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Abstract
A new anticipatory control algorithm is presented to address an important challenge
emerging in deregulated power systems, that is, matching power demand in a local area
grid with the power delivered by a (local) power plant. A neural network anticipatory
controller for a model power plant is coupled with a neural network time-series
forecaster which prescribes power output for the grid. The goal of the system is to keep
inadvertent flow of power across a control area's boundary as small as possible. If a
difference exists between the power supplied and the power demanded in a control area,
the load deficit or surplus would be either borrowed from or stored as the kinetic energy
in rotating machines in the grid. The results presented show that the anticipatory
approach may lead to substantial savings in maintenance and significant reliability
gains.

Keywords: Anticipatory Systems, Neural Networks, Deregulation of Power Systems,
Applied Intelligent Systems

1 Introduction

Differences between biological organisms and artificial systems are often the subject
of debate in engineering and research circles. The ability to incorporate the levels of
flexibility, adaptability, and goal-driven action of the biological world into manmade
artifacts is highly desirable for advancing autonomous systems.

A crucial difference between life and artifact is the anticipatory nature of organisms.
Anyone who has ever played “fetch” with a dog knows that after only a few trials the
dog will learn to predict when you will throw the object. Even more astounding is that
the dog will learn trends about where the object will land based purely on observation
rather than on understanding laws of motion. And yet, as the eminent mathematical
biologist Robert Rosen pointed out nearly two decades ago (Rosen, 1985), even though
the notion of anticipation permeates our everyday life, nearly all engineering control
systems act in a purely feedback mode. Predictions about the future states of the
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environment are just now being considered for incorporation into advanced control
design. One of the barriers to their introduction is the difficulty of quantifying and
operating on likely or unlikely events in the future control horizon.

More recent findings by Professor M. Dubois suggest that anticipation is present in
non-biological systems as well including many of the systems and phenomena that
traditionally have been under the purview of physics such as electromagnetism and
relativity. Dubois has expanded Rosen’s definition of an anticipatory system (a system
which contains one or more models for prediction) by including in the category of
anticipatory systems those systems that may use themselves for predicting their future.
Thus, a useful distinction can be made between soft anticipation (that is, model-based)
and strong anticipation (that is, system based). For a very interesting review of these
important ideas the reader is referred to (Dubois, 2000), (Dubois, 2001).

Although anticipatory systems have been an integral part of life, the study of
anticipatory systems is a relatively new area in engineering (Mikulecky, 1996),
(Tsoukalas, 1998), (Tsoukalas, 1991). In recent years, phenomenal advances in both
computational platforms and modeling tools (e.g., neural networks, fuzzy systems,
statistical modeling) have made possible having a variety of models that can be used for
prediction of a system’s and/or environment’s trajectory. Yet, many difficulties exist in
implementing anticipatory control algorithms. They include, but are not limited to,
prediction model selection, learning, having an appropriate time horizon, faster than real
time computations, complexity control and controller reconfiguration. Most of these
difficulties stem in one way or another from what we call the Golden Rule of
Anticipation, which is that in an anticipatory system, the capacity for prediction has
to be in harmony with the ability to act.

A question the present study seeks to answer is whether or not the notion of
anticipation can be exploited to make an engineering system perform better or in a safer,
more flexible, and generally more optimal manner. To address this question in a
technically sound fashion, an iterative system for designing a combined predictive
controller and environmental forecasting routine is utilized. The system is examined
through application to the regulation of an electric power grid and comparison with
conventional approaches.

In the present work an anticipatory system is assumed to be a system that utilizes
predictions about the future states of itself and of its environment to direct present
actions (Rosen, 1985). In a Dubois sense our systems is a soft anticipatory systems. In
addition, as system environment we define the entity that the controller and plant are
attempting to regulate.

