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Abstract

In the present paper, for optimization of interval estimators, a new technique of
invariant embedding of sample statistics in a loss function is proposed. This technique
represents a simple and computationally attractive statistical method based on the
constructive use of the invariance principle in mathematical statistics. Unlike the
Bayesian approach, an invariant embedding technique is independent ofthe choice of
priors. The aim of the paper is to show how the invariance principle may be employed
in the particular case of finding the interval estimators that are uniformly best invariant.
The technique proposed here is a special case ofrnore general considerations applicable
whenever the statistical problem is invariant under a group of transformations, which
acts transitively on the parameter space. This technique may be used for constructing
the minimum risk estimators of state of computing anticipatory systems. To illustrate
the proposed technique, examples are given.
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Introduction

Estimation, in both theory and practice, tends to be divided into two almost distinct
branches. On the one hand, point estimation, by providing a working value for the
unknown true parameter value, is undoubtedly useful in further investigations of the
given situation although its reliability may be diffrcult to assess in real terms through
the medium of the estimated standard error. On the other hand, confidence interval
estimation, by presenting a whole set of more or less plausible values of the parameter,
is often less easy to apply but has a more direct assessment of reliability through the
confidence coefficient. The dilemma in estimation arises essentially from this need for a
balance between usefulness and reliability - usefulness through the practical advantages
of narrowing down the set of plausible values and the increasing reliability, which
attends the enlarging of the set. This dilemma is one of the sources of awkward
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questions from users about estimation. What confidence coefficient should be used?
Why not use the whole parameter space as confidence interval and so ensure l00olo
confidence? Why use a point estimate when it is almost certainty not the true parameter
value? while answers to such naive questions can be expressed in terms of the
distribution of the estimator or the class of confidence intervals associated with various
confidence coefficients, they are not the only solution to the dilemma, and, in our view,
are not readily appreciated by users.

Any serious attempt to take account of the consequences of unreliability in not
capturing the true parameter value and of lack of usefulness in excessive width should,
we feel, involve the specification of some reasonable loss function and the subsequent
examination of the problem in terms of decision theory. Such an attempt is usually beset
by the well-known difficulties of the non-existence of a uniformly best solution in a
frequentist approach and of the assessment of the prior distribution in a Bayesian
approach. There is, however, one unexploited specification of the decision-theory
approach to estimation which has some degree of realism and for which a satisfactory
frequentist solution can be readily obtained.

This paper considers the consequences of adopting a piecewise-linear loss function for a
situation where interval estimators are required for location or scale parameters. Under
certain circumstances intervals that are uniformly best invariant, with respect to the
group of location and scale changes, can be found for this frequentist decision problem.
Such interval estimators, while of interest in their own right as solutioni of the
particular decision problem, may of course be regarded as confidence intervals in the
conventional sense and the appropriate equivalent confidence coefficient evaluated.
This confidence coefficient is simply related to the constants speci$ing the loss
function, and has an extremely simple approximation that provides some insight into the
concept of confidence interval estimation. When the interval collapses to a point we can
relate the variance of the point estimator to the constants of the loss functiôn. We have
thus a decision framework from which either point or interval estimators may arise
depending on the constants of the loss function.

The outline of the paper is as follows. An invariant embedding technique is presented in
Section 2. Formulation of the problem and interval estimation of a location parameter is
given in Section 3. Section 4 is devoted to interval estimation of a scale parameter.

Invariant Embedding Technique

This paper is concemed with the implications of group theoretic structure for invariant
loss functions. r{ve present an invariant embedding technique (Nechval, 19g2, 19g4,
2000) based on the constructive use of the invariance principle in mathematical
stalistics' This technique allows one to solve many problems of thè theory of statistical
inferences in a simple way. The aim of the paper is to show how the invariance
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principle may be employed in the particular case of finding the interval estimators that
are uniformly best invariant. The technique used here is a special case of more general
considerations applicable whenever the statistical problem is invariant under a group of
transformations, which acts transitively on the parameter space.

