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Abstract
A mathematical model lbr a random population has been developed and implemented in

computer simulations of group bias within populations. For uncorrelated categorical
attribution and bias, although the average bias characterizing different populations may
differ dramatically, groups within a given population are found to have remarkably similar
biases. For correlated categorical attribution and bias, the tendency of the groups within a
given population to have similar biases is reduced. That is, groups within a population now

exhibit a greater range of biases. I'his latter model, w-hich is based upon assumptions that

are more realistic. thus leads to results that are more realistic.
Keywords: bias, prejudice, categorization, computer simulation, random populations.

I Introduction

[he i\aturc ol l'rejudic'e (Allport, 1954) is a classical rvork describing prejudice both
phenomenologically and analltically. This work is sutficiently insightful and
comprehensive to provide a basis for developing a mathematical model of prejudice. One
of Allport's fundamental concepts is that of category.

In this manuscript, a mathematical model will be developed rvhich incorporates these
features of categorization and prejudice. Although this rnodel is described in detail in the

next section. a brief infbrmal description is given here. It is assumed that there are a certain
number of categories. Each category is either attributed to a given individual, or else
another category, called the negation (or complement) of the original category, is attributed
to the individual. The original category and the negation are ofequal status; either could be

designated as "the category" and the other as "the negation."
It may be difficult at first to understand the difference between the concepts of

"categorical attribution" and "group." A mathematical analory may clarify this distinction:
The number "2" has the "categorical attribution" of being even. We may detine the set (or

"group") of all elen numbers, and "2" is obviously a member of this set. However, even if

the concept of set had never entered into the human imaginatiorL "2" would still have the

"categorical attribution" ofbeing even. In his discussion ofthe æriom schema oJ'separation,
Suppes (1972,p. 6) explains that this axiom " . . . permits us to separate offthe elements of

a given set rvhich satisfy some property and form the [sub]set consisting of just these

elements. . ." In our case, we want to separate offthe elements (individuals) of a given set

International Jourrnal of Computing Anticipatory Systems, Volume 9,2001
Edifed by D. 1t{. I}ubois, cHAos, Liège, Betgium, IssN 1373-54ll ISBN 2-9600262-2-5



(population) which satisff some property (a particular categorical attribution) and form the
subset (group) consisting ofjust these elements.

The real-world context of this theoretical model is exemplified at one extreme by
members of one group trying to help members of another $oup, while at the other extreme,
members of a group may commit genocide upon members of another goup.

An expanded version of this manuscript is available at
http:/wwrv. science. gmu. e dul -bzeeber gl CASYS2000/frames. html

2 The Model

2.1 Abstract Ilefinition
A population consists of a number of indiviclual.ç. Individuals are assumed to be living
sentient humans. A cutegtry is the abstract product of the collective minds of the
individuals within the population. To paraphrase Georg cantor (Kamke, 1952, p. l), it is a
definite, well-distinguished object ofour perception or ofour thought. A category has three
essential properties: (l) the negcttion of a given category is attributed to each individual to
whom the given category is not attributed, (2) any individual can recognize the attribution
of categories for any individual, and (3) a given category is associated with a categorical
bias toward either another or the same category.

For example, consider a population consisting of four individuals (lnd I, Ind 2, Ind 3,
and Ind 4) with four categories (cat l. cat2, Cat -1, Cat -2), the last two being the
negation of the first two (Table l). If cat I is "female," then cat -l is "male." The number
of categories will be symbolized by "N_CAT," rv-hich includes both the categories and their
negations, so that in this example N_CAT:4.

