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Abstract
This paper builds on the previous results achieved in designing pole assignment
controllers for the l"t and the 2no order systems with constrained control signal. By
examining properties of the control loop with the reduced relative degree of the original
plant, it prepares methodology for applying the achieved results for controlling higher
order systems with constained input. The success of the relative degree reduction by
introduction of a fictive output that involves derivatives of the original output is shown
to be dependent on the anticipation of the working range of the controlled system.
Keywords: Control sigrral saturation, minimum time pole assignment control, exact
linearization, relative degree reduction.

I Introduction

Control sigaal saturation represents on of the most important nonlinearities in the
control design. For many decades it is attracting attention of the researchers, but despite
many different approaches, still its role in the control design is not sufficiently clarified.
In a serious ofpapers, authors and their co-workers are developing new approach based
on dynamical classes of control. The newly developed controllers have been denoted as
the minimum time pole assignment (MTPA) controllers. It was shown (Huba et al.,
1999a\ that for the l't order systems the MTPA controllers correspond to simple P-
controller. Here, the control signal saturation does not cause any serious problems, like
e.g. overshoot, or oscillations. It just prolongs the transient responses and restricts the
allowable set point, disturbance and initial state values.
For the 2no order systems, the output of the linear pole assignment controller already
cannot be constrained to an arbitrary value. For linear 2no order systems (wittr the
relative degtee 2), it is possible to derive minimum time pole assignment controllers
(MTPA), whereby the complexity of the controllers does not reasonably exceed simple
linear PD-controllers. However, the complexity of the analylical design of the MTPA
controllers reasonably increases already in controlling the 3'o order systems. So, there is
a high motivation for looking for suboptimal simplified solutions. In order to explain
the problems faced in the suboptimal control of higher. order systems, we will firstly
analyse MTPA and suboptimal control of the linear 2no order systems. Then, we will
extend our attention to the nonlinear and higher order systems.
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2 Minimum Time Pole Assignment (MTPA) Control Algorithms

2.1 Continuos MTPA Control Algorithms

For the lst order system represented by the simple integrator
o'!l) = K,u(t) (r)

dt

the continuous P-controller can be developed as

u = - K n y ;  K r = 1 1 K , (2)
ldeally, it enables to assign the close loop pole to any valuel e (-æ,0). This controller
fulfills the condition of decreasing the output towards zero, whereby the closed loop
pole y represents the coefficient ofthe decrease defined by the differential equation

49=r, (3)
dt

Due to the control saturation given usually in the form
u e \{l,,Ur) (4)
the last equation can not be fulfilled from an arbitrary initial point. There exists the so-
called proportional band of control (PB), over which the condition given by eq. 3 is
fulfilled. The points outside this zone are influenced by the factthat the P-confroller eq.
2 is followed by the limiter guaranteeing eq. 4. So, outside of the proportional zone, the
MTPA control algorithm holds the control sigrral at one of the limit values up to the
moment of reaching PB, when the control signal starts to decrease exponentially,
tulfilling eq. 3.

For the continuous control of the double integrator, the minimum time pole assignment
controller have been proposed (Huba 1999b) guaranteeing a regular speed of the
distance decrease ofthe reference braking curve. The distance is measured in a defined
direction between the representative point and the chosen reference braking curve. The
quotient ofsuch a decrease is specified by one ofthe closed loop poles. The 2nd pole
characterizes the speed ofthe distance decrease along the reference braking curve to the
origin. For a chosen double real pole y , sampling period 1, given conhol signal
constraints eq. 4, y being the output with the required state shifted to the origin and
i = dy / dt its derivative, the anticipatory system is accomplished when designing the
control algorithm by the following formulas
if y < 0 then U, =Ut else U i =Ur.
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t' = L'-'
e l s e u = r o ! + 4 i  r o = - y ' ; 4 = 2 y

if  u <U, then u =Ur

if u >U, then u =Uz
Due to the last limitation, the control signal take the non-saturated values just in the
proportional zone surounding the reference braking curve. In Figs.l-2, this is outlined
by the line segments (corresponding to the linear algorithm applied for lower velocities)
and by the parabolic curves corresponding to the limit values u=Ur and u=U, for
higher velocities.