The rest of the paper is organized as follows. Section 2 offers a brief description of
the testbed or application context. Section 3 presents the prediction methodology which
relies heavily on neural forecasting while Section 4 presents the anticipatory control
methodology. Section 5 presents simulation results showing that the approach leads to
significant reduction in control effort with concomitant gains in system reliability and
overall performance. We conclude with a summary and discussion of future work
found in Section 6.
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2 Anticipatory Test System

Two systems are needed to study the usefulness of anticipatory regulation applied to
the electric grid. The first is the power consumption for a given control area, and the
second is the mathematical simulation of the power-producing facility. These conform
to the environment and the controlled machine respectively.

2.1 Data Test System

To assess the flexibility and power of the proposed model, data from an electric
power grid will provide the testbed. Power consumption data obtained from a major
power utility are used. Fig. 1 shows the power demand recorded for a specific
residential feeder on the grid for July of 1999. The power data are sampled every 15
minutes. Two data sets are used to design the prediction system (July and August
1999), and three data sets are used to test the anticipatory control system (November
and December 1999 and January 2000). The data sets from September and October of
1999 were of too low a quality to be implemented and tested.
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Figure 1. July demand.

2.2 Power Test System

The full-scale model used for final testing of the anticipatory control system is a
direct implementation of the steam power plant model outlined by Ordys (1994) with
minor changes. Fig. 2 shows a schematic of this model.
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Figure 2. Power system model schematic.

This model was chosen because it was the most general representation (meaning the
least number of empirical relationships used for calculation) found in the literature that
gave enough information to be accurately reproduced. The work is a component-based,
first-principles implementation of a pulverized coal steam generation unit.

3  Forecasting Methodology

Neural networks have been repeatedly proven to be superior nonlinear time-series
forecasting systems (Gentry, 1995; Park, 1994; Sun, 1997, James, 1997). In addition,
adding adaptability or other variables of interest to the forecasting system requires
simply retraining the system. Neural networks were chosen as the forecasting system
for the study described here. The network architecture was chosen as a fully connected,
feedforward neural net with a “tansig” hidden layer activation function and a linear
output layer activation function. To prevent overtraining of the time-series data, the
technique of early stopping was used in the training procedure. Due to seasonal
variations of electric power data, it is also advantageous to have an adaptability system
in place. To accomplish this, a concurrent neural network trained on more recent data
than the primary network was implemented. When the second network consistently (for
three days of data) predicted more accurately than the primary network, the weight
matrices were switched and the process was repeated. The final network architecture
used five historical electric load data points L{z, ---,_, }—giving five input layer neurons

and four hidden layer neurons. The trained neural network then functions as a predictor
of the next electric load data pointL(¢,,). Fig. 3 shows the network topology chosen

based on parametric exploration.
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Figure 3. Environment prediction network.

Table 1 shows a portion of the sum square error results (in kilowatt-hours squared)
for forecasting the November data set. Multiple trials were run to gauge the effect of
random weight matrix initialization on the training process.

Table 1. Forecasting results.

Trial no. | Nonadaptive NN error | Adaptive NN error Error reduction

1 1.12 x 10° 1.01 x 10° 10%
2 1.16 x 10° 1.09 x 10° 5.7%
3 1.40 x 10° 1.15 x 10° 17.6%
; . L —— =

4 Anticipatory Control Methodology

When the system model is nonlinear and the control actions are limited in rate and
magnitude, an iterative approach to predictive control must be utilized. Note that when
predictive control is coupled with forecasts of the system environment, anticipatory
control is achieved.

