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Abstract A new approach for enlarging digital images is proposed. In existing
approaches, the assumed reducing operators must be suitable ones for the methods,
which means that desirable results are not obtained in other situations. Therefore,
an enlargement scheme that can appropriately take reducing operators into account
is needed. In this paper, we propose a new enlargement method that can be used
for any reducing operators based on the framework of image restoration problems
and estimation of the component that belongs to the kernel space of the reducing
operator by using statistical properties of natural images.
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1 Introduction

Enlargement of digital images is widely used in many fields of digital image process-
ing. However in general, this problem is difficult, since it involves the estimation
of the lost information that the unknown enlarged (detailed) image may have. A
spline based interpolation technique is usually adopted for this problem. Nearest
neighbor, bi-linear, and cubic convolution interpolations [2] are representative ones,
which correspond to those by spline functions of degree 0, 1, and 3, respectively.
In interpolation scheme, it is assumed that given image is generated by simple
down-sampling from the unknown detailed image. However, this assumption is not
rational, since reducing processes that yield given images are generally accompanied
with a kind of low-pass filtering effect. On the other hand, methods of enlarging
images by estimating unknown Laplacian components are proposed ([1],[7]). How-
ever, in these methods, the assumed reducing processes must be also suitable ones
for the methods. Thus, desirable results are not obtained by these methods when
the actual reducing processes that generate the given images are not assumed ones.

In this paper, we propose a new method of enlarging digital images. Main idea
of the method is adopting the framework of digital image restoration problems and
kernel space component estimation according to statistical properties of natural
images. Some numerical examples are also presented to verify the efficacy of the
proposed method.
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2 Image Reducing and Enlargement Model Based on Image
Restoration Framework

Applying the framework of linear image restoration problems [6], the image reducing
process is modeled as follows:

g=Af, fe€eR" geR", (1)

where R™ and R" denote m-dimensional and n-dimensional real metric vector spaces
called the space of enlarged images and that of observed images respectively, and, f
and g denote an unknown enlarged (detailed) image and an observed image, respec-
tively. A : R™ — R” denotes a reducing operator. In general, n is much smaller
than m. The aim of enlargement is to estimate f as precisely as possible. Limiting
enlarging operators to linear ones, the minimum norm least-squares solution far is
given as

.fM = A+g, (2)

where A* denotes the Moore-Penrose generalized inverse matrix (5] of A. As is well
known, fas is the orthogonal projection of f to R(A’), the range of the transposed
matrix of A. Therefore, the component lost in the reducing process is not recovered
in fyr. By the way, the general solution of eq.1 is written as

f=ATg+ (In- AT Aw (3)

where I,, and w denote the m-dimensional identity matrix and an m-dimensional
arbitrary vector. The second term of eq.3 belongs to N (A), the kernel space of A,
and it corresponds to the component lost in the reducing process. Therefore, the
main problem of enlarging digital images in this framework is reduced to the optimal
estimation of the vector w.

3 Statistical Properties of Natural Images

In general, the Laplace distribution is usually assumed for differential images [4].
Let L be the operator that makes differential images by calculating the difference
between intensities of neighboring pixels. For instance, L can be written as following
m X m matrix for m-dimensional vector representation of images.

( 05 =05 0 -+ «-- 0 ]
0 05 —05 -+ «- 0
R I (@
0 0 0 --- 05 =05
| -05 0 0 -~ 0 05 |

98




The joint probability density function (pdf) of Lf is written as

m

o) =1 (Sem (-sleiz)). ®)
i=1

with the i.i.d. assumption, where 8 and e; denote the parameter of the Laplace

distribution and the i-th canonical basis, respectively.

As mentioned in the previous section, images are represented as elements of R™.
However, the set consisting of all possible natural images is existing in some biased
subset of R™. Therefore, the statistical property described above is one of natures
that characterize the set of images. By the way, the correlation function of natural
images is usually modeled as

Hiz.5) = Cexp'(—a\/x2 + y"’) y (6)
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| where z and y denote horizontal and vertical distance between two pixels and o and
| C denote parameters that depend on the set of images [4]. From this relation, it is
| suggested that between not only neighboring pixels but also distanced pixels have
| similar statistical properties with neighboring pixels. Therefore, we investigate the
‘ statistical properties of L¥ f. Two sample images (256 x 256 pixels, 256 gray scales)
‘ are shown in figures 1 and 2 and their histograms of L*f (k = 1,3, 5, 10) are shown
| in figures 3 and 4. From these result, it can be assumed that L*f (k € N) are also
l Laplace distributed random vectors.

