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Abstract

The phenomenon of causality is omnipresent in language, philosophy and science and it
seems to be a core, fundamental idea in common-sense thinking. In this paper the nature
of causality is investigated and some characteristics of this concept are presented.
Particular attention is also paid to applications in diagnostic reasoning. Causality
provides bases for diagnostic inference and explanation offailures througb search in the
direction against caq-sal influences. From logical point of view, this can be considered as
abductive inference. A core, generic model of the search space is built as an
AND/OR/NIOT causal graph speciffing the structure that is used to establish diaposes.
Such a graph constitutes a schematic representation of causal influences arnong
symptoms and incorporates logic-like functions for combining influences of multiple
symptoms. An illustrative example is presented to clarify most of the presented ideas.

Keywords: Causality, Causal Reasoning, Causal Graph, Abductive Reasoning,
Backward Search, Qualitative Probabilities, Fuzzy Faults, Tabular Systems.

l lntroduction

One of the biggest problems concerning the so-called model-based approaches to
diagnosis is that they tend to be very ineffrcient from computational point of view.
Further, they require that a precise model of system behaviour must be known. Model-
based approaches operate on a declarative description (of the structure and function
behaviour) ofthe system to be diagnosed (rather than on a specialised representation
suitable for diagnosis, as, for example, expert systems). However, diagnostic inference
can often be performed without knowledge of a complete system model. Because of
ttrat, it is necessary to investigate approaches able to enhance the performance of model-
based systems operating on diagnosis-oriented, simplified models, covering system
behaviour in a qualitative way mostly(see Fuster-Parra (1996)).

t The research has been carried out within the KBN Grant no. 8 Tl lC 017 19 with respect to the second author.
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In order to enable diagnostic inference, a structure called an AND/OR/NOT causal
graph is used throughout this papel. Such a graph constitutes a schematic
representation of causal influences among symptoms and incorporates logic-Iike
functions for combining influences of multiple symptoms. Different kinds oi causal
relations can be considered according to the domain of work. In this proposal we point
out only to three basic types of causal influences, which explain the causal relations
between symptoms in the AND/oR^{or causal graph designed for abductive
diagnostic inference. The three different causal relations refer to the 'strength' of
causality and level of abstraction of the represented knowledge, according to the domain
of work and the elicited knowledge.

The main idea of the proposed approach is to provide a relatively simple,
straightforward 'formalism' for diagnosis, easily understandable by domain e*pèrts,
based on well-studied techniques of AI. The principal inference model constitutes a
core, generic representation of causal dependencies and allows for certain modifications
and extensions. On informal descriptions of real-world phenomena, statements of the
form 'A causes B' are exceedingly common. Causal reasoning is used to identi$ the
possible causes of a failure in a process. In spite of abundant literature concerning
causality, causal reasoning, causal networks and causal graphs, it is not quite obvious
what a causal relation is, how can it be characterised, modelled and what are its formal
properties.

The approaches based on causal models are attractive from model-based diagnosis point
of view because of the ability to deal with incomplete and partial (uncertain) knowledge
and because they need relatively small amount of information for performing diagnosei.
A very attractive feature ofcausal approaches is their easy, intuitive interpretation and
understanding as well as closed position to the engineering way of thinking.

Abductive reasoning seems to constitute a natural and straightforward diagnostic
approach. However, pure logical abduction does not appear to be a valid inference rule;
further, there seems to be no unique, formal approach to abductive diagnostic reasoning.
One of the main points of this paper is to consider abduction as a bach,vard search
procedure, and the main problem is to define the search space and, efficient search
rules. As heuristic search methods constitute a well-explored domain of AI, search
algorithms viewed as abductive inference strategies can be used to assure diagnostic
efficiency (an extension ofit can be seen in Fuster-Parra (1996)).

Some new extensions include introduction of diagnoses covering not only component
faults but 'wrong' compositions of control actions and operational conditions, fuzzy
characterisation of a degree to which components are faulty, and frnite, multiple state
component model. The proposed enhancements of diagnostic reasoning are related to
the introduction of a formal test definition and selection criteria for sequential testing

' This paper is a kind of review and survey paper based on the Authors' research in the domain of
automated diagnosis with use of causal reasoning; for many detailed results and a full list of papers see
Fuster-Parra (1996) and Fuster-Parra and Ligeza (2000).
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during diagnostic reasoning, ordering of altemative symptoms with use of qualitative
probabilities, and a strategy for final validation ofdiagnosis.