The specific implementation of the predictive control system is similar to that
described by Demircioglu (2000), with some exceptions. A constrained optimization
procedure, minimizing the error between plant output y(¢) and target output d(r) for set
time window 7, determines the anticipatory control response. The optimization system
finds the piecewise linear control schedule u(t) for a set number of points 7 in the time
window subject to rate and magnitude limits. The algorithm used for this research was



a constrained nonlinear optimization routine. The convergence of the process is
problem dependant. For systems where local minima or discontinuous functions cause
optimizations to fail, a more computationally complex optimization algorithm—such as
genetic optimization or random searching—must be used. Mathematically, the
optimization process takes the form:

Minimize:
Error = fﬁr]y(t)—— d(t)dt

| Subject to:
Control Magnitude Limits ~ w_, <u<u__

du <du

| Control Rate Limits <=
dt|  dt max

‘ This optimization process is shown graphically in Figs. 4 and 5.
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Figure 4. First iterative control optimization.
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Figure 5. Second iterative control optimization.

The figures show the control actions u(s) and the process output y(¢) for an
arbitrary plant during specific time frames. For the pulverized coal power plant, u(f) 1s
the rate of change of fuel flow to the furnace and y(r) is the mechanical power output.
The desired output of the plant is the demand curve d(r).

In Fig. 4, the system is repeatedly simulated from 0 to 50 sec. During these
simulations control actions 1 and 2 occurring at times 25 and 50 sec are the variables to
be optimized. Control action 0 is not a variable control parameter. Once the
optimization procedure has converged (that is, the integral error for y(r) has reached a
minimum), the system is incremented to the next time window. This is the new state
shown in Fig. 5. The simulation (or control optimization) window is now 25 to 75 sec;
control action 1 is taken as the new control action 0, and control actions 1 and 2 at times
50 and 75 sec are the new variables to be optimized over the new horizon.

The optimization of control actions can be thought of as looking at the projected
error of the system based on forecasting and any load schedules that are known a priori,
looking at the direction the system output is moving, and finding open-loop control
actions to correct for the projected error. Instead of comparing process output to target
output, estimating the direction the plant is moving closes the feedback loop in the
anticipatory control system. A schematic of this process is shown in Fig. 6.
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Figure 6. Anticipatory control schematic.

Computational burden becomes an issue if the plant is too complex to iteratively
simulate and optimize fast enough for real time application. A method for incorporating
neural networks to alleviate this problem is presented.

When the optimal control pattern for a given set of time horizons and system states
is found, the results are logged in a control action table. Figs. 4 and 5 show the
variables that are logged for two optimized control iterations. The predicted error for the
system at the first control action e(tH,(,m) 1s stored, along with the error direction of the

plant output at the initial time Z—f(t, ). This provides a control log that lists the optimal

] dm . ) ;
change in fuel mass flow d—’ to issue for a given set of error circumstances. If a log
t

file will be used instead of iterative simulation to estimate the corrective action
necessary for an error input, it must have a sufficient number of control examples. To
this end, the log file was built spanning the range of minimum to maximum power error
signal and power change rate. The log file for this research prescribes a two-
dimensional matrix of control actions. After the file has been obtained, iteration and
optimization for error correction is no longer needed and computational requirements
are significantly reduced.

Once the log has been created, the relationship between the control actions and the
error and system states can be learned. A neural network is trained to accomplish this
task. There are certainly other ways to do this, but neural networks are able to model
nonlinear functions very well and are computationally efficient after training
(Tsoukalas, 1997). Fig. 7 shows the neural net design used for this portion of the work.
It has four hidden nodes, two inputs, and the same activation functions as the
forecasting neural network.
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Figure 7. Neural network controller.

5 Simulation Results

The boiler model was first iterated to find suitable anticipatory control actions for a
large set of known preview errors, and then a neural network was trained to learn the
anticipatory control relationship. Fig. 8 shows the general response of the full-scale
model to known load changes. The controller is clearly well tuned for this system
because all of the generation lines intersect near the centers of the set-point step
changes—the minimum error point for symmetrical system lags. The full-scale
anticipatory control model was tested with forecasts from the neural network for
November 1999, December 1999, and January 2000.
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Figure 8. Simulated anticipatory control response.