Table l: Categories Attributed to tndividuals
Cat I Cat2 Cat-2 Cat'l

Ind I
Ind2
Ind 3
Ind 4

I
0
I
I

0

0
I
0
I

A group consists of those individuals to whom is attributed a given category. There are four
groups (one for each category) resulting frorn this arrangement (Table 2). Each gïoup name
conesponds to the name of the category defining that group. For example, Grp I consists of
those individuals to whom are attributed Cat l. Thus, the category is an attnbute, and the
group is the set of individuals having that attribute.
There are three possible relationships betueen groups: (1) an itlentity relationship is
exemplified by "Cat l" in relationship to "Cat 1", (2) a mumatly etclusive relationship is
exemplified by "Cat l" in relationship to "Cat -1," and (3) a general relationship is any
relationship that is neither identity nor mutually exclusive, exemplified by "cat l" in
relationship to "Cat 2." Each individual in Table 2 is associated u/ith two categories. Thus,

0
0
I
I

I
1
0
0
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Table 2: Groups Conesponding to Table I

Ind I Ind2 Ind 3 Ind 4

l

1
0

1

0
I

0
1
0
I

0
0
l
I

the first row in Table 2 corresponding to Grp I could be expanded as

Y""ofirstrow 
oitabte2

lnd 1 lnd2

7 \exRand rows of table 1 
/ \, / \

J \ } \
Cat 1 Cat2 Cat 1 Cat - 2

2Çat1

t \""2i'- ,
and Table 2 can be reformulated in terms of the categorical composition of each group
(Table 3). Note that the matrix associated with Table 3 is, of necessity, a symmetrical
matrix. Each entry for a given group in Table 3 can be normalized (by dividing each rott'
enûry by the row sum) so as to rellect its fractional contribution to the group (Table 4). This
process of normalization, in general, will remove the symmetry (although in this particular

example the symmetry happens to remain).

Table 3: Categorical Composition of Groups

Cat I Cat2 Cat -2 Cat -1

Grp t
.,

1
t

0

1

2
0
I

I

0
2
I

0
1
I

)

Grp2.
Grp^2
Grp -1

Table 4: Fractional Categorical Composition of Groups

Cat I Cat2 Cat-2 Cat-1

.50

.25

.25
0

.25

.50
0
.2s

.25
0
.50
.25

0
.25
.25
.50

1 6 1



Finally, the group bias of the perceiver group toward the perceived group rvould be
computed as the weighæd average of the categorical biases. It should be emphasized that
the group bias is not necessarily the same as the bias that a particular member of the group
would exhibit; rather, it is the ensemble average bias for the group as a whole. Any two
members of a group may very well exhibit biases that are different from the ensemble
average and from each other.

2.2 Numerical Example
Suppose now that the categorical biases (including the net effect ofseveral factors, such as
visibility, strangeness, and oversimplification (Allport, 1954, pp. 129-136) happen to be as
shonn in Table 5.

To complete the hypothetical illustrative example set up in Tables I - 5, we define
frac(i.k) as the entry in the ith row and kth column of Table 4 and cat bias(kl) as the entry
in the kth row and lth column of Table 5.

f"Ut" St C"t"g"ri"d ei

Prncsrven
Cat 1 Cat2 Cat^2 Cat -l

PsncrryrR
Cat I + . 1 2

- . 1 3
-.28
-.34
+.39

a n- - L  I

- . 14
+.21
+.03
+.09

+.02
-.07
+.21
-.35

Cat2 .
Cat -2

Cat *l
-.45
- . l t

Then the group bias for perceiver group 1 to*'ards perceived group 2 can be calculated
from Tables 4 and 5 as
group bias(1,2): fract(l,1) x

[frac(2,1) x cat bias(1,1) + fract(2,2) x cat bias(1,2)
+ frac(2,3) x cat bias( 1,3) + fract(2,4) x cat bias( 1,4)l
+ fract(1,2) x
[frac(2,1) x cat bias(2,1)+ fract(2,2) x cat bias(2,2)
+ fract(2,3) x cat bias(2,3)+ fract(2,4) x cat bias(2,4)J
+ fract(1,3) x
[frac(2, I ) x cat bias(3, I ) + fract(2,2) x cat bias(3,2)
+ fract(2.3) x cat bias(3,3) + fract(2,4) x car bias(3,4)l
+ fract( 1,4) x
[frac(2,1) x cat bias(4,1) + fract(2,2) x car bias(4,2)
+ fract(2,3) x cat bias(4,3) + fract(2,4) x car bias(4,4)l