A set of tools that helps to support graphical design and manipulation of causal
structures has been implemented. A Prolog program is used as an inference engine for
processing the symbolic structure that represents the causal graph. There is also a
program in C++ that provides a graphical user interface.

2 The nature of causality

On informal descriptions of real-world phenomena, statements of the form 'A causes B'
are exceedingly common. Several researches have been working on Causal Reasoning,
among them Iwasaki and Simon (1988), de Kleer and Brown (1986), Pearl (1988),
Kuipers (1984), etc.; they propose different procedures for propagating causal
disturbances. Quite a lot of researchers working on diagnosis have used 'causality' to
reduce the search space during reasoning process, among them Console and Torasso
(1992), etc.

In this paper the main interest is in using causal reasoning to identify the possible causes
of a failure in a process. The methods based on graphs are attractive because they need
relatively little information to establish a diagnosis. An example of this is the work by
Kramer (1987); he uses a signed directed graph tbat represents causality ways in the
failure process. The nodes are state variables and alarm conditions, the arcs are causal
influences between the nodes. This graph is translated into a set of logical rules that give
a framework to deal with the resolution problem of diagnosis. The main difference with
the proposal presented in this paper is that the graph structure representing the causal
behaviour can be used itself for searching diagnosis without translation into logical
rules. The causal ordering by Iwasaki (1989) and the mythical causality by de Kleer
(1986) constitute another way of using causality, different of this approach.

2.1 Causal relations

It appears difficult to establish a general definition about what a causal relation is. The
postulate of a principle of causality of Gaines (1976), 'to every effect there is a cause'
has been a continuing to appear as a central problem for philosophy. As some formal
statement coherent with the rest of this proposal we shall establish the following general
definition:

Delinition. A causal relation between symptoms n and n' (represented as graph nodes)
is an influence of thefact that n occurs whenever n'will occur as well.

Note that symptoms can be considered as variables taking the values True or False;
from logical point of view they are equivalent to propositional formulae. An extended
formulation can assume symptoms to be variables taking specific values (e.g. of the
form V=t\ or variables restricted to certain sets or intervals (e.g. V>t). In general,
symptoms can be considered also as facts being expressed in some logic, e.g. first order
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calculus. For simplicity, the basic, generic presentation of this paper refers to symptoms
mostly as propositional statements.

By the term influence we mean several possibilities, i.e. there is a relationship between
nodes ofcausal type, but this relationship can be stronger or weaker depending ofthe
knowledge. For intuition, node n has influence on none n'iffthe occurrence of n causes
z'to occur.

Let us turn to the causal relations between symptoms/nodes. It is assumed that whenever
there is a causal relation between nodes n and n', there is a directed arc pointing from r
to n'. In the basic problem formulation we do not distinguish different types (or
functions) of this influence; for keeping the considerations a simple arc pointing from z
ton'saysthatncausesn'tooccurornmaycausen'tooccur.ofcourse,morethanone
symptom can influence some other symptom; in such case we have to speciÛ the way
several input symptoms influence the output one. This is done by assuming the
semantics of causality and defining the causal relations.

For the purpose of this paper v/e define logical semantics of causality. Let us consider
symptoms to be propositional formulae of some language L.LetI denote some assumed
interpretation, or a set of assumed interpretations (an interpretation partially specified).
Further, let us consider two symptoms, sayp and q. Let /: denote the time instant when
the value of symptom.r changes from false to true and /a denote ttre instant of time when
the value of symptomx changes fromtntetofalse.

Delinition l{e shall say that symptom p has a causal influence on symptom q if and only
if thefollowing conditions hold:

l. At least one of the following irnplications holds under the assumed set of
interpretations:

aI) l=rp ) q,

a2) l= tp ) -q ,

a3) l=r-,p ) q,

a4) l=r-p ) -q.

For the sake of consistency, neither aI) and a2) nor a3) and a4) can hold
simultaneously.

2. For the hotding implications there is respectively:

bI) tp <tq,

b2) tp <ts"

b3) tp<tq,

b4) tp<ts,

3. There is atlow of pltysical signalfrom p to q.
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This definition is rather a strong one; in fact it refers to strong causality. For various
purposes it can be weakened in several ways. However, for simplicity and clarity of the
discussion here we keep the notion of causality to be understood as defined above. In
order to keep consistency with intuition it is also assumed that aI) can hold with a4)
only , while a2) canhold simultaneously with a3).