Table 2 shows the kilowatt-hour difference between electric demand and generation for
the anticipatory and feedback (model predictive with and without environment
forecasts) control strategies. The error for the anticipatory control system without
adaptability in forecasts is higher than the feedback control error. This shows that the
accuracy of the forecasts for the environment is an important aspect of anticipatory
control.

Table 2. Error in energy supply in kilowatt-hours.

Feedback | Anticipatory control with | Anticipatory control with Energy savings for tive
Data set vings
control nonadaptive forecasts adaptive forecasts anticipatory vs. feedback control
November | 4.56 x 10* 4.62 x 10* 4.34 x 10* 4.80%
December | 5.00 x 10* 5.14 x 10 4.21x10* 15.66%
January 4.68 x 10* 4.72 x 10* 4.51x 10 3.61%

One of the theoretical advantages of anticipatory control is smoother control actions
than with feedback control. This makes sense when considering the control system
because the controlled variable is the change in fuel flow rate to the boiler in kilograms
per squared second. This value is integrated over time to find the mass flow rate into
the boiler system. If a larger time is allowed for the rate adjustment, the value need not
be as high to generate the same integrated signal.

Figs. 9 and 10 illustrate simulation results for changes in fuel flow rate. These
figures show that the anticipatory control effort is about 4% of the feedback control
actions. The anticipatory controller gives better energy efficiency for less control effort.
This reduction in control effort has the additional benefits of reducing the wear on the
control system and reducing temperature gradient stresses.
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Figure 9. Feedback control effort.
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Figure 10. Anticipatory control effort.

6 Conclusions and Future Work

Anticipatory control attempts to improve system performance by using knowledge
about future events. As an anticipatory system predicts future states of the environment,
it can adjust control actions earlier in time to lessen sudden changes in control. This
approach is especially advantageous for systems with dead times and limited control
actions. However, very little previous research exists that ties together predictive control
and time-series forecasting in a unified system.

The system developed in this research is a general control approach that uses very
little system information and few parameters in the design process. Nearly the entire
design was given to the computer to determine. The drawback to limiting the amount of
information used in the controller design process is that the computational burden
increases dramatically and convergence is not guaranteed. Nevertheless, modern
computer workstations are well equipped to handle the burden. All of the simulation
and testing reported in this article was performed on 500-MHz Pentium III computers
using the MATLAB programming environment. The simulations all ran faster than real
time for control schedule calculation, despite the slow performance of MATLAB. If the
system is required to run faster, the approach can be coded in FORTRAN or C.

Note that the results listed are biased toward feedback control in two ways in a
deliberate attempt to analyze the effect of pure anticipatory control versus pure feedback
control. The first bias is that no dead time between control signal and action was
incorporated into the model. It is clear that anticipatory control would eliminate an
error due to dead time in the fuel delivery system. The second bias is that the limits on
the control actions were never achieved for either control system. If the rate limit for
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the feedback controller were a limiting factor, the results would likely have been even
more favorable for the anticipatory control strategy.

The anticipatory control approach developed in this article is in an early stage of
testing. For the system developed in this research, there are two main areas where
improvements are possible.  The first of these areas is in the prediction of the
environment or electric load of the grid. The literature shows that the use of weather
data in electric load forecasting can make the predictions more accurate (Cheok, 1995).
This makes sense physically because on very hot days the electric load on the power
system under consideration is higher due to increased usage of air conditioners. We
recommend that weather information be tested for inclusion in the environmental
prediction scheme.

Another way to improve the prediction system is to decompose the time series into
long-term and short-term trends. This would allow capturing seasonal variations in
power demand separately from weekly variations.

The second area where improvements in the model are possible is in the predictive
control of the power plant. The controller designed for this project is optimal for this
specific application, but if a change occurs that affects the time dynamics of the plant,
the performance of the tuned controller will suffer. An adaptable tuning mechanism for
changes in the plant dynamics using a system identification approach would allow the
plant controller to be adaptive—not just the environment forecasting system.
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