: .50 x [ .25 x(+.1];  * .50 x (- .28) + 0 x ( .14) + .25 x(+ 02)I
+ .25 x [ .2s x ( .13) + .50 x (- .34) + 0 x (+.21) + .ZSx(_.07)]
+ .25 x[ .25 x (- .a5) + .50 x (+.39) + 0 x (+.63y + .25 x1+.2t) ]
+ 0 x [ .25 x (- .1 l )  -  .50 x (- .27) + 0 x (+.69; + .25 xG 35)]
: -.07375.
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This represents a relatively small negative bias, since if all the entries in Table 5 had been

the maximum value of +0.5, then group bias(1,2) would have been +0.5.

2.3 Formal Nlathematical Development
In a mathematically formal sense, the group bias for perceiver group i toward
group j is computed as the weighted average of the categorical biases

group bias(i,i): I fract(i,k) ! fract(,1) cat bias(k,l)
Eq. I can be convenientl-v expressed in a matrix representation as

G:  FCF I

perceived

( l )

(2)

where G, F, and C are matrices representing group bias, fractional categorical composition
of groups, and categorical bias, respectively. Since the number of groups is equal to the

number of categories, all the matrices involved in eq. 2 are square matrices of the same
size. Completing the numerical example by applying eq. 2 to the matrices given in Tables 4

and 5 results in nurnerical values for the matrix G (Table 6). Note that 91,2 is equal to the
numerical value of -.07375 that had been computed above for group bias(1'2).

Table 6: Group Biases

Pe,ncrtvEo

Grp I Grp 2 Grp -2 Grp -l

PERCEIVER

Grp 1 ... .......-0.07688 -0.07375

Grp 2 . . . . . . . . . . . -0 .08500-0. I 9875
-0.01500
+0.00125

-0.0 I  188
-0 .1  1250

Grp -2 ........-0.09625 -0.02125 -0.04875 +0.02625

Gm -l  . . . . . . . . -0.10438 -0.1462s -0.032s0 -0.07438

The matrix representation G (w-hen arranged as in Table 6) is particularly convenient, since
the diagonal terms running from upper left to lower right (gi,1) constitute the identity
relationship, the diagonal terms running from upper right to lower left (gi,-;) constitute the
mutuall-v exclusive relationship, and all other terms constitute the general relationship.

2.4 Inversion of G = FCFT
The matrix F (eq. 2) can be expressed as

F :  D S  ( 3 )

where S is a symmetrical matrix that corresponds to Table 3, and D is a diagonal matrix

with terms

di, i :  l i  I  s1;
Thus, eq. 2 can be written as

G: DSC(DSIT : OSCSTDT : DSCSD
Since S is a real symmetrical matrix, by the Fundamental Theorem on Symmetric Matrices
(Fiedler, 1986, p. 50), S canbe expressed in the tbrm

s--oDoT (6)

(4)

(5 )
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where D' is a real diagonal mptrix whose diagonal entries are eigenvalues of S, and O is an
orthogonal matrix, whose kth column is the eigenvector of S corresponding to the kth
diagonal entry of D'. Therefore, eq. 5 can be written as

G : DSCSD : D(OD'OT1C(OD'OT)D
By the definition of an orthogonal matrix

oT:  o-1
and eq. 7 can be written as

c : D(oD'o-l ;ç1OO'O-1;O
Finally, eq. 9 can be inverted as

C : 1OD-l O-1O- I )C(OP'IO- I D-l )T

(7)

(8)

(e)

(10)
The significance of eq. 10 is that the categorical bias C, which might otherwise have been
regarded as a mathematical abstraction, can in principle be calculated from the empiricalll'
determinable matrices G and F.