2.1 Preliminaries

Our underlying structure consists of a class of probability models ('*, e, 7), a one-one
mapping ry taking ?7 onto an index set @, a measurable space of actions (@, '%), and a
real-valued loss function r defined on @ x 'Q .We assume that a group G of one-one açl
- measurable transformations acts on ,Iandthat it leaves the class of models (% d,3)

invariant. We further assume that homomorphic images G and ô of G act on @ and
7, respectively. (G may be induced on @ through,y; ô may be induced on@ thtough
r). We shall say that r is invariant if for every (0,d) e @ x I

r(g0,Sd) = r(0,d), g€G.

Given the structure described above there are aesthetic and sometimes admissibility
grounds for restricting attention to estimators (decision rules) g: X -+ Ç which are
(G.ô ) equivariant in the sense that

q(gX)=Eg(X) ,  Xe l r ,  g€c .  (2 )

If G is trivial and (l), (2) hold, we say rp is G-invariant, or simply invariant (Lehmann,
l9s9).

2.2 InvariantFunctions

We begin by noting that r is invariant in the sense of (l) if and only if r is a G'-invariant
function, where G' is defined on @ x I as follows: to each geG, with homomorphic

images gE in G,ô respectively, let g'(0,d)=(g0,gd), (0,d)e(@ x @.lt is assumed

that G is a homomorphic image of G.

Definition | (Transitivily). A transformation group G acting on a set @ is called
(uniquely) transitive if for every 0, 9e@ there exists a (unique) [ e G such that g 0:$.

When G is transitive on @ we may index G Uy O: flrx an arbitrary point 0e@ and
define gr, to be the unique geG satisfying [0=01. The identity of G clearly

corresponds to 0. An immediate consequence is Lemma l.

( l )
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Lemma 1 (Transformation\ Let G be transitive on @. Fix 0e@ and define [r, as
above. Then g.r, :{Ee, for 0e@, q e ô.

Proof,, The identity Eqe,O = dOr = Ge,O shows that Eqe, and dge, both take 0 into {0, ,
and the lemma follows by unique transitivity. I

Theorem | (Maximal Invariant). Let G be transitive on @. Fix a reference point Oee@
and index G uy o. A maximal invariant M with respect to G' acting on @ x g is
defined bv

M(o,d) = g;rd, (0,d)e @x A.

Proof,, For each (0,d)e(@ x @ and, geG

M(so,gd) = (E;j)E'd = (È'ge )-rgd = g;'g-'gd = gttd = M(o,d) (4)

by Lemma I and the structure preserving properties of homomorphisms. Thus M is G'-
invariant. To see that M is maximal, let M(01,d1):M(02,d2). Then !r,td, =Ee2id2 or

dr=Edz where !=Ee,E;rt .  Since Or=Eergo :  E,$j0z=802, (01,d1):g'(02,d2) for
some g'eG', and the proof is complete. tr

Corollary l.l (Invariant .Embedding). An invariant loss function, r(O,d), can be
transformed as follows:

r(O,d) = r(g;ro,gtrd) = i(v,r1), (5)

where v:v(O,ô; is a function (it is called a pivotal quantity) such that the distribution of
v does not depend on 0; q=q(d, ô ) ir * ancillary factor; ô is the maximum likelihood
estimator of 0 (or the sufficient statistic for 0).

Corollary 1.2 (Best Invariant Estimator). The best invariant estimator (decision rule)
is given by

(3)

where

g *(x) = d* = t1-t(t1*,ô),

rl* = arg inr en{i(v,n)}

(6)
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Corollary f3 (rRislr). A risk function

R(0,9(X)) = Ee{r(0,q(X))}= En. {i(u.,n")}

is constant on orbits when an invariant estimator (decision rule) g$) is used, where
v, = v.(O,X) is a function (pivotal quantity) whose distribution does not depend on 0;

î. = q"(d,X) is an ancillary factor.

