in 3.1 was applied in several software products
(programming environments for analysis and modeling of PLS). A QNOP simulation
system is among them (Tanguy, 1993). It was implemented as a set of classes written in
Simula. Simula itself allows putting classes into another class (called nmin class) and
therefore the mentioned set was put into a main class called QNOP.

Although the classes contained in class QNOP may seem very rich and complex,
after a certain analysis one can discover that the global structure of them is rather
simple: they perform certain cycles composed of couples of one complex activity and
the following waiting; it conesponds to the discrete event interpretation of the real
world process (Kindler, 2001) and to the fact that all QNOP classes represent permanent
elements. The elaborated objects are not permanent elements but they have no life rules.
The permanent elements of PLS are investments (machines, conveyors, stores,

Fig. 1: an example - simple machine

328

signalizing tools, etc.) and their abilities. One can accept without any professional
analysis the idea that such an element has some working cycle. Let us present a short
example in Fig. l.

A simple machine Mworks in the following way. It handles an object called served.
Its elaboration takes some time. After served has been elaborated it is sent to next, i.e. to
an investment (machine, store, transport etc.) performing its further elaboration and the
first object waiting in the queue is taken to be elaborated - therefore it becomes served
and the cycle is repeated. When the queue is empty M must wait. C represents the event
when an object is sent to M ftom another investment. ln case M waits (i.e. if served does
not exist) it is activated to continue, if Mworks (i.e. if served exists) the coming object
must wait in the queue. The life rules ofMcan be described as an algorithm. We can see
that it contains only two waiting phases; they are marked by doubleJined boundary in
Fig. l .

Note that the simple global structure of the life rules cycles has an important role in
the solving of the problem, which the following section is dedicated to.

4 Psychological Problems of Reflective Simulation

4.1 ReflectiveSimulation

Computer simulation is a widely used tool for weak anticipation of the behavior of
systems whose states change in time that is considered as in Newtonian physics. By use
of simulation, it is possible to anticipate on a system that is designed (let us speak about
anticipation of the first type, shortly anticipation-I) or on a behavior of a system that
already exist (let us speak about anticipation ofthe second type, shortly anticipation-2\.

Simulation applied in anticipation-l could be called simulation-I; it tells the
designers what the designed system will do; simulation-l is able to anticipate about the
behavior of different variants of the designed system (differing e.g. by some numerical
parameters, or by machine number and/or configurations, or by control rules and/or
algorithms, etc.). The anticipation can concern a design of a totally new thing or a thing
developed from an existing thing by some essential intervention (addinglremoving/
changing machines or other investments, adding a new interface, changing the structure
of transport and/or the capacities of stores, changing control rules etc. The anticipatory
system is the designer team possessing and using the simulation model.

Simulation applied in anticipation-2 could be called sirrutlation-2; it is applicable
when we would like to anticipate the consequences of a certain decision on the behavior
of a system that exists. It can be used e.g. for anticipating the results of a proposed
medical therapy or for anticipating consequences ofdecisions generated in production/
logistic systems by non-simulation methods of operation research, like shortest path
computing or heuristical algorithms for production planning. Another example can be to
anticipate financial flows after a certain decision of financial resource handling.

Nowadays, almost every system S designed by humans contains computers that help
it to run. Often the computers use models for simulation-Z. Let us call them internal
models of ,S. When such a system is designed often simulation-l is applied. It uses a

329

simulation model that exists independently of the simulated system; let us call it

egernal modd of S.
In (Kindler, 2000), it was shown that in such a case the internal simulation models

should be nested inside the external one (otherwise either the external model gives bad
data for anticipating on.S, or the simulation-2 is not necessary for the anticipation-2 in.S
- but the experience shows that the second variant is not realistic). As the external
model reflects the same thing as the internal one (and often both the models are
described with the same formal language) we speak about retlective sitntlation

4.2 Psychotogicat Problems of Reflective Simulation - Introduction

In the same paper (Kindler, 2000) and in (Kindler, 2001) the logical and
programming problems of nesting models and reflective simulation have been presented
as well as their solutions. Nevertheless there is another problem, and its nature is more
psychological than technical. Let us introduce it.