2.5 Random Populations
A random population consists of the trvo random matrices F an<I C corresponding,
respectively, to Table 4 "Fractional Categorical Composition of Groups" and Table 5
"Categorical Biases." The underlying concept is based upon computer simulation studies of
random fitness contributions of genetic loci reported in The Origins of Orrter (Kauffman,
1993, pp. 4244). The general procedure is to generate a random population and determine
the numerical values corresponding to certain statistical properties of that particular
population. The whole procedure is repeated for a large number of random populations.
Finally, the accumulated set of numerical values corresponding to the entire sequence of
random populations is evaluated using appropriate statistical anal.v-ses. In this way, an
"average" behavior for a random population can be estimated.

2.6 Overview of the Simutation Studies performed
In the initial simulation studies, it uas assumed that a given individual's categorical
attributions were not statistically correlated. That is, for a given individual, the probability
of attribution of category i was independent of attribution of category j for j + *i. Although
this is not a particularly realistic assumption, the purpose of this assumption w,as to seia
baseline behavior before introducing the effect of conelation of categorical attributions. In
fact, one would expect that some categorical attributions might be correlated. For example.
there may be data to support the speculation that differences in crime rates are statisticalty
significant for different racial, sexual, and age categories. That is, attribution ofa category
"high crime rate" may not be statistically independent of attribution of the categories "iacl
x," "sex y,tt a1161 "age 2,"

Similarly, in the initial simulation studies. it rvas assumed that categorical biases
were statistically independent. Again, although this is not a particularly realistic
assumption, the purpose of this assunption rvas to set a baseline behavior before
introducing the effect of correlation of categorical biases. In fact, one w,ould expect that
some categorical biases might be correlated. For example, someone in the category
"nonsmoker" may have a stronger negative bias towards someone in the categories
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"smoker" and "under 20 vears old" than towards someone in the categories "smoker" and
"over 20 years old."

After these initial studies, the more realistic situation of correlated categorical
attributions and correlated categorical biases were studied. In addition to evaluating the
validity of Allport's assertion that every known difference betçeen human groups fits into
one of the four types, the results of these simulation studies rvere used to determine
whether there are any statistical patterns of group prejudice occurring within random
populations, and whether these patterns depend upon the assumptions about the degree of
correlation ofcategorical attributions and the degree ofcorrelation ofcategorical biases.

3 Methods

3.1 Dichotomous Attributes of Individuals
Fifty or one hundred different dichotomous attributes of individuals were assumed,
which results in one hundred or two hundred categories, respectively, rvhen the
negations ofthe categories are taken into account.

3.2 Computer Implementation and Random Number Generator
Computer simulations using random variables were performed b,v- implernenting the model
described above with code written in the C language (Kernighan and Ritchie, 1988). The
random number generator ran20 provides perfect random numbers within the limits of its
floating-point accuracy (Press, Teukolsky, Vetterling, and Flannery, 1992).

3.3 Uncorrelated Categorical Attributions
Uncorrelated categorical attributions were assigned for an individual by repeatedly
allowing ran20 to generate a uniformly distributed random number between 0 and 1, once
for each pair categorylnegation of category. If the random number was less than 0.5, then
the category was attributed; otherwise, if the random number was greater than or equal to
0.5, then the negation of the category was attributed. This procedure was equivalent to the
assumption of a fixed 50% chance of attribution of a category, and uas repeated for each
individual in the population. The result would be to generate a table which was a larger
version of Table 1. As described in the example given above, the equivalent of Table 4
(that is, the matrix F) was calculated from this version of Table l.

3.4 Uncorrelated Categorical Biases
Uncorrelated categorical biases were assigned for a perceiver category by repeatedly
allowing ran20 to generate a uniformly distributed random number between 0 and l, once
for each perceived category. The numerical value of 0.5 was subtracted from each random
number, so that the categorical biases ranged tiom -0.5 to +0.5. This resulted in a table
which was a larger version of Table 5 (that is, the matrix C). Eq. 1 was used to calculate the
group biases for the mutually exclusive relationship (that is, the elements of the matrix G
corresponding to gi--i).