Consider, for instance, the problem of estimating the location-scale parameter of a
distribution belonging to a family generated by a continuous cdf F: ?={Ps: F((x-p)/o),
xeR, 0e@), @:{(p,o): p,oeR, 6>0):'q. The group G of location and scale changes
leaves the class of models invariant. Since G induced on @ by Pe + 0 is uniquely
transitive, we may apply Theorem I and obtain invariant loss functions of the form

r(0'9(X)) = r[(9r(x) - p) /o' 9r(X)/o]

if 0=(p,o) and cp(X)=(rprë), g2(X)). Let ô = (ô,,ôr), d:(d1,d2), then

r (O ,d )= r [ (d t -p ) /o ,d2 lo ]= r ( v '+ r l 1v2 , I zvz )= ï ( v ,n ) ,  ( 10 )

where v=(v1,v2) ,  v1=(ô1 -F) /o,  v2=6r lo;  q: (nr ;q2) , I r : (dr  -ô, ; lêr ,  q2:d2102.

Interval Estimation of a Location Parameter

3.1 Problem Statement

Consider a situation described by one of a family of density functions, indexed by the
vector parameter O=(p,o), where p and o(>0) are respectively parameters of location
and scale. For this family, invariant under the group of positive linear transformations:
x->ax+b with a>0. we shall assume that there is obtainable from some informative
experiment (a random sample of observations X:(xr, ... ,xn)) a sufftcient statistic
(mn,sn) for (p,o) with density function p(mn,sn;p,o) of the form

p(mn,sn;p,o) = o-2f[(m" -p)/o,sn /o]. ( 1 1 )

We are thus assuming that for the family of density functions an induced invariance
holds under the group G of transformations: mn-)amn*b, sn-)asn (a> 0). The family of
density functions satisfring the above conditions is, of course, the limited one of
normal, negative exponential, Weibull and gamma (with known index) density

(8)

(e)

245



functions. The structure of the problem is, however, more clearly seen within the
general framework.

Suppose that we assert that an interval (dr,dz) contains p. If, as is usually the case, the
purpose of this interval statement is to convey useful information we incur penalties if
d1 lies above p or ifd2 falls below p. Suppose that these penalties are c1(dy-p) and c2Qt-
d2), losses proportional to the amounts by which p escapes the interval. Since cr and cz
may be different the possibility of differential losses associated with the interval
overshooting and undershooting the true p is allowed. In addition to these losses there
will be a cost attaching to the length of interval used. For example, it u/ill be more
difficult and more expensive to design or plan when the interval d:(dl,dz) is wide.
Suppose that the cost associated with the interval is proportional to its length, say c(d2-
dr). In the specification of the loss function, o is clearly a 'nuisance parameter' and no
alteration to the basic decision problem is caused by multiplying all loss factors by lla.
Thus we are led to investigate the piecewise-linear loss function

c,  (d,  -  p)  c(d"  -  d ,  )
+. .g

o o

r(o,d) = .l c(dt - d' )
o

c ( d .  - d , )  c , ( u - d " )
+ ' "  "

o o

(lr < dr),

(d ,  Sp-<d2) ,

fu > dz).

(r2)

(14)

( ls)

The decision problem specified by the informative experiment density function (l l) and
the loss function (12) is invariant under the group G of transformations. Thus, the
problem is to find the best invariant interval estimator of p,

d' = arg min R(0,d), (13)

where A is a set of invariant interval estimators of p, R(0,d)=&{(e,d)} is a risk
function.

3.2 Best Invariant Estimator

It follows from Corollary
as follows:

where

l.l that an invariant loss function, r(0,d), can be transformed

r(0,d) = f(v,q),

)vz (vr > -qrvz),

(-nrvz 2v, à-qrvr),

q)vz (vr < -rlzvz).

[ c1 (v ,+qvz )+c (nz  
- î r

i ( v , t t )=1 . (n r -q r ) vz

[- cz(ur + lzvz ) + c(îz -
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v=(v1,v2), vr= (mn - F) / o, v2= sn /o ; n=(n l,q2), I r= (dr - mn ) /sn, q2: d2 I sn.

