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Abstract
The given paper investigates some strong anticipation characteristics, inherent to Auto-
mata Theory Problems. It is exfracted anticipation's role in linear automaûon's Control-
lability/Observability analysis. Via decision-making process preserltation in terms of
some special walks on some directed labelled multigraph, There is characærized strong
anticipation for Problems of weakly initialized finite automaton's intemal states identi-
ficalion, as well as of maximal supervisor's design for any discrete event automata-
based system. Presentation of winning strategy's design for any Two-Players Game on a
graph in terms of design of multi-headed Turing Machine with some arbiter and inde-
pendently controlled heads outlines some general anticipatory charapteristics, inherent
to distributed computing.
Keywords: anticipation, automata, identification, control, algorithms on graphs

I Infrsduction

Nowadays, a variety of discrete models, weakly interacæd each \vith the others,
are used in Computer Science and its applications extensively. Although the basic prin-
ciples of these models are, sometirnes, ltrrderstood incompleæly, as rvell as the basic
properties, often, are invesigared insufficiently, the main feæure of these models is
characterized by the factor that they all arc of non-rurmerical nature2. Thus, searching
meftods form some principal research æchnology in resolving of a great number of
fundamental and applied problems, both, while, algorithmic as lræll as inherent com-
plexity analysis aspects of these problems are often kept into the backgrounds. Possibly,
just these circumstances have outlined tlre frames of Automata Theory, in which (an ab-
stract) automaton is investigated as sorne system with no anticiption inherErrt in it (see,
for example, [-5]). Of cornse, this point of view can be easily justified in terms of any
axiomatic 4proach to Systems Theory'. Indeed, any automaton can be represented in
the form of some discrete syst€m, such that its response y(1)y(2)...V(n) (neZ*) to

theinputseqlrence r(l)x(2)...x(r) isdetenninedviasomebinaryrelation pcX* xY,

i.e. (x(1)x(2)...x(r),y(i))e p for all i=0,1,...,n. While p, X and Y are considered

I This research was srpported, in prt, through the Project 'Ingic Appoach in Dynamic Systems' Con-
trol', Reg.: Ol0U565
" I.e. they are presented via tables, graphq logical equations and so on.
'It is worth to note thst no unified axiomatic approach in Systerns Theory is gener4lly accepteq till now.
Nevertheless, different systems of axioms (see, for example [6,7]) are consisteat eaqh with the ottærs.
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as abstract relation and sets, it is very diflicult to develop any explicit form ofincursive
relationsa, connected with automata5, similar to the ones successfully developed for sys-
tems of numerical nature in [8,9]. Besides, the discontinzozs, inherent to finite artomata
makes it impossible to apply in Finite Automata Theory any manipulations, connected
with the lim operation. The last factor complicates excessively arry attempt to investi-
gate anticipation for autornata-based systems. Nevertheless, fundamental Problerns,
connected with automata-based systems' control lead directly to the notion of an antici-
paion6 via decision-making process. Indeed, closedJoop system, proposed in [11] (see
Fig. l), accumulates multiple choices creation with one choice's selection and'Thus

such systems are implicit anticipetory systems
beceuse they evolve, from an initial state to a
linal state which is implicitly embedded in
them. In an epistemic way' such implicit an-
ticipatory systems evolve *as if tùey know their
ftrture- (see [8J, p. 5). It is worth to note that, in
realty, there exists very complicated knot of dif-
ferent types of anticipation, comrected with aûo'
mata-bas€d systerns. Indee4_if autonata-based
sysætn is the fimdanrental one', then we deal with
the strong anticipation in its pure form, as a rule.

If, on confiary, an automala{rased system is applied in the role of a model for some dis-
crcte device, then modeldependent anticipation can be the weak anticipation only with
respect to the modelled device.

The main aim of the paper is to investigate basic strong anticipation's charact€r-
istics, inherent to fundamental autonrala$ased systems' control's Problems. The rest of
the paper is organized as follows. In Section 2 the nature of oscillations for automata-
based systems is discussed. In Section 3 the role of an incursivity in linear automaton's
Controllability/Observability Problem's resolving is outlined. In Section 4 weakly ini-
tialized finite automaton's internal states' identification Problems' resolving is pre-
sented uniformly in terms of walks' strategies' desigrr for some directed labeled multi-
graph with shaded vertices' labels. Anticipation is implemented into desigted strategies
via the walks' targets. Complexity of these strategies' design is investigated- In Section
5 resolving ofsupervisor's control's problems' resolving for any discrete event system
(DES), presented via aÉomata-based model" is outlined in terms of forced walks'
strategies' design for some directed labeled multigraph. Completed tasks' maximal lan-