This entire proéedure described in the preceding trvo paragraphs was then repeated to
calculate the group biases for the mutually exclusive relationship for new random
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populations until it was determined that the statistical conclusions would not change
significantly with additional populations.

3.5 Correlated Categorical Attributions
In further simulation studies, it was assumed that categorical attributions could be
conelated. First, in order to dispose with the assumption of a fixed 50% chance of
attribution of Cat l, a single random number referred to as "P(1)" was generated from
uniformly distributed random numbers between 0 and 1. P(1) remained constant for all of
the individuals of the current population. That is, P(1) was a fixed characteristic of the
entire population. For the population as a whole, P(l) can be interpreted as the probability
of attribution of Cat 1. It follows that P(-l): the probability of affiibution of Cat .-1 : I -

P(1) .
For each individual in the population. attribution of Cat 1 was determined by generating

a random number from a uniform distribution of random numbers between 0 and 1. If this
random number for a given individual was less than P(1), then Cat I was attributed to this
individual. For example, assume that P(1) : 0.87 for the population under consideration.
Further assume that the random numbers for Ind I and Ind 2, respectively, were 0.52 and
0.92. Then Cat I would be attributed to Ind I (since 0.52 < P(1)), and Cat -1 would be
attributed to Ind 2 (since 0.92 > P(1)).

Next, Cat 1 rvas arbitrarily assumed to be the "independent" variable, and conditional
probabilities (that is, conditional upon attribution of Cat I or Cat -l) for all the other pairs
of categories/negations of categories were randomly assigrred. For example, for category i,
the conditional probabilities P(attribution of Cat i given attribution of Cat l) and
P(attribution of Cat i given attribution of Cat -l) were generated from uniformly
distributed random numbers between 0 and l. This assignment of conditional probabilities
nas kept constant for all the individuals of the cunent population. That is, this set of
conditional probabilities was a fixed characteristic of the entire population.

Finally, for each individual in the population, and for each category (other than Cat I or
Cat -l), categorical attribution was determined by generating a random number from a
uniform distribution of random numbers between 0 and 1. If Cat I had been attributed to
the individual, then this random number was compared with the conditional probability
P(attribution of Cat i given attribution of Cat l). If the random number was less than or
equal to P(attribution of Cat i given attribution of Cat 1), then Cat i was attributed to the
individual; otherwise, Cat -i was attributed to the individual. Similarly, if Cat -l had been
attributed to the individual, then the random number was compared with the conditional
probability P(attribution of Cat i given attribution of Cat -l). If the random number was
less than or equal to P(attribution of Cat i given attribution of Cat -l), then Cat i was
attributed to the individual: otherwise. Cat -i was attributed to the individual.

For the population as a whole, the probability of attribution of Cat i can be designated
as "P(i)." A simple expression for P(i) is given by

P(i): P(l) P(attribution of Cat i given attribution of Cat l) +
P(-l ) P(attribution of Cat i given attribution of Cat -1)

r66

( 1 1 )



3.6 Correlated Categorical Biases
In addition to assuming that categorical attributions were correlated, in some simulation
studies it was also assumed that the categorical biases were correlated. Categorical biases
were generated as in lJncorrelated Categorical Biases and modified by adding a x
P(attribution of Cat i given attribution of Cat 1), where P(attribution of Cat i given
attribution of Cat 1) had already been generated as described in Correlated Categorical
Attributions, and cr is a user-defined deterministic value that controlled the magnitude of
the effect of this modification. The set of conditional probabilities was kepf constant for all
the individuals of the current population. That is, this set of conditional probabilities was a
hxed characteristic ofthe entire population.