Repeating the procedure outline in (Huba, 1999b) for the I1T1 system described by the
differential equation

,=+fu- ù (6a)-  r^ '
with tile corresponding transfer function

F(s)=d"-f
one gets the reference braking line

I
y = - y

for velocities lying between the values

... ul
Y r  - -  .  Y .  -

y , T r + l ' - '  y r f o + l
Out ofthis range, the reference braking curve is described as

|  fu ' -nYv,? i+ l )  I
v = w , T " + l y , T " l n \  '  ' / v '  v  / - l l U ,

"  
1 , , "  U i T , T o  ) ,

The control algorithms guaranteeing desired speed of approaching
segment of the reference braking curve is given for the double real pole 1

| ,+r^(u,- o1*[(u, 
-vhr. *r)1-r-, I

| .- 1 u1To I v I
e - I ) ) /  t  ) / r O  u  j  , O v j [

lv l
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else, in measuring the distance from the linear segment of the RBC

(s)

t (  v '  u , )
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(6b)
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u= roy+ \ i ro =-y'To ;  r ,  =zyTo - l (1  1 )
Output of the confoller has again to be limited to the allowed limits given by eq. 4.
The corresponding proportional band and transient responses are shown in Fig.34.

Comparison of the both systems shows that in the case of the IrTr systems and relatively
slow poles the shape of the nonlinear part of the proportional band is much closer to its
linear segment. So, it is to expect that the linear desigrr procedure will give satisfactory
results in such a cilse.
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Fig. 1: MTPA controller for I2-system. Proportional band and the system
trajectories in the phase plane for 3 different reference signal steps (left) and the
corresponding output and control signal time responses. | = -2)U ̂ in = -l; U ** = 2;

Fig. 2: MTPA controller for I2-system. Proportional band and the system
trajectories in the phase plane for 3 different reference signal steps (left) and the
corresponding output and control signal time responses. T = -10;U,in = -1; U ** = 2;
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Fig. 3: MTPA controller for I1T1-system. Proportional band and the system
trajectories in the phase plane for 3 different reference signal steps (left) and the
corresponding output and control signal time responses.
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Fig.4: MTPA controller for I1T1-system. Proportional band and the system
trajectories in the phase plane for 3 different reference signal steps (left) and the
corresponding output and control signal time responses.
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2.2 Discrete MTPA Control Algorithms

While the continuous algorithms are given by simpler formulas, from the practical point
of view it is easier to work with their discrete time counterparts. The reasons are given
by the facts that the nonlinear control laws are much easier to be implemented by digital
techniques than by the older analogous one. By an appropriate choice of the sampling
period it is furthermore possible to achieve additional effects, e.g. to reduce the
influence of the neglected dead time.
Before showing the more sophisticated discrete algorithm for the 2no order integrator it
is useful to show the basic idea on the example of the 1" order system represented by
eq. 1 where the control signal limits eq.2 are to be considered.
For such a simple integrator the discrete P-controller with the sampling period T can be
designed
u(n)=-K*y(n);  K*=(l-)u)/KrT (I2)

where choosing parameter y allows to assign the close loop pole from the

value l. e (O,t). This controller fulfills the condition of decreasing the output l,-time in

each step.
y(n +l)  =?"y(n) (13)

Because of the control saturation the last condition can only be held for a limited range
of initial points called proportional zone of control. For the points outside this zone the
control law is given by the P-controller eq. 12 and consequently constrained by the
limiter eq. 2. This means that the suboptimal control algorithm is created by the limit
values of the control signal until the condition of the maximal decrease eq. 13 could be
ful{illed when it produces values of P-controller.