o I .e .  re la t ions  o f  the  fo rm r ( t+ l )= f ( . . . ,w( t -Z) ,vo \ t - l ) ,w( t ) ,w( t  + l ) ,w( r+2) , . . . ;p ) ,

wherethevariablewdenotesthestateofthesystemandthevariablepdenotestheparameters(see[8],

for orample).
5 Taking into account deep inherent links between finite automata and netrral nets it looks very important,
attractive and perspective an attempt to investigate incursivity backgrounds for McCulloch and Pits neu-
mrs, undertaken in [0].o As well as to oscillaiong whicl\ sometimes, are directly connested with Chaos.
7 I.e. this system is some specific form of an algorithm.
t I.e. the so-calld RW-approach (see, for orample [2]).

Ftg. L GusbkoCs dosed{oop
mtef,arto!-
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guage's presentation via a closedJoop behavior results into anticipation and forms the
desigrred supervisor's structure's skeleton. In Section 6 winning strategies' design for
games on a graph is analyzed via design of multi-headed Turing Maçhine with an arbi-
ter and independently confiolled heads. This leads to some characteristics of distributed
computing anticipation. Final remarks are given in the concluding section 7.

2 The Neture of Oscillrtirons

Synchronous finite automaton is determined as a system 14=(Q,X,Y,6,)'),

where p, X and I are frniæ sets, narnely, correspondingly, the set of states, the inpt

atphabet and the output alphabet, 6:QxX +Q is the transition mapping and

Â":Qx X -+Y is the output mapping. The simplest class of finite automata is formed

by autonomous arlonûtq i.e. the ones, such that IX l= le. In Fig. 2 some autonomous

finiæ synchronous automaton, sr.rch that Q = {1, .. . ,16} and f = {0,1,2} is presented via

direcæd labelled multigraph. Autonomous finite synchronous autornala can illustr.ate

frC. 2 .âa rsaryle of doaomorx finiæ synctnaaous aotomaton's preseotaho,n rna
dùected labeûcd mbigraph ( verdces' labels daote Se antomatoo's states,
ïûtilÊ 6Ë rc's label rfi duroæs æ tnput-ouput par ) .

strong anticipation characæristics naturally. Ine4 the validity of the thesis 'The fu-
trre sttt€s of a deferninistic systen are essentially dependcnt of both the initial
ad frasl conditions" (see [8], p. S; it evident via &aiing tl/rth stqer-stringsto, since in
this case the behavior of any autonomous finiæ synchronous automaton is completely
d€t€rmined by the equation
q( r  +  1 )  =  f (7 r ,Q* , t1 ,  (1 )

where 4(r +1) is the state at instant t +1, q, is the initial state and Q * b tbe limit

tubset of statestt . Since for any auûonomous automaton there exists the single input su-
per-string I 1... 1..., it is not included into the equation (1 ).

e As a rule, it is supposed in this case, ttut X = {1}.
r0 1.s. infinits input $oquenoes (see t3l, for *ample).

" l.e. Q n consists all states that are reached infinitely many timeg if input zuper-sping is applied.
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It is worth to note that for any initial and final conditiom the equation (1) deter-
mines a sequenoe of states, which is either the empty on€, or an infiniæ one. In the last
case the generated super-string of staûes q(1),q(2),...,q(n),... is a periodic one, i.e.
there exist positive integers io,l<lQl, such that for all i,jeN, if i,./>lo dren
q(i)= q(j) if and only if I = 7(mod/). For any ar.Éonomous finite synchronous automa-
ton some periodic output super-stringlz corresponds to any periodic states' super-string.
Thus, some specific oscillations form an inherent characteristic for any autonomous fi-
nite synchronous automaton's behavior. It is evident that these oscillations lead to
strong anticipation for autonomous finiæ synchronous al$omata.

Possibly, dte first attempÉs to present formally oscillations for any discrete de-
vice, were made in the sixties years of the )O(-th Cenhrry and were connected wiûr the
extraction of an opemtion mode. Tlrese attempts have resulted into the notion of tfu fi-
nite açyrchronous Moore's type's automaton.

kample. Some finiæ asyrchronous Moore's t)æe's automdon M, is
in Fig. 3. The set of states of the automaton M, is partitioned into the two subsets. The

FiC. 3. Asynchronous attom&,on M,

fint subset consi$s of stable shtes
(thcÊ re tË stræ! 1,4 æd 5),
whil€ ûtc secmd one comists of
wrtable staæs (fuare6e sûates
2 , 3 , 5 ,  7  r n d  8 ) .