Now we can pass to the definition of causal relation itself. With respect to the above
definition, a causal relation is understood as an influence described further as a function
or a partial function from the set of possible combinations of values of the input
symptom to the values of the output symptom. Let nt, n2, ..., nt and n be symptoms; a
causal relation defining an influence of nr, nz, ..,, nk on n is any function of the form:

Y: ( nt, nz, ..., n*) è n.

The function can be total or partial. Selection of specific functions is a matter of current
requirements. In general, if the symptoms are considered to be variables taking different
values, the function can be specified with a table of the form:

Table 1: A tabular specification of a discrete causal function.

In case of two-valued, logical symptoms, a reasonable and straightforward choice is to
take functions describing the basic logical connectives, i.e. AND, OR, NOT. For
example, in case of three-input AND and OR tables the specification is as follows:

Table 2: A tabular specification of the three input AND function.

nl n2 nk n

tII tl tIk vI

t21 t22 t2k v2

tmI tm2 tmk vm

nI n2 n3 n

I I I I

0 0

0 0

0 0
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nl n2 n3 n

0 0 0 0

I I

I I

I I

Table 3: A tabular specification of the three input OR function.

In the above tabular systems 1 stays for True and 0 for False; the underscore ("_")
means any value. The specification of the NOT function is obvious. Note that in the
case of abductive inference, two or more rows with the same value in the rightmost
column are the source of branching - this value can be achieved in several ways.

2.2 AND/OR/NOT causal graphs

A causal graph is a structure representing all the considered causal dependencies in the
analysed system. Let N be the set of considered symptoms and let Y denote a set of
specific functions defining causal relations among the symptoms of N. The causal graph
is defined as follows:

Definition. If N is a set of symptoms and Y is a set of functions defined on these
swptoms, then a causal graph is a structure G -- (N, Y).

In the graph, the nodes such that no arc points to them, will be referred to as initial
nodes; for simplicity these nodes are denoted by D. The elements of D denote in fact
elementary diagnoses (which can take the True or False values). Further, the nodes
from which no arc points to other nodes will be referred to as terminal orJïnal nodes;
they are denoted by M. Such symptoms are also called manifestatiozs. To simpliff the
discussion we also assume that there are no loops in the graph. All other nodes are
intermediate ones; t.hey are denoted with v. The state of the graph is defrned by an
assignment of the truth values to its nodes.

The defïned above AND/OR/I.IOT causal graph is somewhat similar in stnrcture to
classical AND/OR graphs used in problem-solving by Nilsson (1971) and pearl (1985);
thus we attempt to follow the existing terminology if possible. The main difference lies
in the direction and interpretation of arcs. A visible extension consists of admitting the
NOT links. Further, a 'solution gaph' in classical problem-solving constitutes only a'possible justification' (to be further validated) for an observed failure.

371



23 Abductive search approach

A diagnostic problem exists if at least one fault is observed. The faults to be diagnosed
are assumed to be specified with some manifestations (either positive or negative ones).
Consider an AND/OR/I.{OT causal graph G. Formulation of diagnostic problem takes
also into account some possible observations providing further information to the

diagnostic system. The rules of propagation are defined below:

Forward propagation: (causality, simple logical interpretation assumed)

o OR node true: if at least one of the predecessors of an OR node is true, then
the value of the OR node is setto true,

o AND node false: if at least one of the predecessor of an AND node is false,
then the value of the AND node is set to/a/se,

t NOT node true: rf a predecessor of a NOT node is false, then the value of the
NOT node is set to /nre,

c NOT node false: if a predecessor of a NOT node is true, then the value of the
NOT node is set to/a/se.

Forward propagation: (causality, simple logical interpretation assumed; further,
completeness is assumed, i.e. the predecessors of a node are all the direct causes for it)

. Ôn node false: if all the predecessors of an OR node are false, then the value
of this OR node is set to/a/se,

o AND node true: if all the predecessors of an AND node are true, then the
value of this AND node is setto true.

Backward propagation: (causality, simple logical interpretation assumed)

o OR node false: if an OR node is false, then the values of all its predecessors
are set tofalse,

o AND node true: if an AND node is tnre,then the values of all its predecessors
are set to tf1te,

o NOT node true: if aNOT node is true, then the value of its predecessor is set
tofalse,

o NOT node/clse: if a NOT node is false, then the value of its predecessor is set
to tnre.