For the discrete time controt of the double integrator, the minimum time pole
assignment controller have been proposed (Huba et al. 1998) guaranteeing a regular
decrease ofthe representative point from a chosen reference braking curve. The quotient
of such a decrease is specified by one of the closed loop poles. The 2nd pole is
characterizing the distance decrease along the last segment of the reference braking
curve to the required state. For a chosen double real pole I , sampling period I, given
control signal constraints eq. 2, y being the output and d = dy I dt its derivative and the
required state shifted to the origin, the anticipatory system is accomplished when
designing the control algorithm by the following formulas

p = 2 v + r l + ) "  o
1 - 1 "

I f ( y < 0 )  U , = U ,

else U. =Uz

P 2)"
I I

u,T' 0-À)'
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l-6î' +7'2 , p

40-)\)' 
- u f

N = /PI 1;3',t. +
l2(r - r)

(14)

else N: 1

Resultant controller corresponds to a piecewise linear PD-controller

ur = sat{roy + rrd + r"\ (15)

with parameters depending on the integer parameter N

(r - i.)''o =-F6llN-il-r;

(16)

(t - l[(t -r[r + i,)+(N -l)'(r -ùV,

3 Reduction of the Relative Degree by Defining a New Output

Let us start our explanation by taking the IrTr system

ç:Lfu_;,\' T n

After defining a new (fictive) output that includes the derivative of the original output

! y = f + 7 1 !
and expressing from the last equation

v= ! ( r i , - r ; )-  T . * '
for the new output the system equation will be

r. ( r,\
i . = - - J -u+ ; ' l  t - : r l  QO)

T o  
- \  T o )

This anticipatory system can be interpreted as the l" order system with a "disturbance"

caused by the velocity of the original system. It is interesting to note that for Tr = To

from the point of view of the new output the systems behaves like the l"-order - single

(17)

(18)

(1e)

integrator system. So, it can be controlled by the P-controller eq.2 as

u = - K * ( y r - . \  K * = 1 T o l r ,

Transient processes consist oftwo phases:
- transient towards the required value w of the fictive output y r ûd

(2r)

(t-rI: + À +z(.rr-1X1-01
zrli+(n-tXt-r,I
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- non-controlled dynamics described by the homogenous differential equation
g = y +Tyi, .

In order to achieve suffrciently fast dynamics of the final phase of control, Z, should be

as small as possible. However, by decreasing T, the effective gain r(, = T, /To of the
fictive system decreases and the up to now "neglected" disturbance caused by the signal
y is becoming on intensity, what can finally result in instability. So, in applying this
approach to the control design of 2no order systems by using the control algorithms
derived for the l't order systems, one has to look for optimal balancing of these two
counteracting demands. After expressing the control algorithm in terms of the real
output as
u = - K r ( y - . - T r i )  Q 2 )
it is to see that the new algorithm is actually the PD-controller with the time constant of
the derivative action Tr. The proportional band of this controller will be outlined by
two lines
u, = -K *(y -, - T1i) ) (J z = -K ^(y - * - ry i,)
Obviously, by choosing constant values KR,T., it is not possible to approximate the
proportional band of the above MTPA controller in a broader extent. So, the success of
this approach is depending on the anticipation of the range of possible initial states that
have to be considered by the designer.
These conclusions are yet much important in the case of controlling pure double
integrator (I2-system)

i =u (24')
After defining the new (fictive) output eq. 18 and expressing the 2nd derivative
according to eq. 19, for the new output the system equation will be
j)1 = Tru + 5t (25)
Here, the output derivative acts as an outer disturbance of the fictive system for each
value of T, .The P-controller processing the fictive output

u = -K ^(y r 
-.\ K * -- -'y /Tr e6)

variable leads finally again to the PD-controller given by eq.22 with the striplike
proportional band eq. 23.

A decrease of I, necessary for faster dynamics ofthe final phase ofcontrol decreases
the effective gain of the fictive system and so makes it harder to eliminate the influence
of the "outer disturbance". Again, for each initial condition, it is possible to find
appropriate control loop parameters, but the dçendence on the initial state is much
stronger as in the previous case; The anticipation of the possible working area becomes
now one important stage of the controller design.