Let ûe cwrent stable staF
of the automator M, b the stde
1 atd the iryrt s''mbol a be af
plied Thæ the automaton M,,
exectrting the tramition thr@gb
the unstabh statÊ 5, wotrld reach
the stable seate 6 and response
with dte output symbol l. Thus,
the described comprfing is an
elernent of the operæion mode for
the automaton Mr.

L* the current stable state
of the aûomaton M, be the state 4 and the input symbol a be applied. Then transi-
tions via the cycle gen€rated by the unstable states 7 and 8 would not terminde at all.
Thus, the described compwing is not an element of the operation made for tlrc automa-
ton Mr.

Oscillations, like the ones described in Example, can take the place in realty for
any asynchronous automaton's implementation via a discrete denice. Thus, these oscil-

12 I.e. the automaton's response.
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lations lead to srrong anticipation for asynchronous aulomata. Besides, these oscilla-
tions are the source of real Chaos, inherent to automata based systems.

Absolutely different type of oscillations is connected with discrete devices'
asynchronous logical simulation. The basic idea of this process can be described as fol-
lows (see Fig. a) It is designed some Library, consisting of basic elements' behavior's

Arræys, presanling the state
ofûe stmulaæd desice

fig. d. Scheme of an asttûchroaous logrcal srmutatioa of a <f,screte devrce.

descriptions. These descriptions are presented in the form of some imtructions, written

in Ternary Logic, as a ruler3. Simulated device D is presented via some net M o com-

posed from basic elements. [æt some external inputs'sequence r(1)x(2)...x(r) be ap

plied to the net M o. To compute the response of the net M o to any i4ut x(l)

(l=0,1,...,n), some iterated process starts in the state the net Mo t:ers reached after

comptingthe response to the seqrrnce x(l)x(2)...x(l-l)tn. Two arrays are used to

presentthe staæ of the rpt Mo viathis process. The 1" alray presen8 yet æmputÊd

state, while ttre 2d-æray presents the Sate that would be reached via signal's Propagz-
tion through some selected element". If the values of the arrays coincide, tften the com-
puting æÀinates. Otherwise, the 2d array is rewritten into the 1" one and the nent itera-
lon t t"r its place. It is evident, that some oscillations are possibleru. Tlæse oscillations

are the inherent ones for the aprplied model M o only, as a rule, and there may be no os-

cillations d all in the simulated device D. Thus, str.ong onticirytion of the simulation
system can be, sometimes, resulted only into weak anticipation with respect to the mod-
elled discrete device. It is evident that the described above fuctal behavior of a model

M o is initialized by the attemp to present any tme instant via some number of itera-

13 The values 0 and I are used as usual Logical values, while the value tt is used to present some rrrcer-

tainty.
ra It is srpposed that the initial values of states ofall elements of the net M o are egual to xt , as a rule.

ri The order of elements' activation for the net M o is frxed, as a rule.
16 The suf,Ecient condition is that æ any iteration the values ofthe arrays differ from each other.
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tions during the process of computing of current state of device D. Thus, fractal behav-
ior can only indicate, sometimes, that the selected model is inadequafe.

Remork.It is worth to note, that the similar situation often takes the place, whe.n
fractal behavior of numerical recursive models is investigated for applied problems"
and no analysis for the values of parameters that lead to fractal behavior is given in
terms of real investigared problem.

Thus, different types of oscillations are connected with autorqata-based systems.
Some of them lead to weak anticipation with respect to a modelled system, while the
others lead to strong unicipation, if automata-based system is a fundamental one.

3 Controllabitity/Obscrvability of Linear Synch ronous Autonatl

Ld some finiæ field F=(F,+;) be fixed Any finiæ gtnchronoæ linear aûoma-
ton (over the field F) M can be presented via some system of recurrent relafions (sæ,
for exampb, [13])

{  
(n+ l)= e 

;{z):D..r( l l )  (ze N).
I  y ( n ) = C ' ( n ) + D ' x ( n )  \ " - ' r l '

where a $aE s, an inpÉ x and an outprt y are elenrents of tlæ correspcrding yecbr-

spces oter dre field F, i-e. seFt, xe Ft anô y eF^,and A, B, C, D are, corre-
spondingly, (k x k\ <natrix, (& x /) -matria (m x &) -matrix and (rz x /) +rratrix, all wer
the field F. Let A be some nonsingular matrix. Then we get