Backward propagation: (causality, simple logical interpretation assumed; further,
completeness is assumed, i.e. the predecessors of a node are all the direct causes for it)

c OR node true: if an OR node is true, then at least one of its predecessors must
be true (see the above OR table for an example),

o AND node false: if an AND node is false, then at least one of its predecessoni
mustbefalse (see the above AND table for an example).
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The above rules define the principles of state propagation. In fact the last two rules
define the branching possibilities for search; all the other rules are deterministic ones.
Whenever a rule is applicable, a neu/ symptom value is generated; it is next placed in
the set representing the current state. In case some symptom turns out to take two
inconsistent values, the initial state for propagation is considered to be inconsistent and
it is not taken into account any more. In practice, this has the effect of failure and
backtracking in Prolog. All the calculated diagnoses are potential explanations of the
observed misbehaviour; they must be further verified.

Two approaches can be differentiated: one oriented towards calculating all the potential
diagnoses, and another one oriented towards calculating a first possible diagnosis,
perhaps the most plausible one. Then such a diagnosis is verified, and only if it is not
the correct one, the search is continued.

3 Types of causality

After Console and Torasso (1992), we would like to point out some extended
possibilities of causal influence. They present different kinds of causal relations
according to the mechanical domain of work: cause-effect, HAM (Has As a
Manifestation), defined-as, must, oây, ... . In this proposal we point out only to three
basic types of causal influences, which explain the causal relations between symptoms
in the AND/OR/I{OT graph. The distinction is important from the point of view of
causal diagnostic re.$onin g.

The three different causal relations refer to the 'strength' of causality and the level of
abstraction of the represented knowledge. They also concern the problem of
incompleteness of our knowledge and knowledge representation. We distinguish the
three following levels of causality:

l. Symptom n causes symptom n' always when the fonner occurs; moreover, the
occrurence of n' is bound to be caused by n. We refer to this type of causation as
zuffrcient and necessary (NEC), i.e. we have a complete, single-cause model.

2. Symptom n causes symptom n' always when the former occurs, but there are
several possible different symptoms causing n' as well. We shall refer to this type
of causation as sufficient (SUF), i.e. we have a complete, many-causes model.

3. Occurrence of symptom n may cause symptom n' to occur, however there are cases
when n' does not follow n. We refer to this weakest type of causation as possible
(of the type MAY in Console (1992)), i.e. we have probably incomplete, many-
causes model, where incompleteness is dealt with by probability.

The NEC relationship is the sfrongest one, it let us know a more precise information, but
we must assume that in real problems it is diffrcult to obtain information as precise as
that. We normally find different kinds of causal influence. For example 'drinking

alcohol MAY cause stomach disturbances', ' rain is SUFicient to cause reduction of
hydraulic sfress in the crops' (it depends also on other factors, as artificial watering can
cause the same effects).

373



In our further considerations \rye typically assume incompleteness of the causal
knowledge, and, as a consequence of that the third type of causality will be mostly taken
into account. However, profiting from additional knowledge the proposed search
mechanism can be made more effrcient, and such a modification seems to be useful if
the appropriate knowledge is given.

3.1 Fuzry faults

In this section an extension of diagnostic reasoning concerning 'degree of faultiness'
(see Fuster-Pana (1996)) is included.

Most of the current approaches admit only binary evaluation of faults, i.e. a component
can be faulty or correct. However, for more complex systems incorporating large
number of diversified components (e.g. pneumatic, hydraulic, mechanical, chemical,
biochemical, etc.) the above approach is not necessarily correct. The point is that in such
systems certain components can be regarded as 'faulty to a certain degree', not just
faulty or correct. The sources of such 'partial' faults usually lies in the characteristics of
the components -they perform continuous processes with some boundary conditions
determined by the state of elementary parts of them. This type of processes include ones
based on different sorts of flows, concentration, exchange of energy, etc., where the
state parameters change in a continuous way. After some time of working (as a natural
process) or due to some accidental changes the process, may be considered in a state not
fully correct (<100%).

Let us assume that the fuzzy coeffrcients of fault occurrence for elements of D (the
nodes in the lowest level) are assigned to the considered elements. In order to perform
operations to propagate the fuzzy measures through the causal graph the following
operations are introduced:

1). The min andrzax operations,

2). Any T-norm and, S-norm (T-conorm)

3). The use of triggering function.