In 2.1.9 it was mentioned that quasi-parallel systems enable the modeling of a
parallel world at a monoprocessor computer. It is the only suitable way for that purpose.
In section 3.2 it was shown that in simulation programming the scheduling statements
of quasi-parallel systems have a form of interruption that could be expressed as
statements "intemrpt the performing of the life rules until the simulated time accesses a
certain value" or "intemrpt the performing of the life rules until a signal comes telling to
go on". The first variant is called imperative (schedulîng) stalement and the other
variant is called intenogalive (scheduling) statement (both the variants are illustrated
in Fig. l).

Both the scheduling statements cause some complications when the internal model
should arise and run inside the external one. Let us outline them by means of an
illustration in Fig. 2.

Fig. 2: correspondence between the states of the mutually nested models

Suppose E is a life cycle of a component C (e.g. a machine or a conveyor etc.).
Suppose oi are scheduling statements and slepi are phases of the life rules without
intemrption by a scheduling statement. Suppose a signal arises in the external model to
generate and use an internal model M. In that moment C obviously must be in some
intemrption phase, i.e. performihg the scheduling statement or. WhenM is generated it

330

must have an image D of C. The image has similar life rules; in Fig. 2 they are

represented by "/. When the internal model starts to work D must be prepared to start
from the phase step-k That correspondence is represented by dotted lines in Fig.2.

Suppose C started from phase step-I when the external model starts. It does not

imply D to start from step-I: M starts from oz. Moreover, in one intemal model the
value of /r can differ from that existing in an internal model generated later. The
"starting index" fr changes dynamically for different internal models, namely according
to the state of C in the external model.

The last phrase offers a solution: every component C of the external model, which is
liable to some life rules, must carry its proper attribute - called e.g. state - and before
any scheduling statement the life rules must cause to assign a certain value for it. Every

Fig. 3: assignments for states in external model

scheduling statement must own its proper value of the state. (ln our example the value
of state can be for instance the index i of the following scheduling statement.) It is

outlined in Fig. 3, where oi* represents unordered pair of computing activities:
<assign i for state, perform scheduling statement oi>

The life rules (e.g. "l) occuning in the internal model are a bit different from those (e.g.
.E") occuning in the external model. They do not need to assign for state but they have a
jump to step-k according to the value of step of the corresponding element C of the
external model. The jump does not belong to the life cycle (see Fig. a).

Fig. 4: application of the state value

4.3 Psychological Problems of Reflective Simulation - Essence

Note that the life rules presented as examples at the preceding three figures are very
simple. A person who implements a reflective simulation model tends to describe life
rules with tens of phases separated by tens of scheduling statements. Moreover, he tends
to have the greatest use of the offered programming tools and thus he can apply calling
methods in the life rules and simultaneously he can include scheduling statement into
them. Let us present an example in Fig. 5.

331

switdt according fo Cb state

An element Nis able to perform a method F. Among the steps ofFthere is sending a
message to an element p, demanding it to perform a method G. A part of this method is
to apply a scheduling statement to the element that functions as "current", i.e. that is
performing its life rules. Suppose an element K sends a message to an element N,
demanding it to perform a method F (see an illustration in the first line of Fig. 5). Then

N, rnethod F:

Q, nethod G:

Fig.S: a more complicated intemrption by a scheduling statement

i/performs F (see the second line of Fig. 5) but it meets the calling of the method G,
performed by Q (see the third line of Fig. 5). There the computing meets the scheduling
statement oq and it causes an intemrption of performing the life rules of K(not of Q,
because it could have been intemrpted before and at another place than oq inside G).