(2)

Let the I't relation be multiplied by (A-t)"-t, the

s(n)= a- '  .s(n + l )  -  A- .  B'  x(n).
Sequentially substituting inb (2) the values n - I ,
/r, we get the following system of relations

I  s (n ;=A- ' ' s (n+ l ) -  a - ' 'B ' r (n )

I  s(z- l )=A- '  .s(z)-  A-r  .  B.x(n -  l )
1 . . . . . . . . . . . . . . . . . . .

l  r ( z l=A- ' ' s (3 ) -A{ 'B ' r (2 )
I  s ( t )=A- r .s (2 ) -A- r 'B .x ( l )

(A-t;"-2, ..., ths (n - l)+h relation be multiplied by
these relations, we get the following incursive relation

s( l )= (A- r ) '  . s (n  +  l )  -  É(n" ) '  .  B .  x ( i ) .

2d relæion be
A-1. Computing

Let M be some weaHy iiritidu"a o*o ororrrs. We set
U, = {A . s + B . x(t) |  C. s + D. x(i) = y(i) & s e U,_, } ( i  = 1,.. . ,  n).

17 For oramplg in Economics area.
rr I.e. it is fixed some initial condition of the form s(1) e Uo (U o c Ft, I U0 | > 2).

multiplied by
the sum of all

(3)
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Thus, the final state of the automaton M would satisff to the condition s(n + 1) e U, ,
i.e. the exactness of resolving of Controllability Problem for the automaton M is clnr-
acterized by the set U" . In particutar, the Controllability Problem for the automaton M

would be resolved uniquely, if I U" l= l. Indeed, to convert any statp s(n + l) into any

prescribed $tate s, it is sufticient to apply to the automaton M any input x , such that
B . x  = s -  A . s ( n  +  l ) .
Relation (3) implies that the exactness of resolving of Observability F'roblem for the
automaton M is characterized by the set

{ s l s = ( A - r ) '  . s ,  - É ( l ' ) '  . B . x ( t ) & s ,  e U , } .

In particular, the Observability Problem for the automaton M would be resolved
rmiquely, if I U, l= l. .

Thus, incursive relations form the strong base for dweloping of sufficiantly
powerful tools for Confollability/Observability analysis of discrete liræar sysûems.

a Identifrcation of Finite Synchronous Autsmata's States

For any finiæ synchronous automaton M = (Q,X,y,6,)")'n we set
(X xY\q,q') = {(r,y) e X xY l(6(q,t)= q'\ &(A.(q,x) = y)} ,

wght(q,q')=[ { . re X l6(q,x)= q'  l l  (q,q'  e Q).
It is well knovm that any autornaton M can be presented via some directed multigraph
GM with arcs labled by elements of the sEt X xY , strch that:

l) the sst of vertices of G, is Q;
2) û,e set of arcs of Gu consists of lO | .l X I elements, determined in the fol-

lowing way: the number of copies of an arc (q,q') (q,q'e p) equals to wght(q,q')zo

ând diff€red copies of an arc (q,q') ne labeled by different elements of the set
(X xY){q,q'\.

Arry input seqrrcnc€ p = rrrz...xr ê X* @ be iîtsrpIsted &s some stTategl of a

walk of the length t in Gr. Indee{ bt q n21 be any vertex in G*. There exists the sin-

gleæo { staræd in qn and,labeledbythe element (x,y)eXxY ,suchthat x=\.LÊt

tlre arc { Oe enæA in a vertex 4,,. There exists the single arc 4 tt"ttAin g, and la-

beld by the ekment (r,.y)e X xY,nrch that x, = 12.læt the *" Ç be ended in a ver-

tex Qt+, and so on. Thus, for any vertex qn it is uniquely determin€d inGr the walk

teftwaspoiddinChager2that p isthes€tofstatês, X istheioputdphaba, Iistheoutputalpha-

be, d: QxX + Q isthetrursit ionmapping, ),:QxX -+Y btheonrtputmapping.
20 The identity wght(q,q') = 0 implies that there is no arc (q,q') in Gr, , at all.
2t A dæætlweaptysring.

l l 5



t  n n = Q t ,4,  Q n,4,,  4 'ra,  " ' ,Çr,  4 r . . . , ,  - , ,4,  Ç,, . . . ,

of length /, started in {n . The characterisric of this walk is determiûÊd to be the outpû

sequence !J2...!re.l", such tlrd. (x,,y,)eXxY is the label of the arc;, for all

i  = 1 , . . . , 1  .