The simplest case is the propagation of fuzzy measures through the graph using the ziz,
and max operations. The second case is more general. Instead of propagating the frv.zy
measures through the graph using min and max operations, T-norms and. S-norms can be
applied. The third case is the most general one. Following this line of reasoning, we can
further assume that also the 'degree' or 'strength' of influence of certain fuzzy fautts
can be characterised withfinzy coeffrcients; thus, we assume that the arcs of the causal
graph are assigned some numbers pi where pi belongs to [0,1], or more generally some
kind of triggering function.

In real world problems we may have fuzzy characterisation of faults. The presented
model can be used in different wavs.
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I Binary search/fuzzy ordering: the search for diagnoses can be performed
assuming the classical binary model. In this way preference among diagnoses can be
established.

2 Fuzry model: under the assumption that the degree of faultiness is evaluable,
this approach can be used to order the search for diagnoses by propagating the expected
fuzzy values of faults, most likely symptoms can be searched first.

3 Simulation: the whole model can be used for simulation of influence of fuzzy
faults ofsystem components on the observed failures and estimation of expecte d fuzzy
values of them.

3.2 Introducing possibility measures in an AI{D/OR/NOT causal graph

In this section we shall introduce the concept of possibility meesure,which was initially
presanted by Zadeh (1978) and used in knowledge representation by Dubois and Prade
(1985), for reasoning in an AND/ORNOT causal graph that includes zay connections
between nodes. whenever two nodes ni and nj are connected by a may arc, it is
established that the occrrrence of a symptom ni may cause the occurence of another
symptom nj.

Definition. h is said that two connected nodes (ni, ni) have a possibitity measure
associated whenever they are connected with a ' MAY' arc.

Let G be an AND/OR/NOT causal graph. Assume that the possibility measures assigned
to arcs may are known, then we assign to the other arcs (su/and nec) a possibility
measure equal to 1. The following rules define how to propagate the possibility
measures of symptoms upward a graph G:

1. The case of an OR node: let (nr, ft), ..., (ni-r, n) be nodes connected by an OR-arc,
and let rn; denote the possibility measure assigned to n;, j:1,2,...,i-I' thenthe
possibility measure mi of ni is calculated as mi: max(mr, mz, ..., mi-r);

2. The case of an AND node: let (nr, rr2, ..., ni-t, ni) be nodes connected by an AND-
arc, and let m; denote the possibility measure assigned to ni, j:1, 2, ..., i-l; then the
possibility measure mi of ni is calculated as mi : min(mr, mz, ..., mi-r);

3. The case of a Nor arc: let (nr, nz) be nodes connected by a Nor-arc, and let mr
denote the possibility measure assigned to nr; tlten the possibility measure mz of nz
is calculated as mz =l-mr.

A diagnosis is understood as a conjunction of its components as it is shown in Fuster-
Parra and Ligeza (1996) (all the elementary diagnoses constituting the elements of a
diagnose must be obsened); the possibility measure associated to a diagnosis D=[dt,
..., d^J is m= min(mt, ..., nrn) where ml, ..., rrrn are the possibility measures associated
to dt, ..., dn respectively.
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The possibility measures, which have been defined, are used for ordering the search, i.e.
searching first those hypothesis with higher possibility measures. As a consequence,
those diagrroses with higher possibility measure associated would be found first.

3.3 Qualitative probabilities and may connections

In order to get search efficiency in diagnostic reasoning process based on abductive
analysis of causal structures the concept of qualitative probabilities of Fuster-Parra and
Ligeza (1995,1996) v/as presented. The qualitative probabilities Q : [qt, ..., Qn] denote
linguistic (e.g. expert-provided) statements conceming the likelihood of certain events.

An example of such statement can be qi : very_likely. Further let à denote a (weak)
order relation, and let there be ç à qn-r è . . . è qr. The weak order relation à means that
a greater element denotes greater likelihood. The decision-maker has to have an inherent
feeling of relative likelihood. For intuition, the above items denote linguistic (e.g.
expert-provided) statements concerning the likelihood of certain events.

It is assumed that the qualitative probabilities of fault occrurence for elements of D are
known. In the case where may connections were taken into account then a function that
translates the possibilities measures into qualitative values is considered.

Definition. Let (ni,n) be connected by o Aey connection, then afunction A: P è Q that
assigns to every possibility measure a qualitative probability is called a transfer
function from Wantitative to qualitative knowledge representation.