Assume K to be intemrpted as it was just explained, and a necessity comes to
generate and let run an internal model. We see that the image of K in that model should
start its run from steyS (i.e. from the inside of method G), then to continue by returning
from G into method 4 there to continue by step-6 and finally to return to its own life
rules and continue by step-2. Therefore K should have not only one value of its state but
a stack (last-in-first-out list) of states, because it must make evidence in all its
hierarchical components it is using.

And in good programming of the manipulation of this stack" the psychological
problem lies. Every programmer may prepare external models with such a use of nested
calling methods, he does it with pleasure and then he must be enormously attentive to
reflect all the callings by the appropriate filling and emptying the stack of almost every
element. He must be so attentive that he does not follow it and repeats to make
programming erors: they are hardly identifiable (and so hardly reparable, too).

4.4 Solution - Enlarging QNOP

Theoretically, there are several ways to solve the described problem. One idea could
be to recommend avoiding the use of the object-oriented languages. But almost all
programmers and - especially the advanced ones - use them. (Note that people who
would like to implement reflective simulation models are advanced programmers.)
Another idea could recommend a rule prohibiting the calling of methods, even in case
the programming system admits it. The programmers would not be satisfied because
they feel it is illogical to prohibit the use of tools that are at disposal. Note that similar
problems are also caused by subblocks (Kindler, 2000).

K:

332

The solution of this problem is to offer the user something, which would be so rich
that he would not desire to use such sophisticated programming steps like the one
mentioned above. In this situation we appreciated QNOP as an excellent tool for a start
to develop a programming environment applicable at least in the array of reflective
simulation of production/logistic systems. QNOP offers to view such systems in a rather
natural manner (see section 3.2; for the conventional - i.e. non-reflective - simulation it
was applied in a lot of commercial cases) and instead of calling methods offers a
cooperation of processes with rather simple life rules. Moreover, QNOP is implemented
using Simula, i.e. on the base of a good o3Janguage, and therefore it can be well
enriched by tools for reflective simulation.

Thus an idea to develop a REFLECTIVE QNOP arose. A.fter elaborating the first
roots (Kindler, Krivy, and Tanguy, 2001a; Kindler, Krivy, and Tanguy, 2001b) it
appeared that Simula and QNOP admit to implement a progr:rmming environment that
could enable an automatic generating of the internal model from the external one.

Conclusion

The authors are interested in the simulation of the production and/or logistic systems
that are anticipatory in a weak sense, using their own simulation models during their
existence. The simulation of such anticipatory systems introduces reflective simulation
and reflective anticipation. This subject comes not from a theory of modeling or from
software engineering but from industrial applications of computing technique and may
introduce new tasks into the science on anticipatory systems. Nevertheless, it makes
problems in the implementation of computer models. The authors are engaged to
prepare software that enables the wide community of engineers to implement and apply
the reflective simulation models of production/logistic systems.

Acknowledgments: this research was performed under the Barrande programme
(bilateral cooperation between French and Czech universities) and also supported by the
institutional research scheme of the Universitv of Ostrava.

References

Backus, J. W. et al. (1960) Report on the algorithmic language ALGOL 60. Numerische
Mathematik, 2: pp. 106-136.

Buxton, J. N. (1968) Simulation Programming Languages - Proceedings of the IFIP
Working Conference on Simulation Programming Languages edited by J. N. Buxton.
North-Holland Publishing Company, Amsterdam, 464 pp.

Dahl, O.-J., Myhrhaug, 8., and Nygaard, K. (1968) SIMULA Common Base Language
(lst ed.). Norsk Regnesentraleq Oslo. 1972 (2nd ed.), 1982 (3rd ed.), 1984 (4th ed.).

Dahl, O.-J. and Nygaard, K. (1968) Class and Subclass Declarations. In (Buxton, 1968),
pp . 158-171.

333

Eckel, B. (2000) Thinking in Jav4 Revision 10a" electronic version. http://www.Eckel
Objects.com.