Let (M,Q)z be some weakly initialized automaton (w.i.a,) and let t and î

be the extensions of the map'pings â and .1 to the set 0 x X', determirrcd in the usual

way. An inp$ sequence p e X* is calledto be

l) a distinguishing one, if (V q', q' e Qo\.î@', p) = 7(q', p) è q' = q') ;

2\ a homing one, if (V q', q' e Qù{l (q', p) = 7 (q', p) + t (q', p') = 8 (q', p\ ;

3\ a qnrctvonizing one, if (V q', q' e Q o\8 (q', x) = E (q', t)) .

The Problems of &igrr of these identiffing s€quencæ for a w.i.a (M,Qo\ canbe clnr-

acterized in terms of the following walks' straêgies' desip for Gu, uader the zupposi-

tionthatthe vertices' labels in Gu ue blottet3:
1) design of any distinguishing sequence is reduced to design of smc ffieg/

p e X* of the walk in Gu , snrch that in tbe result of tbe rmlk ttq in GM, stattod in any

vertex Q eQo and carried out in accordam with the strægy p,tfu vertiræ 4 t*ould

be identified uniquely in the rezult of dre enal)cis of the characteristic of the walk ur,

only;
2) desip of any homing soquence is reduced to design of sonæ stratery

p e X* of a walk in Gu, such that in the result of the walk rtq in GM, statted in any

veræx e eQo and canied ord in acoordance with the sæg5r p, fte endverFx of tb

walk tt o would be ideûtified rmiquety in the rsuft of the analysis of the characteristic

of tle walk lt o, only;

3) design ofany synchronizing sequence is reducedto design ofsome stmtegy
pex* of a walk in Gr, such that in the result of a walk lto in Gu, started in arry

vertex Q eQo and carried oû in accordance with the strategy p, the endverte"x of walk

ao would be the same.

Any ofthe above deærmined strategy of a walk in G' would be called to be:

l) an optimal one, if p is some shortest identifying sequence for (M,Q);

2) an ineducible one, if any s€quence obtained in the result of deleting in p

some letters would not an identifting sequence for the w.i.a. (M,Qo).

" Qo (Qo cQ ,lQo l> 2) is ttæ æt of initial staes.
æ In another words. vertices' labels are unobscrvable.
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It is worth note high complexity of determined walks' strategies' design. Indeed,
the following estimations of. Shannon's functions for shortest identiffing sequences'
lengths has been established'*:
tr.^.,(r) = 0.5 . (2. k - r). (r -l) (r e {2,...,k}) (7.N. Hibbard,in I 965),

(f  : l )  ' r  r  e{2"" ' lo5'r l t

1, tlaf-r)j ) , 
,f r el [o.s'r]+ 1,...,k -tl (M.N. sokotovsky, rs76),(0.- . , ( ' )>

l ! . r l
1 L o  J i f  r =k

. b
log. L!.*"(fr) - : (fr + co) (1.K. Rystsov. 19?S),

(n.r., z 
"or*t 

(k -+ æ) (V.G. Skobelev, l9B7),

Li..r., à 
"ot'rt 

(k -+o) (V.G. Skobelev,lgBT).

Identi$ing sequences are intended for preset experiments with the w.i.a.
(M,Qo). ln accordance with this factor, we refer to the described above strategies of
walks in Gu as to preset strategies. Another type of experiment with the w.i.a. is an
adaptive one. Aulomata-experimenters' design methods for this type of experiments
were developed in [4]". It is evident that we can refer to any automaton-experimenter
as to oR adaptme strateg/ of some walk in G,, . Moreover, this type of walks can be
naturally redræed to some problerns, connected with r/re behcvior of an automqton in a
mtEe.

ln the above descn'bed experimerfs some single iddifying sequence or, corre-
spondingly, a single autornsto{r€xperimanter were used. This type of experinænts with
the w.i.a. is refbrred tabr. simple ones. In accordance with this factor, we refertotàe
described above strategies of walks h G, as to simple ones. If in an experiment with
the w.i.a. it is used some set consisting of æ least of two sequences (correspondingly, at
least of two automata-experimenters), each intended to obtain some partial solution, and
all these partial solutions result into some complete sohÉion, then the experiment with
tw.i.a is called to be a multiple one. We refer to conesponding strategies of walks in
Gu asto cooperative ones. It is evident that this type of walks can be natrrally reduced
to some problems, connecJed with the behavior of o group o/(possibly, interacting)
autonata in o maze.