4 Results and Discussion

4.1 Uncorrelated Categorical Attributions and tlncorrelated Categorical Biases
In the initral simulation studies, it was assumed that a given individual's categorical
attributions were not statistically correlated with each other. That is, for a given individual,
the probabililv ofattribution ofcategory i was independent ofattribution ofcategoryj to
that individual. for all i I +j. Similarly, it was assumed that categorical biases were
statistically independent. Although these are not particularly realistic assumptions, their
purpose was to set a baseline behavior before introducing the effect of correlation of
categorical attributions and biases.

Table 7: Statistical Results for Four Population Structures in the Absence or
Presence of Correlations
CORRELATIONS

N IND x 1000
N_CAT
N POP

no

100
1 1 3

ioo
t04

-0.65
1 5 . 0
2.07
0 . 1 5

no

1 0
100
200

2.79
31.2
5 7 4
0.57

5.43

no

t 0
200
390

1 . 1 7
14.6
206
0 .  l 5

7 . 1 0

yes

t 0
200
123

0.95
17.2
4.50
2.00

3 .85

\{EAN OF POP MEANS X 1O-4* .3 'O

STD OF POP MEANS x IO-A 2g.O
MEAN OF POP STDS x 10-+t 5.81
STD OF PoP STDS x lo-4 0.57

STD OF POP MEANS
À{EAN OFPOP STDS 5.00 7.25

POP MEAN of a population is computed as the average mutually-exclusive group bias over
the N_CAT groups within the population. MEAN OF POP MEANS is computed as the
ar,erage of the N_POP POP MEANS. STD OF POP MEANS is computed as the standard
deviation ofthe N_POP POP MEÂNS

+POP STD ofa population is computed as the standard deviation ofthe mutually-exclusive
group bias over the N_CAT groups within the population. MEAN OF POP STDS is
computed as the average of the N_POP POP STDS. STD OF POP STDS is computed as the
standard deviation of the N POP POP STDS.
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As shown in Table 7, there were four sets of simulation studies done in the absence of
correlations. These four sets represent different combinations of the number of individuals
(N_IND) and the number of categories (N_CAT). Although the number of populations
(N_POP) studied differed for each of the four sets, the number of populations studied was
more than sufficient to ensure that the statistical conclusions did not change significantly
with additional populations.

4.2 A Typical Result
A typical result is given in Fig. L The dashed line represents the pooled mutually exclusive
group biases for 390 random populations, conesponding to column 4 of Table 7. The solid
lines represent the mutually exclusive group biases fbr 2 random populations selected from
these 390 random populations. Fig. I is intended to convey intuitively the finding that,
although there is substantial opportunity for a given population's average feeling to deviate
either positively or negatively from neutraliry, groups within a given population tend to feel
fairly similarly. Although the population means vary considerably. the population standard
deviations are small and fairly constant (Fig. 2). These results are tabulated quantitatively
in the fourth column of Table 7. For example, the mean of the population means ( 1. I 7 x
104 + 14.6 x t04) was statistically indistinguishable from 0, as is apparent from the peak
and the spread of the dashed line in Fig. 2, whereas the mean of the population standard
deviations (2.06 x 104 t 0.15 x 104) was small but statistically distinguishable from 0.
The ratio (standard deviation of the population means)i(mean of the population standard
deviations), equal to 7.10 (Table 7), provides a single numerical value that characterizes the
narrow spread of the group biases within a population relatir,e to the wide spread of the
population means. Again, these results show that, although there is substantial opportunity
for a given population's aveiage feeling to deviate either positively or negatively from
neutralit-v, within a given population, groups tend to feel fairly similarly.

4.3 Comparison of Four Different Underlying Population Structures
The statistical results of simulations utilizing four difierent underlying population
structures (first four columns of Table 7) indicate that this behavior occurs generally for
various population structures. The mean of the population means fluctuate in a statistically
insignificant manner, rvhereas the mean of the population standard de,viations rvere small
but statistically distinguishable from 0.