Whenever there were a may connection between two nodes (ni, qi) and (n1, q) then the
qualitative probability assigned to ni will be qi'= min(qi, ̂ (pr)). The following rules
define the possibility to propagate the qualitative probabilities of symptoms upward a
graph G in Fuster-Parra andLigeza (1995):

1. The case of an OR node: let (nr, û), ..., (ni-r, ni) be nodes connected by an OR-arc,
and let qi denote the qualitative probability assigned to ni, j:1, 2, ..., i-l; then the
qualitative probability qi of ru is calculated as qi = max(qr, qz, ..., qu);

2. T\e case of an AND node: let (nr, n2, ..., ni-r, ni) be nodes connected by an AND-
arc, and let q; denote the qualitative probability assigned to n1, j= I , 2, . . ., i- I ; then
the qualitative probability qi of ni is calculated as qi : min(qr, qz, ..., qir);

3. The case of a NOT arc: let (nr, nz) be nodes connected by a NOT-arc, and let qr
denote the possibility measure assigned to nr; then the qualitative probability qz of
nz is calculated as qz:1-qr.

According to the above rules one can inductively assign qualitative probabilities to a
maximal subset of N, provided that expert derived qualitative probabilities have been
assigrred to all elementary diagnoses (the elements of D).

From this qualitative probability ordering we can say that Dr and Dz being two
diagnoses, and the qualitative probability associated to them are respectively qr and qz
such that qz è qt (and qz I qr), then Dz is found first as it is shown in Fuster-Parra
(ree6).
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As a consequence if Dl, ..., Dr are all the possible diagnoses and q = maxi[qualitative
probabilities(D)1, then D = [Di such that qualitative probability (D.i) = q] is found first; it
is also shown in Fuster-Parra (1996).

4 A simple diagnostic example

4.1. Diagnostic Problem

In this section a simple example of a diagnostic problem and its solutions are presented.
The diagnostic problem concerns a small system (possibly a part of a bigger one)
composed of a tank, water supply system controlled with a valve, water-removing
system driven by a pump and a level sensor. The scheme of the system is shown on the
figure below.

Fig.l: A simple system to be diagnosed.

The basic analysis of the system behaviour is as follows. The tank should norrnally
contain certain amount of water provided through the valve. If the level is too low the
valve can be opened and water flows into the tank. Its level is controlled with a single
level sensor providing the possibility to close the valve after the required level is
achieved. The pump is normally used to remove the water after finishing the operation
of the system. If by some accident the level is too high, the pump removing the water is
also started. It is assumed that both the valve and the pump are controlled (according to
some control algorithm) with use of signals from level sensor and from the control
system. For the sake of security the system is made safe by double protection system;
whenever the level of water is too high, not only the valve should be closed, but the
pump should be switched on, as well. Further, rile assume that the capacity of the pump
is greater than the one of the water-supplying valve.

One can consider two kinds of expected behaviour of the system with respect to the
water level. T\e nortnal expected behaviour of the system is to keep the level of the
water within some predefined limits. Tbe abnormal expected behaviour may consist in
an overflow, i.e. a situation when the level is too high. Let us consider the latter case,

Level Sensor
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i.e. we are interested with defining, detecting and diagnosing the explicit fault rather
than any abnomrality occurring. The fault of interest is just one, i.e.water overflow.

4.2 Failure Recognition

Assume that at a certain moment an overflow occurs - this is an evident failure, so a
diagnostic procedure is started.

For illustration, let us assume that the partial state represurtation is a logic-like formula
of the form water_level e (low,high) for normal operation, where the meaning of
water_level e (low,high) is that the level of the water is higher than some level denoted
with low and lower than the one denoted with high.

Now let us consider a formula describing all the states (a situation in our terminology,
i.e. a set of states) in which overflow occurs. The formula may be of the form
water_level e (max, +æ).

Let the current state formula be water_level e (very_high, +æ1, where @ denotes the
rest of the facts tue in the particular state. Thus in our case there is:

water_Ievel e (max, *æ) è water_level e (very_high, +* ) "Q

In fact, in any state described with the right hand formula above, the failure
characteristics specified by the formula water_level e (max, +@,) m6st hold; the crucial
element of the check consists in verifying that (max, +æ)2 (very_high, +o).