Thus, strong anticipation forms inherers ctraracteristics for srffrciently wide
class of Problems of Discrete Mathsmatics, Graph Theory and Automata TIæory, con-
nected with decision-makins.

2a It is nrpposea tnat I Q | = k, i X | = m, I Y l= n, I Qo l= r,
25 General approach for automata-operimeders' design for resolving discrete problpms is systematically
developed in [l5].
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5 Discrete Event Systcms (DES)

Developed in ll2l approach for DES' analysis is based on presenting of a DES
via an acceptor M=(8,8,6,80,Q-), where p arrd Q- (Q*cQ) æq correspond-

ingly, the set of states and the set of marker states, eo (Qo e p) is the initial state, I is

an alphabet of event labels, and d:QxL-+Q is, possibly, partial transition function.

An acceptor M is characteiz&by two subcets of I', namely, ttre closed belavior

L(M)={s e E' lâ(q0,") isdetermined}

and the language ofcornpleted tasks

L.(M)= {s e I '  l } (q0,")  eQ.l  .

The alpiubet of event labels X is partitioned into noræmpty sets of controllable evenb
I" and the set of unconfiollable events I*. The first ones can be either enabled or dis-

abled by some external agsnt, while ûre second ones carnlot be prwented from occur-
rir1g axt therdore are comidered to be permanentty enabled- The feedbact control of
the eventdisablement mecbanism is based on the notion of a supervisor S=(1,@)

upm M, where A= (U,Z,ty,ao,U p) is an accsor æd a mping g :U xt + {0J}

satisfiestotheconditiur'. rfiu,o)= l, if oeE* and ç(u,o)e{0,1} ,if ceI" (i.e- I is

interpreted as 'enable', while 0 is interpreted as 'disable 
). Thus the behavior of a

closed{oop sy$em is rep'reserûed via some autondon (U[S) (see, Fig. 5).

Ifs. t Oosed-loop system iMlS t.

Slight modification of the notion of a DES, proposed in [6], leads to some sim-
plifications of DES' analysis, and makes it possible to operate with different types of
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concurrency, as well as to apply efficiently Algebra of Acceptors, developed completely
in [3]26. It is proposed in [16] to deal with an acceptor M = (Q,2,6,Q,,,Q.,Q 6), where

Q and Q. (8- c Q) are, conespondingly, the set of sûates and the set of marker states,

X is an alphabet of event labels, q, and Q7, (Q*,QpeQ) are, correspondingly, the

initial andthe final states and 6 cQ x()u{^})* Q isthe transition relation, such that
(q,L,q n)e ô c> q e Q^ and (Vo e :u {À})(Vq e Q)(Q n,6,q e 6).

Remark. It is worth to note that design of any extremal (in particular, the opti-
mal) supervisor, leads to high complexity of a system (V lS) . Indeed, the number of

supervisor's states is estimated by 2e (where fr is the nrmrber of states of the acceptor
M ), and it is well known that this estimation can be reached.

For any DES M = (Q,2,6,q-,Q^,q n) we set

(t u {^} Xq, q') = {o e (I r.,r {Â} | ((q,o ,q') e 6} ,
wght(q,q') = j {o e I u {Â} l(q,o,q'\ e 6 } (q,q' e Q).
Any DES M can be presented via directed multigraph G.,, with arcs labeled by ele-
ments of the set X x I , such that:

l) the set of vertices of G' is Q,
2) the set of arcs of G* consists of | ô | elements, determined in the following

way: the number of the copies of an arc (q,q') (q,q'e Q) equals to wght(q,q') tt *d
different copies of an arc (q,q') are labeled by different elements of the set
(2v llt|)(q,q').

The Problern of design of a supervisor S = (A,rp) for a DES M an be reduced
to someforcedwalk's adaptive strategy's design for G^r, under the supposition that the
vertices'labels in G, we blottett.Indeed2s, let a supervisor S be supplied with some

svents' sequence 6 to 2 ... o n e Xt, while it is visiting the vertice q *. Then supervisor's
actions are determined in accordance wilh the following rules:

1. If S is visiting the final vertex g Tn,then computing terminates and the walk

halts.
2. Let 5 have terminat€d successfully computing, connected with the initial

fragment oto2...oi-t (i =1,...,n) and 5 is visiting some vertex q (q * Ç 6) of GM .If

o,eD is any event, srrch that or.-.6i_roiel(rl,\ then all computing as well as a

walk halæ. Let o, e X be any event, such that ot...o,_toieL(M").If rp(u,o,)=1,

where a is the state of the acceptor l, then S is walking along some arc of Gy ,
started in q and labeled with the event o, (and possibly, along some sequence of sub-

x Developed in [3] algebr4 being some variant of Kleene's algebr4 is intended for plgorithms' design
27 The identity wght(q,q') = 0 implies that there is no atc (q,q') in G, , æ all.
28 For simplicity, it is supposed that there is no concurrency ofany type in DES.
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sequent arcs labeled by the empty sequence ̂). If o,el" arnd q(u,o)=O, then S

terminates computing, connected with the initial fragmerfi 6to2...6i-r6i and starts the
processing ofthe next event.

Remark.It is evident that the above described adapive strategy of a forced walk
in a directed multigraph G' is interpreted naturally as a Game with The Nature.

Thus, strong anticipation forms inherent characteristics for sufïiciently wide
class of Problems of control design for DES.

6 Games on a Graph

Any Two-Players Game on r graph can be presented via some system
g=(P,F,G,p*,Pr*oPr* ' ) ,where P isaf ini tesetof posi t ions, p, ,eP istheini t ia l

position, Pr* and Pl er* ,Pl + @: Pr* ^ P; = A; p,, e Pr* w Pf ) are, the sets

of winning positions, conespondingly, for the 1'1 and for the 2d Player, F and G arc
some sets of (possibly, partial) mappings of the set P into itsell called the sets of
moves, correspondingly of the I't and of the 2d Player. A play in a game g is deter-
mined to be any sequence
p[",./;, pt", g,, pl", fr, pl", gr,...,
such that:

1) p[" = p, and pjt' e Dom f,*r, pl" e Dom g,*, for all i = 0,1,...;

2) positions pt' , p[" ,..., as well as positions pf' , pl" ,... are pairwise differ-

ent;
3) if cunent position is p e Pr* v Ptr ,then a play terminates.
Thus, all plays of a game g are partitioned into the following four sets

fri = {p[" ,f,,...,p1'),,"f,,pr!r(/r e N) | pl,'- . p,*],

lli' = t pt",.fr,..., pL?,, S o, pt' (/c e N) | pltt . Pî \,
fi , = {pt'), f,,.. ., p;'_l (* e N) | tp,3 ç4* ) & (vg e G)(,pfl ê Dom g)\,
fr , = {pt',, -fr,..., pt', (,t e N) I @L', e pi ) e. Nf e FXpf ) e Don f )\ .
To simpliff reasoning, we restrict ourselves by dealing only with the games, such thd

f i ,  =fr ,  =q .
Any strategy of the l't Player in a game gt is determined to be some algorithm

4,, such that for any play (4) the identity

f,t = Ar(P!'))

holds for all i=0,1,.... Similarly, any strategy of the 2d Player in a game gl is deter-

mined to be some algorithm A, , such that for any play (4) the identity

gut = Ar(P[t\)

holds for all i = 0,1,....

(4)
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Any play in a game g can be simulated naturally via computing carried out by
some 2-dimensional Turing Machine (TM) with two heads, controlled by two different
control units (see Fig. 6). Control units CUl and CU2 (and the heads, controlled by

Fi6. 6 Simulahou of a play :rr a game g by 2-drmensional Tr:nng Ma chme M,
consisting of 2 heads. controlled by drfferent control uruts.

these units) simulate, correspondingly the actions of the l't and of the 2o player. More-
over, control unit CUI operat€s in accordance with some strategy A, of the l" Player,
while control unit CU2 operates in accordance with some strategy A, of the 2d Player.
The iniûal configuration of TM M presents the initial position pr,= pt') of the game
gl . At initial instant of time the Arbiter initializes control unit CUl. The last carries out
computing, that simulates the move f, = Ar(p,,,). As soon as computing canied out by
control unit CUl is executed, CUI informs the Arbiter and halts in the configuration,
that presents the position ptt' . lf the play is not finished, then the Arbiter initializes
control unit CU2. The last carries out computing, that simulates the move
g, = Az(p[2t ). As soon as computing carried out by control unit CU2 is executed, CU2

informs the Arbiter and halts in the configuration, that presents the position pjt). lf the
play is not {inished, then the Arbiter initializes control unit CUI and so on.