It follows from (15) and Corollary 1.3 that the risk associated with d and 0 can be
expressed as

R(e,d) = Ee{r(0,d)}= En{i ' (v,11;}=., idu, i (u,  *  qrvr) f(v, ,vr)dv,
0  _ î l v 2

@ - \2v2  @ @
-c2ldv, J(v,  +4rvt) f(v1,v2)dv, +c(n2 -îr) iv2dv, Jf(v1,v2)dv1, (16)

0 - o 0 - o

which is constant on orbits when an invariant estimator (decision rule) d is used, where
f(v1.v2) is defined by (ll). The fact that the risk (16) is independent of 0 means that a
decision function n=(î1,n2) which minimizes (16) is uniformly best invariant. The
following theorem gives the central result in this section.

Theorem 2 (Best Invariant Estimator of p). Suppose that (ur,uz) is a random vector
having density function

[q r  l - r
urf(u,,ur)l jurdut Jf(u,,u2)du, I (u, real, u, >0), (17)

L o  - @  J

where f is defined by (l l), and let Q be the distribution function of u1/u2.

(i) If c/c1+c/c2<1 then the uniformly best invariant linear-loss interval estimator of p is
d*=(mn*r1 1 sn, mn*q2sn), where

Q ( - n r ) = l - c / c r ,  Q ( - n z ) = c l c z .  ( 1 8 )

(ii) If clctç1c,2>l then the uniformly best invariant linear-loss interval estimator
degenerates into a point estimator mn* q. sn, where

Q(-n.) = c, (c, + cr).

Proof. From (16)

^ - ( . . , , i @ @ æ @opnlr(v,nr,  ;  .  - ;^.

fur 
1= c, Jv2dv2_nlf(vr,vz)dv, -c jvrdvr_Jf(v, ,v2)dv1

= jvrdv2 jf1v,,vr)dv,[c,P{(u,,ur): ur + qru2 > 0} -.c]
0 - æ

(le)
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Similarly

=i v rdu rjflv,, u, ;dv, [cr (l - Q(-qr )) -{].
0 - o

aEn f (v'n)) 
= jurdv2 if 1v,, v, ;dv, [c - cze(-nz )].

o\z o -@

(20)

(2r)

Now ôEn{ i(v,n)}/ânr : ôEn{ ï(v,r1)}/âr12 = 0 if and only if (18) hold. We thus obtain
one stationary value for En{ i'(v,q)} provided (18) has a solution with nr<lz and this is
so if l-clc1>clcz.lt is easily confirmed that this n:(nr,nz) gives the minimum value of
En{ ï(v,q)}. Thus (i) is established.

lf clc;clc2>l then the minimum of En{i'(v,q)} in the region n2>nr occurs where

Ir=rlz:I., 11. being determined by setting ôEn{T(v,(q.,n.))}/ân.:0 and this reduces
to

cr[ - Q(-q.)] - "zQ(-tl.) 
= 0, (22)

which establishes (ii). I

Corolfary 2.1 (Minimum Risk
risk is given by

of the Best Invariant Estimator of p). The minimum

R(0,d.) = g, tt(e,a-)l= gn {i'(v,n)}

= cr Jdvz
0

for case (i) with q=(Tlr,n2) as given by (18) and for case (ii) with qr:rlz:q. as given by
(le).

Proof. These results are immediate from ( 16) when use is made of âEn { ï (v,r1) }/âr1 1 =

ôEn{ ï(v,q)}lùr:0 in case (i) and ôE'{ i(v,(q.,r1. ))}/âr1.=0 in case (ii). --

The underlying reason why clciclcz acts as a separator of interval and point estimation
is that for clc;clc2>l every interval estimator is inadmissible, there existing some point
estimator with uniformly smaller risk.

3.3 EquivalentConfidenceCoefficient

For case (i) when we obtain an interval estimator for p we may regard the interval as a
confidence interval in the conventional sense and evaluate its confidence coefficient.
The general result is contained in the following theorem.