Furthermore, certain trends could be discerned. For example, comparison of columns
I and 3 (or comparison of columns 2 and 4) indicates that the standard deviation of the
population means, the mean of the population standard deviations, the standard deviation
ofthe population standard deviations, and the ratio (standard deviation ofthe population
means)/(mean of the population standard deviations) were independent of the number of
individuals in the population. On the other hand, comparison of columns 1 and 2 (or
comparison of columns 3 and 4) indicates that the standard deviation of the population
means and the mean of the population standard deviations vary inversely in a nearly linear
manner with the number of categories. The standard deviation of the population standard
deviations varies inverselv in a nonlinear manner. and the ratio (standard deviation of the
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Fig. 1: Histograms of group bias for two representative random populations (solid lines), and of
pooled group biases ûom a total of 390 random populations (dashed line), corresponding to the
data reported in the fourth column of Table 7. The frequencies for the two representative random
populations are multiplied by a factor of 40 for display purpos€s.
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population means)(mean of the population standard deviations) varies in a nonlinear
manner with the number of categories.

V/e would expect the mean of the population means to be close to neutrality, since
there is no reason to prefer positive over negative or negative over positive deviations in a
set of random populations. Howeveq the large standard deviation of the population means
gives rise to the opportunity noted above for a particular population to exhibit either a
substantial positive or negative deviation from neutrality. The population standard
deviations are very similar from one population to the next, and are small relative to the
standard deviation ofthe population means. These properties account for the observation
noted above that, within a given population, groups tend to feel fairly similarly.

4.4 Randomness Has Given Rise to a High Degree of Order
These results are somewhat surprising, since the random numbers constituting the random
populations are uncorrelated, and yet the mutually exclusive group biases within a given
population are highly correlated (that is, the standard deviations for the groups within a
given population are small relative to the standard deviation of the population means for a
set of populations). Stated slightly differently, randomness has given rise to a high degree
oforder.

The sigrrificance of these findings is that a population consists of groups that all
mutually love each other, that all mutually hate each other, or that atl mutually feel neutral
to$ards each other. Thus, intergroup feelings would be fairly consistent within a given
population. It is purely a matter of random chance as to whether a population mean
conesponding to love or to hate happens to govern the particular population.

4.5 Comparison between Correlated and Uncorrelated Categorical Attributions
The assumptions that a given individual's categorical attributions were not statistically
conelated and that categorical biases were statistically independent are not realistic
assumptions. Therefore, in the remaining simulation studies the more realistic assumption
was made that categorical attributions might be correlated (although for now the
categorical biases rvere still assumed to be uncorrelated). To illustrate using a hypothetical
example, suppose that Cat I is attributed to Ind 1, but not to Ind 2. Then the probability that
Cat 2 is attributed to Ind I may be. for example, 0.80, but the probability tbat Cat 2 is
attributed to Ind 2 may be only 0.30. Thus, throughout the entire population, there will be a
positive correlation betrveen attributions of Cat I andCat2.

The results of these simulation studies (Fig. 3) are qualitatively similar to those for
uncorrelated categorical attributions (Fig. l). The dashed lines represent the pooled
mutuall,v exclusive group biases for 123 random populations, corresponding to the last
column of Table 7. The solid lines represent the mutually-exclusive group biases for 2
random populations selected from these 123 random populations. Fig. 3 is intended to
convey intuitively the finding that although there is substantial opportunity for a given
population's average feeling to deviate either positively or negatively from neutrality,
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Fig. 4: Histograms of the population meÉms (dashed line) and population stândard deviations (solid
line), corresponding to the data reported in the last column of Table 7. T\e frequencies for the
population merms are multiplied by a factor of 2 for display purposes.
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within a given population, goups tend to feel fairly similarly, but not quite as similarly as
for uncorrelated categorical attribution (Fig. 1). Although the population means vary
considerably, the population standard deviations are small and fairly constant (Fig. a),
although somewhat larger than for uncorrelated categorical attribution (fig. 2).