(23)
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4 Exact Linearization of Nonlinear Systems and Reduction of Relative
Degree

The nonlinear system is given in the form

xb) = f(x)+b(x)u (27)

Y = h(x)
After appropriate coordinate transformation it could be expressed in the controllability
canonical form

(28)

Y = X r

that has the relative degree equal to the order of the system. In the linear systems the
relative degree expresses the difference between the order of the denominator and
numerator of a transfer function. In fact, it corresponds to the number of derivation of
the ouput until the input appears.
In the case the relative degree differs from the order of the system there exists the so
called "zero dynamics" that is not influenced by the input and therefore it is desirable
the zero dynamics to be stable. Choosing the dummy output in the form

ln=xr*iT*:"
i= l

where t e R'(because of stable zero dynamics) it is possible to decrease the relative

degree. Then it would be necessary to derive the new output yn (n-a) times in order the
input appears in the derivation. Thus the relative degree was reduced by the number a.
The control value that cancels nonlinear behavior and introduces the desired closed loop
poles can be expressed

t  (  . , )'=#[-to'.i)
where v represents the polynomial of x

n-l

v = - x[n- o) -,=F,I- *"4 - ko(y 
" 

- w) - k,i'. - "' - k n-o-ty:' 
-o -t)

with appropriate chosen coefficients ft, so that the polynomial

p(s) =sn +& -,s(n-t)  +. . .+ ko
will have all roots in the left half plane with exponential stable dynamics.

(2e)

(30)

(31)

(32)
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This approach splits the control of the given dynamical systeNns into two phases. First,
the fictive output y" is controlled to the reference value and later the original output is
damped out according to chosen time constants 4 .

5 Application of Designed Algorithm to Control of Two-Tank System

The quality of the designed control method was proved on the real two-tank system
(Fig.s) that can be modeled by the following nonlinear differential equations:

+i

+

* 
= 

*n, 
-P,Jh, -r ',

/th

î 
= p, Jh, -lt, -p, Jtr,

Y = h a

Fig. 5: Two tank system (33)

where h1 and, hz axe state variables corresponding to the heights of liquid level in the
first and second tank respectively and qy is the input representing the amount of liquid
flowing into the first tank per time unit. Parameters p, r€present hydraulic resistance

constants (Ê, =0, =0.02214, Ft :0.01165) and parameters,Sr.: denote the areas of
tanks (S7:,S2 :2.025 I 0-3 m2;.
The given nonlinear system can be transformed into the controllability canonical form

! = h z = z r (34)

(3s)

(36)

L, = j, - ù, = 9,J 44 - g,JU = 
",

dh, dh" dh dtà, = i  -  
; ; .  ; ;  

= a(4,4)Q, + b(4,4)

wherebv

Then the exact linearization method can be applied that linearizes the given nonlinear
model and consequently the suboptimal control algorithm is used that gives the results
shown in Fig.6:
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a)

th,lnl

-> t(s) -> t(s)

Fig. 6: Responses from the real experiment for \.r:0.8
a) outputy=à7 and the state h2 b) control variable

These can be compared with those achieved using the relative degree reduction method.
However, in this case it was not necessary to apply the more sophisticated suboptimal
control algorithm derived the 2no order systems, but this was replaced by the simple
suboptimal PD-controller. A decrease of the controller gain leads to a softer control, but
simultaneously increases the permanent control error and the settling time.

h'[m] "
h:[ml *

A

a,)

-> t(s)

b)

-> t(s)

U tV]

+.

Fig. 7: Responses from the real experiment using the relative degree

reduction method (parameters: \': 0.8, Tr10 )
a) outputy:ht and the state &2 b) control variable

6 Pendulum Control

Problem of pendulum control can often be met e.g. in car.go crane control, but it is
simultaneously frequently used for testing different control algorithms. In this paper, the
attention will be focussed on the controller design respecting given control signal
constraints.
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Fig.8: Pendulum

State variables:
x" - cart position; g - rod angle; f' - constrained force ( t 50N)

Parameters:
m"=2l.8kg -cartmass; m, =0.215k9 -rodmass; /=0.165 m -todlength

8 = 9.81 ms-2

Under neglecting Coulomb and viscose friction the plant behaviour can be described as