@ @ - I2v2

jv , f (v, ,vr)dv'  -  cr Jdv, Jv,f(v, ,vr)dv,
- t l l v2  0  -æ

(23)
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Theorem 3 (Equivalent Conftdence Coelftcient). Suppose that v:(vr,vz) is a random
vector having density function (vr,vz) (v1 real, vfO) where f is defined by (l l) and let
F be the distribution function of v1/v2. Then the confidence coefficient associated with

the optimum interval d":(dr,dz), where dr:mn*q1sn, dz:rrln*12sn, is

p{d' :d, < p < d2ip,o} = rh-t(t -clc,) l- r[q- '1cl"r)] Q4)

Proof. The confidence coefftcient corresponding to (p,o) is given by

p{(mn,sn) : mn +ïllsn ( p ( ûn +q2sn;p,o} = iu."u-J'l(mn,sn;p,6)dmn
o F-n2sn

=  P { ( v l , vz ) :  - 42  <  v t  / v2  <  -q t }

= F(-rr)-F(-qz) = rh-'0-c/c1)l- E[q-'1"1"r)] (2s)

This is independent of (p,o). !

Later when we examine specific fomts for p(mn,sn;p,o) we shall compute this
equivalent confidence coefficient. The way in which (24) varies with c, ct and c2, ând
the fact that cl and c2 are the factors of proportionality associated with losses from
overshooting and undershooting relative to loss involved in increasing the length of
interval, provides an interesting interpretation of confidence interval estimation.

3.4 Examples

Example | (Two-Parameter Exponential Distribution). Suppose that X=(x1, ... ,xn) is
a sample of independent random variables each with density frrnction
( I /o)exp[-(x-p)/o] (x>p). Then (mn,sn), where

mn=rn in (x r , . . . , xn) ,  , "=n- t | -Ë(* , - * " ) - . l ,  Q6)
L i= l  J

is a suffrcient statistic for (pl,o); also mn and sn are independently distributed, with

p(mn,sn;p,o, = 
î*o[- ry'l:)"' 

-j---*r(-*) (mn > pr,sn > 0),

(27)

f ( v1 , v2 )=ne -n " rnn - l vn -2 " -nv2 l f ( n - l )  ( v r  >0 ,v2>0 ) .  ( 28 )
so that
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The distribution functions of Theorem I and 2 are

F ( x ) = l - ( l + x ) - ( n - t ) ,  Q ( x ) = l - ( l + x ) - n  ( x > 0 ) .

It follows immediately from (18) that, when c/cftç/s2<1, the best
estimator is

d*  =( -n  - [ (c , /c ; r /n  - l ] sn ,mn -  lQ-c /c r ) - t ln  - l ] sn)

The equivalent confidence coefficient is also easily calculated as

p{d.:ct,  <p <d2ip,o, l  =(r-: l ' -""  - f : ' l ' -"" .
\  c z )  \ q )

If, say, c:5, cfcz:200, and n:5, then P{d-:d1<p<d2;p,o}:0.928.

When c/cr+clcz>l the point estimator is, by (19),

f r  1 l /n  I
*.- l l r*91 - l l ' " .

L\ cz) I
Only for large n, or for cr small compared with c2, will this be near mn.

mn =n- rË,x i ,  Sn  = [ , r - r r - 'Ë ,x i  -m" ;z ] t / z

(2e)

invariant interval

(30)

(3 l)

(32)

Example 2 (Normal Dîstribution). In many situations the assumption of a normal
distribution with unknown mean lr (location parameter) and unknown standard
deviation o (scale parameter) is made. There will then usually be available a sufficient
statistic (mn,sn) for (p,o) from the informative N(ir,ot) experiment (sample of
independent random variables X:(*r, ... ,xn)), where

(33)

are independently distributed, mn with distribution N(p,o2ln) and sn with distribution

1ol{1n-t)l{1t(n-l), so that the function f of (l l) is given for vr real and v2>0 by

'  (v l ) (n- t ) t " - ' ) /2vT-2exp[- (n- l )v l l2 ]
f(v1, v2 ) = 

ffiexpi ; l=--r-fid n _ \ t 2)

A simple calculation shows that the F and Q of Theorem 2 and 3 are the distribution
functiôns of n-r/2t1n-l; and [(n-l)t2ln]t(n) random variables respectively. It follows
immediately that when clcfçlçr<1the best invariant interval estimator is

(34)
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d*  =( -n  - t (n - t ; r /2 /n1 t1n1-c /c1)sn ,  mn - [ (n - l ; r /2 /n1 t1n ;c /c2)s" )  (35)

where t(n;p) denotes the p quantile of the Student t(n) distribution.