Quantitative comparison u'ith the results of a similar population structure with
uncorrelated categorical attributions (column 4 of Table 7) and the population with
correlated categorical attributions (last column of Table 7) indicates the following
significant differences: The mean and the standard deviation ofthe population standard
deviations are greater for the correlated case, and the ratio (standard deviation of the
population means/(mean of the population standard deviations) is lower for the correlated
case. Thus there is an apparent paradox that the effect of increasing the degree of
conelation of the categorical attribution is to diminish the conelation of the group biases
within a population.

,4.6 Correlated Categorical Attributions and Correlated Categorical Biases
In addition to assuming that categorical attributions could be correlated, in some simulation
studies it rvas also assumed that the categorical biases depended upon the conditional
probability P(attribution of Cat i given attribution of Cat l). That is, the higher this
conditional probability for a given category, the higher the range of random values for bias
towards that category. Thus, the biases towards a category tended to a higher positive value
if that category was highly correlated with Cat L Recall that it is arbitrary as to whether a
high positive value represents love or hatred. The degree ofshifting ofthe range ofrandom
values was governed by the user-selected deterministic value for cr. This shifting would
permit an intensification of the bias towards a goup containing many individuals to whom
are attributed Cat I and the câtegories which are highly correlated with Cat l. The mean of
the population means was linear rvith c, whereas the standard deviation of the population
means, mean of the population standard deviations, and standard deviation of the
population standard deviations are linear only for high values of a, but nonlinear for lorv
values of u'. The ratio (standard deviation of the population means/(mean of the population
standard deviations) appears to approach 1.5 for very high values ofcr.

For a : 0.00, half of the populations statistically have population means that are
positive, and half of the populations statistically have population means that are negative
(Fig" I ). It is only for very small values of a that a mixture of some positive and some
negative values for population means will occur. For example, for u : 0.002, 25% of the
values for population means uere negative, but for a : 0.01, 09ô of the values for
population means were negative.

For c : 0.00, the mean of the population means is much smaller than the standard
deviation of the population means (Table 7). For a > 0.002, the mean of the population
means is no longer much smaller than the standard deviation of the population means. Thus,
correlation ofcategorical attribution and bias reduces the tendency ofthe various groups
within a given population to feel similarly. In some extreme cases, the standard
deviation ofa particular population can be equivalent to the standard deviation of
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Fig. 5: Histograms of group bias for three representative random populations (solid lines), and of
pooled group biases (dashed line) from a total of 156 random populations. corresponding to the data

for q : 0.25. The frequencies for the threc representative random populations are multiplied by
factors of30 or 50 for display pu{poses.
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Fig. 6: Histograms of the population means (dashed line) and population standard dcviations (solid

line), corresponding to the dta for a : 0.25. The frequencies for the population standard deviations
are multiplied by a factor of 2 for display purposes.
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the pooled bias (Fig. 5). Comparison of Figs. 4 and 6 indicates the dramatic effect of
conelated biases upon the overall dispersion of the group biases within the ensemble of
populations relative to the dispersion of the group biases within individual populations.

5 Conclusions

For uncorrelated categorical attribution and bias, although the average feeling characterizing
various populations may differ dramatically, groups within a given population are found to
have remarkably similar feelings. These results are somewhat surprising, since the random
numbers constituting the random populations are unconelated, and yet mutually exclusive
group biases rvithin a given population are highly correlated. Thus, randomness has given
rise to a high degree of order. The significance of these findings is that mutually exclusive
groups within a population all love each other, all hate each other, or all feel neutral towards
each other.

For correlated categorical attribution and bias, the mean of the population standard
deviations is no longer much smaller than the standard deviation of the population means.
Thus, correlation of categorical attribution and bias reduces the tendency of the various
groups within a given population to feel similarly. ln some extreme cases, the standard
deviation of a particular population can be equivalent to the standard deviation of the
pooled bias. This latter model, which is based upon assumptions that are more realistic,
thus leads to results which are more realistic.
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