Gourgand, M., Grangeon, N., and Norre, S. (2001) Modèle Générique Orienté Objet du
Flow-Shop Hybride Hiérarchisé. MOSIM'0I - Actes de la Troisième Confërence
Francophone de Modélisation et SlMulation edited by A. Dolgui and F. Vernadat,
Published by Society for Computer Simulation International, San Diego, Erlangen,
Ghent, Delft, pp. 583-590.

Gourgand, M. and Kellert, P. (1991) Conçeption d'un environnement de modélisation
des systèmes de production. 3ème Congrès International de Génie Industriel, Tours,
France, pp. l9l-203.

Herring, C. (1990) ModSim: A new Object-Oriented Simulation Language. SCS
Multiconference on Object-Oriented Simulation. Published by The Society for
Computer Simulation, San Diego.

Kindler, E., et al. (1983) Algorithmization of material flow systems abilities (in Czech).
Algoritmy'83. Published by Slovak Mathematical Society, Bratislava, pp. 13l-136.

Kindler, E. (2000) Chance for Simula. ASU Newsletter, 26, No. l: pp.2-26.
Kindler, E. (2001) Computer Models of Systems Containing Simulating Elements.

Computing Anticipatory Systems: CASYS'2000 - Fourth International Conference .
Edited by D. M. Dubois, Published by American Institute of Physics, Melville, New
Yorh AIP Conference Proceedings 573, pp. 390-399.

Kindler, E., Krivy, I., and Tanguy, A. (2001) Tentative de simulation réflective des
systèmes de production et logistiques. MOSIM'O1: Actes de la troisième conférence
francophone de Modélisation et SlMulation - Conception, analyse et gestion des
systèmes industriels. Edited by A. Dolgui and F. Vernadat, Published by Society for
Computer Simulation International, San Diego, Vol. l, pp.427434.

Kindler, 8., Krivy, I., and Tanguy, A. (2001b) Special approach to reflective simulation.
Modelling and simulation of systems: MOSIS'OI - Proceedings of the 35th spring
International conference. Edited by J. Stefan, Published by MARQ, Ostrava (Czech
Republic), pp. 59-66.

Kindler, E., Chochol, S., and Prokop, K. (1983) Systems of material flow. International
Journal of General Systems, 9, No. 2: pp.217-224.

Madsen, O. L., Msller-Pederserl 8., and Nygaard, K. (1993) Object-Oriented Program-
ming in the Beta Programming Language. Addison Wesley, Harlow - Reading -

Menlo Park.
Meyer, B. (1989) From Structured Programming to Object-Oriented Design: The Road

to Eiflel. Structured Programming, 10, No. l: pp. 19-39.
Naur P. (ed.), (1963) Revised Report on the Algorithmic Language ALGOL 60.

Communications of the Association of Computing Machinery, 6, No. l: pp. 1-17.
Savall, M. et al. (2001) YAMAM - un Modèle d'Organisation pour les Systèmes Multi-

Agents. Implémentation dans la Plate-Forme Phoenix. MOSIM'0I - Actes de la
Troisième Conférence Francophone de Modélisation et SlMulation. Edited by A.
Dolgui and F. Vemadat, Published by Society for Computer Simulation
International, San Diego, Erlangen, Ghent, Delft, pp. 1037-1043.

334

Schmidt, B. (1989) Preface. Workshop 2000 - Agent-Based Simulation. Edited by Ch.
Urban, Published by Society for Computer Simulation-Europe, Ghent, 2000, pp. 1-4.

Simula Standard (1989) Oslo, SIMULA a.s., 246 pp.
Tanguy, A. (1993) Implementation and application of a modelling environment for

manufacturing systems. Application of Distributed & Graphical Simulation

[Proceedings of 19th Conference of the ASU]. Published by University of Aberdeen
King's College, Aberdeen (Scotland), pp. B-2-1 -B-2-12.

Tchernev, N. (1997) Modélisation du processus logistique dans les systèmes flexibles
de production, doctoral thesis, University Blaise Pascal, Clermont-Ferrand, France.

335

	Casus_v11_pp320-335_Krivy