.. F + rn, sin<p (g cos<p + /tp ')
- . . -'  m" +2, sin2g

.. - ï- cosrp gsin<D
' t l

The task is to control the load position

- y = x " * / s i n g

For a relatively small deviation g the output equation can be linearized

Y = x " 1 1 . 9
After introducing state vector x and measurement vector ym

f:l'=li I'
Le l

in the neighbourhood of a chosen operating point xo=O the system can
linear state equations
* =  A x + b u

! ^ = C x ,  y = [  I b , = " ' r ;  
" ' = Ï l  

0  /  0 ]

['".lt '=L*l

(37)

(38)

(3e)

(40)

(41)

be described by

2W

(42)



whereby

1 =

01

00

00

00

b -

0
I

mc

0
I

m"l

ool
t0 l

0
m"- g
mc

0
- f l " * f f i r  S

m. I

0

0

I

0

[ ro
:  C = l.  

100

G,,,(s)=FG4;5 ; K =ftt t  r l - + m .  g
O ) - = - :

m c l

It may be transformed to the form

G,,,(s)=m#.r) ; Ks =#=#i' ': =#

The transfer function corresponding to the defined output y is

relative degree reduction.
Infoducing a fictive output defined as

!7=!+(71+Tr ) i ,+T[z i
the corresponding transfer function is

G.. ,..(s) - 
Kr(r+(T +!r_)s +T[zs')

- r 1 r u t - t  
s 2 ( f f s t  + 1 )

(43)

(44)

Since for a 4th order systern a requirernent of the strictly minimum time control leads to
very sophisticate algorithms, it will be shown how the design can be based on the
minimum time pole assignment controller (see e.g. Huba, 1998) and an appropriate

(4s)

(46)

For ,->0, when .s-)æ, the step response of yrcan be approximated by a double

integrator with the gain ry, since the approximation error e(t) approaches zero:
l o

T,T,
(47)

However, with increasing time this approximation becomes less precise, therefore,
under sampled data control, it can be used just for relatively short sampling periods. In
order to avoid multiple differentiation procedures, following signals will be computed
from ameasured signal y-:

! = c r x
j , = c ' i = c ' A x

i  =c ' ) i=c 'A 'x

î  = c ' î  = c ' A t x

= Q

(48)
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These derivatives are then substituted into the fictive state variables yr and .vy, which

are finally led to the MTPA-controller desigrred for the double integrator.
Extensive simulation and experimental work has been done in order to investigate
dependence of the control quality from the (double) closed loop pole 1,, sampling

period T and the time constants ft a Tr. Simulations carried out in
MATLAB/Simulink give results very close to real experiments. They show that it is
necessary to work with relatively short sampling periods (in the range of 10ms) and
with the time constants Tr,Tz:2T0. The value of the closed loop pole l" has to be taken
greater than 0.8, in order to compensate parasitic time lags and also to compensate the
parasitic influence of the signal quantisation. Oscillation noticeable at the settling of the
transient responses are mostly due to the quantisation of the rod angle (0.0015 rad),
where it could be appropnate to use IRC with a higher resolution. Examples of the
achieved transients are shown in following figures:

50
u 4 0
N l *

æ
10

0

-10

8 t [ " ]  1o

50
u 4 0
lNl eo

20

10

0

-to

-8

€{)
-40

-50
I ttsl 10

Fig. 9: Pendulum control. The output transients are increasingly damped for increasing
the time constants Tr,z:2To,3To, 4To (a) and the corresponding control sequences (b-d)
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7 Conclusion

From the comparison of the control responses in the case of the two tank system one can
see that when limited to a broader set of initial conditions one can also use simpler
suboptimal controller based on lower order systems. The disadvantage of this method
can be the absence of a procedure how to tune the parameters Ii. Also the model of the
system must be identified more accurately in order to avoid a permanent error. But
adding l-action into the control law could solve this problem.

Similar conclusions can also be done in controlling pendulum. In both cases the carried
out experiments and simulations shown good corespondence between the used model
and the real plant and also that between the achieved and expected results what was due
to the respecting the saturation limits. So, the control signal saturation represents one of
the most important components of the complex anticipatory systems. The dominant
factor in the controller design showed to be the quantisation and measurement noise,
whose effect should be taken also in the final decision in looking for an appropriate
controller.
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