The equivalent confidence coefficient is easily calculated from (24) as

P{d' : d1 < F < dzip,o} = rh-t(t - c/c,11- r[q-tt"l.r)l

=r" - , (11n- l ) /n l r /2 t (n ;1 -c lc , i ) - r " - ,  ( t (n -  l ) ln l t / z t (n ;c lc r1 \  (36)

where Tn-r is the distribution function of t(n-l). If, for instance, c=5, ct=cz=200, and

n:2 l, then P {d' :d1<pcd 2;1,t,cl:0.944.

When c/c1*c/c2>1 the appropriate point estimator of p is

mn - [ (n -1 ; r /2 /n1 t [n ;c1 / (cy  +cr ) ]sn .  (37)

When overshooting and undershooting are equally punishable (cr:cz) the point
estimator becomes mn.

4 Interval Estimation of a Scale Parameter

4.1 Problem Statement

We are now interested in scale-invariant linear-loss functions. An argument similar to
that of Section 3 leads to intervals scale-invariant under the loss function

(o < dr) ,

( d1  <o<d2 ) ,  ( 38 )

(o > dz).

I  
c,(d' - o) * c(d, - d, )

l o o

r(o,d)=l*ït

I  
c (d,  -d , )  

*  
cz(o-dz)

l oo

The decision problem specified by the informative experiment density function (l l) and
the loss function (38) is invariant under the group G of transformations. Thus, the
problem is to find the best invariant interval estimator of o,

d' = zrrg min R(o,d), (39)

where e is a set of invariant interval estimators of o, R(c,d)=E"{r(o,d)} is a risk

function.
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4.2 Best Invariant Estimator

It follows from Corollary l.l that an invariant loss function, r(o,d), can be transformed
as follows:

where

(40)

(41)

r(o,d) = i(v2,I),

f  . , ( r l ,u ,  - l )+c( r1 -q)v :  (v2  > l /q1) "

i (vz , r1 )=1c(qz-q)vz  (1 /q '  2v r> l / r1 r ) ,

l c2( l - r12v2)+c(q t  -q ' )v r  (v r  < l /q r ) .

v2=snl o; n=(q r,n2), e r :dr/sn, Qz:dzlsn.

It follows from (41) and Corollary 1.3 that the
expressed as

@

R(o,d) = E"{r(o,d)}= En{T(vr,r1)}=.,  J(n,u, -  l ) f (v2)dv,
l / n t

l l r l2  @

+c, f(l -r1zv)f(v)dv, +c(r1, -r;,)f vrf(vr)dvr,
0 0

(42)

which is constant on orbits when an invariant estimator (decision rule) d is used, where
€

f(vr)= Jf(v ' ,vr)dv,
- @

is the marginal distribution associated with (ll). The fact that the risk (42) is
independent of o means that a decision function 1:(nr,n2) which minimizes (42) is
uniformly best invariant.

The results corresponding to Theorem 2 can be expressed in terms of the marginal
distribution (43).

Theorem 4 (Best Invariant Estimator of o). Let Q be the distribution function
corresponding to the density function

risk associated with d and o can be

(43)

urrlur;fiu,rturpur] (uu > o), (44)

where f is defined by (a3).

(i) If c/cr+c/c2<l then the uniformly best invariant linear-loss interval estimator of o is
d*=(r1 1sn,q2sn), where

Q ( l / n r ) = l - c / c r ,  Q ( l / q z )  = c l c z .
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(ii) If elcftclczàl then the uniformly best invariant linearloss interval estimator
degenerates into a point estimatorq. sn, where

Q(l/n.) = c' /(ct + cr). (46)

Proof. The proof is similar to that of Theorem 2. n

Corollary 4,1 (Minimum Risk of the Best Invariunt Estimator of o). The minimum
risk is given by ( | .