4.3 Symptoms and causal graph

The diagnostic process is based on causal abductive reasoning with use of a model
represented by a causal graph. Such a graph represents causal dependencies among
symptoms observed in the analysed system. In order to build a causal graph one should
identiff the set of symptoms concerning the behaviour of the system and detemrine the
causal relationship among them.

Manifestations. here sinsle failure svmotom:

m - water pouring out of the tank,

Intermediate svmotoms:

vl - valve_open,
v2 - pump_ofl
v3 - valve_stuck_in_openposition,
v4 - valve_open_by_control_signal,
v5 - pump_oflbyjower_off,
v6 - pump_off by_control,
v7 - pump_blocked,
v8 - pump_on_by_control,
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v9 - valve_open_signal_operating,
vl 0 - pump_on_signal_from_level-sensor_operating,
vl I - pump_on_signal_from_control_system_operating,
v12 - power_off,
vl 3 - valve_open_signal_from_level_sensor_on,

Innut svmDtoms - elementarv diaqnoses:

dl - valve_stuck_in_openjosition_fault,
d2 -valve_open_control_signal on,
d3 - level_sensor_on_when_level too_high,
d4 - pump_on_by_control,
d5 - pump_broken_fault,
d6 - power_on.

4.4 Diagnostic Reasoning

In order to present the elements of diagnostic reasoning let us consider a particular
diagnostic problem, e.g. one given by M' = {m\ and N* = {v2,d6\, i.e. the overflow
of water when the system is switched on and the pump is observed not to work.

Before we start the analysis, let us propagate the observations through the graph. In fact,
only d6:true can be propagated. We obtain vl}=false and vl=false; this information
can be used for checking consistency with hypothesised diagnoses.

With respect to our model there is one conjunctive cause possible, i.e. vt:trre AND
v2:true. The procedure must recursively explain both the symptoms found. Note that
v2=true is consistent with the observations.

Now for explaining vl=true one can suggest two hypotheses, namely v3--true or
v4=true. For explanationof v4:true againwe have two possibilities; let assume that we
select v13 to be true and thus we must nun" 63:false as the consequent selection; the
process of explaining vl is stopped here since we have arrived at an initial node being
an elementary diagnosis. All the other possibilities of explaining vl:true are left for
further possible use, while now the problem is to explain v2:true.

For v2:true there are three possibilities. Note that, however, the frst one, i.e. v1:true is
inconsistent with observations, so it should be left unexplored. Assume we select the
second one, i.e. v6:true. Further on, the only explanation of v6ltrue is v\-false, which
is consistent with the observations. And to explain v}=false we must assume that both
vl0=-false and vl l--false hold. This implies d3--false (already found on another way),
and d4=false. The final diagnosis is then givan by D- = {d3,d4} , i.e. the level sensor is
faulty and no control signal for setting on the pump is provided while the system is on.
The firther analysis of the diagnosis may lead to detection of one hard fault (element
fa'u,lt, d3=false), finding one control sigrral set to 0 (if this is a fault it should follow from
a further analysis of the control algorithm for the specific conditions), and one
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operational condition abeady observed. The set of all possible diagrroses consistent with
the observations found by the algorithm is:

( {d l } , { f i ,da} ) ;  ( {d1} , {d5} ) ;  ( { } , { f i ,da} ) ;  ( {d5} , {d3} ) ;  ( {d2 ,d6} , {d3 ,d4} ) ;
({d2,d5,d6},{});

here any diagnosis is composed of two sets of elementary diagnoses: the True ones and
the False ones. Note that only four of them are minimal diagnoses (i.e. 2,3,4 and 6) in
the sense of pair wise set inclusion. But with respect to the sub-graph generated, all the
six diagnoses constitute different solutions. For information, for the above problem
specified with no initial observations there are as many as 14 potential solutions, and 6
of them are minimal with respect to set inclusion.

A sub-graph for the examined system is shown with slightly thicker lines in the figure
below. The symptoms found true are marked with filled circles.

Fig. 2: A solution graph for the considered example diagnostic problem.

5 Concluding remarks
The main idea of the proposed approach is to put forward a relatively simple,
straightforward formalism for diagnosis, easily understandable by domain experts,
based on well studied techniques of AI, allowing for certain modifications and
extensions. The proposed formalism constitutes a core, generic tools and can be
extended and modified in a number of ways. Two extensions: qualitative probabilities
andfazzy degrees are pointed out.

The extension includes a tool that helps to graphically create and manipulate causal
structures. The system was tested on a number of examples.
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