Remnrk. l. The value 2 for the dimension of the tape of TM is selected only to
use efficiently visual aids, viz. to stress that control units can use for computing any size
of external msmory, without any disturbance to each other. For example, without loss of
generality it can be supposed that all positions of a play in a game g are presented in
the 1" quadrant, while control units CUI and CU2 use for computing cells disposed,
correspondingly, in the 2d and in the 4ù quadrants. It is also evident that controi units
CUl and CU2 and the Arbiter can be joined into the single control unit. But in the result
of this joining all cleamess would be lost completely and some features, essential for the
Players' strategies' desigrr would be shaded.

2. It is evident, that any multi-headed TM, which heads are controlled independ-
ently by different control units, simulates distributed, in particular, parallel computing.
The described above simulation extracts strong anticipation for sufficiently wide class
of distributed computing.
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For a game g some strategy A, of the l't Player is called to be c winning one2e,

if its applying guarantee that the play would be an element of the set nfl for any strat-

egy Az of the 2d Player. Similarly, some strategy A, of the 2d Player is called to be a

winning onet0, if its applying guarantee that the play would be an element of the set

flf for any strategy A, of the I't Player. It is evident that desigr of winning strategy

for the 1" Player can be reduced to design of control unit CUl, such that for any per-
missible control unit CU2 TM M would simulate some play, being the element of the

set fli-. Similarly, design of winning strategy for the 2o Player can be reduced to de-

sign of control unit CU2, such that for any permissible control unit CUI TM M would

simulaæ some play, being the element of the set flf .
It is worth to note, that some specific features are connected with games on a

graph (see, for example, [6]).
Firstly, winning strôtegy's desigrr for any game on a graph is connected with

some walks' strategies; design,intended to deat with somepre sentation of a gaph]t .
Secondly, for a game on a graph the tree of a game often cannot be reduced into

an automaton with the number of states, comparable with the size of analyzed game.
This implies that complexity of control units CUI and CU2 of TM M is suffrciently
higb as a rule.

Thirdly, sufficiently wide class of applied Problems can be reduced to some
game on a graph, s-uch that the aim of the l'' Player is to desigrr this or the other graph-
theoretic structure3z, while the actions of the 2d Player can prevent from the l" Player's
efforts. This class of games is intended to model any situation, when the l" Player rep
resents implementation of some means to provide these or the others conditions for in-
vestigated object or process, while the 2o Player represents some instability actions of
the environment, i.e. design of winning strategy forms some base for decision-making in
i nstab i I ity env ironment.

Thus, strong anticipation forms inherent characteristics for games on graphs, as
well as for some types of distributed computing.

1 Conclusions

In the given paper it was made an attempt to establish that strong anucipation is
an inherent characteristic for some fundamental Problems, connected with automata-
based systems'control. These systems are discrete ones of non-numerical nature. Thus,
the Problem of working-out of some approach for efiicient design of numerical incur-
sive relations for automata-based systems is actual. Some backgrounds for this Prob-
lem's resolving developed in [0], and investigation of links befween neural nets and
finite automata can form strong base for systematic oscillations' nature's analysis, in-

2o with respect to the l" Player.
'o with respect to the 2d Player.
3r In contradistinction to walks' strategies' design for a graph, presented in the previous two Chapters.
32 I.e. some pat[ cycle, tree and so on.
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herent to automata-based systems, as well as for extraction and classification of differ-
ent gæes of strong and weak anticipation.

It seems that there must be investigated in detaiis anticipation characteristics of
automata-based systems, presented via relations, designed in terms of vector spaces
over finite fields. These investigations could be very useful for establishing of some
deep links between ordinary numerical incursive relations and incursive relations, de-
sigrred for systems, presented via tables or graphs.

Automata-based systems' control's design determines an important class of
Problems with sfrong anticipation in the role of basic inherent characteristic. It is evi
dent that sometimes, like in resolving Problems of states' identification for finite
automatorL strong anticipation can be easily characterized either by initial conditions, or
by final conditons, or by initial and finite conditions, both. Unfortunately, anticipation
connected with supervisor's design can't be described so easily and its backgrounds
must be investigated deeply.

Established links between design of control for automata-based systems and de-
sigr of walks' strategy on a graph is the evidence of the factor that strong anticipation is
an inherent characteristic for a large number of fundamental Discrete Mathematics'
Problsms. This staternent is also justified by proposed technique for simulation of any
game on a graph via multi-headed TM, with heads controlled independently by different
control units. Besides, the Problem of investigation of the role of strong anticipation in
distributed computing seems to be very important.

Above pointed trends for strong anticipation investigation form some base for
futwe resærch.
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