R(o,d') = Ee tr(o, d- )|= En {i'1vr,n;}

=-cr if(vz)au,*.r"f i1v2)dv2 g7)
l / q r  0

for case (i) with n=(nr,nz) as given by (a5) and for case (ii) with rlr:nz=11. as given by
(46).

Proof. These results are immediate from (42) when use is made of ôEn { ï (v,n)}/an 1 :

ôEn{ ï(v,n)} /ùz= 0 in case (i) and ôEn{ i(v,(q. ,q.))}/ôrl.:0 in case (ii). D

43 EquivalentConfidenceCoeflicient

The evaluation ofthe equivalent confidence coeffrcient for the case c/cr+c/c2<l is the
content ofTheorem 5.

Theorem 5 (Equivalent Conlidence Coelficient). Let F be the distribution function
corresponding to the density function f(v2) (v2>0). The confidence coeffrcient associated
with the optimum interval d':(dl,dz), where dr:4rs6, d2:{2sn, is

p{d' : d, < o < d2;o} = Fh-r (l - c/c,11- r[q-'1clcr)J (48)

Proof. The confidence coefftcient corresponding to o is given by

o/ r l t  @
p{sn : r.1sn < o < rl2sn;o} = jdsn Jp(mn,sn;p,o)dmn

-  =  P { v z  : l l q 2  < u ,  . l / q , 1  

o ' n '  - @

This is independent of o. !
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4.4 Examples

Example 3 (Two-Parameter Exponential Distribution). The relevant formulae for the
exponential case of Example I can be expressed in terms of incomplete gamma
functions l(a,b) and their inverses (Pearson, 1922) since

f(vr) = nn-lun-2"-nv'? /f(n - l) (vz > 0).

When c/cy+c/c2<l the best interval estimator of o is

6- = (d,,d2) = (q1sn,n2sn),

where
/ Ç  \  / i -  

\

t [ * ,n - t  l= t  -c /c1 ,  t l * ,n - l  l= . / " r .(n '  /  \nz  )

The equivalent confidence coefficient is given by

(50)

(5 1)

(s2)

(53)

If, say, c=5, c1:c2:200, and n=5, then P{d":d1<o<dz;o}:0.910.

Example 4 (Normal Dîstrîbution). For the normal situation described in Example 2 the
density function (v2) is given by

f(vz ) = (n - t)("-')/1vi2 exp[-(q_-_ t)v3 I z] 
(vz > 0), (54)

2(n-s)rz;11n - l ) /2) \ 'z -  - /

so that F and Q of Theorem 4 and 5 are the distribution functions of 12621n-t/(n-l)]tr2
and 1121n;/1n-l)]r/2 random variables. We thus have the best interval estimator of o,
when c/cr+c/cz<I,

6'  = (d1,d2) ,

where

p{d- : d, < o < d2;o} = thfu," -2)-t[;fu,"-r)

.  s . V n - l
sl - r-;--

{ X ' ( n : l - c / c ' )

.  . " Jn - t
s2 - r--;--,

{1 '(n;c/cr)
(s6)

(ss)

x,2(n;p) denotes the p quantile of the 12(n) distribution.
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The equivalent confidence coefficient is given by

P{d' : d' < o < d2;o} : f"- 'fu2{n; I -clc,)l-T"-r [26t1n;"7"r)J

If, for instance, c:5, a1az=200, and n:21, then P{d-:d1<ocdz;o}:0.945.

(s7)

Conclusions

In this paper we construct the best invariant interval estimators. The method used is that
of the invariant embedding of sample statistics in a loss function in order to form pivotal
quantities which make it possible to eliminate unknown pammeters from the problem.
This method is a special case of more general considerations applicable whenever the
statistical problem is invariant under a group of transformations, which acts transitively
on the parameter space. It is easy to see that the method given in this paper is simpler
compared to any other method available so far, for solving the above problem.
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