4 Digital Image Enlargement Based on Kernel Component
Estimation

As described in Section 2, we write the candidates for the enlarged image as follows:

F=ATg+ (In— At Aw, (7)
section,
L*f =L*A*g + L*(I,, — At A)w (8)

\
|
’ with the parameter vector w. Based on the knowledge described in the previous
|
|
|

should be Laplace distributed random vectors and the joint pdfof L*f (k= 1,...,q)
is written as

p(Laf, . Lf)
= [[ p(L*A*g + L*(In — A* A)w)

' m 3 (9)
= kI_I I_I1 (5 exp (—ﬁ-|e;(L'=A+g + L*(I, — A+A)w)])) ,
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Fig. 1: Sample image #1.

Fig. 2: Sample image #2.
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Fig. 3: Histogram of differential image of the sample image #1.
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Fig. 4: Histogram of differential image of the sample image #2.
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with the assumption that L* f are i.i.d. Therefore, the maximum likelihood estima-
tor of eq.9 must minimize the criterion

J(w) = YL A*G + L (I — A* AYw), (10)

k=1i=1
that is the £;-norm of ((Lf)', (L2f), ..., (Lf)")". Finally, substituting

Wopt = AIgMing,J (w) (11)
to eq.7 yields the optimal enlarged image

Fopt = AT+ (I — AT A)w,py. (12)

The minimizer of J(w) can be calculated by linear programming technique [3].

5 Numerical Experiments

In this section, we show some numerical examples in order to verify the efficacy of
the proposed method. We investigate the restoration performance for the sample
images shown in section 3. As the assumed reducing operator, we use simple down-
sampling(SD) and down-sampling with averaging(DA). These operators reduce the
size of images to 1/4 both horizontally and vertically. We adopt cubic convolution
interpolator(CCI) [2] as the competitor, since it is well known as a good approxi-
mator of Shannon’s ideal interpolater and its tendency for the change of assumed
reducing operator is similar to that of existing methods. Reduced images and en-
larged images are shown in figures 5~ 16. Correspondence table of these figures are
shown in Table 1. Table 2 presents the SNR of each enlarged images.

Although the results of the proposed method is slightly inferior to that of CCI
in the case of SD operator, that is assumed to be suitable one for CCI, the proposed
method outperforms the competitor in the case of DA operator in terms of SNR,
which means the information of reducing operators are effectively used in the pro-
posed method. On the other hand, marked differences are not recognized in terms
of the evaluation by the human eyes. '

6 Conclusion

In this paper, we proposed a new method of digital image enlargement using the
framework of image restoration problems and kernel space component estimation
based on statistical properties of natural images. A kind of efficacy of the proposed
method is also confirmed by some numerical experiments. Improvement of the
proposed method using properties of human eyes and another information about
natural images are one of future works.
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Table 1: Correspondence table of figures.

SD DA
Sample image #1 #2 #1 #2
Reduced image Fig.5 | Fig.6 | Fig.7 | Fig.8
Enlarged image(CCI) Fig.9 | Fig.10 | Fig.11 | Fig.12
Enlarged image(Proposed) | Fig.13 | Fig.14 | Fig.15 | Fig.16
Table 2: SNR(dB) of enlarged images.
SD DA
Sample image #1 #2 #1 #2
Enlarged image(CCI) 17.50 | 19.79 | 15.37 | 17.85
Enlarged image(Proposed) | 16.30 | 19.11 | 18.68 | 21.32

Fig. 5: Fig. 6:
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Fig. 9: Enlarged image #1 (SD/CCI)

Fig. 10: Enlarged image #1 (DA/CCI)
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Fig. 11: Enlarged image #2 (SD/CCI)

Fig. 12: Enlarged image #2 (DA/CCI)

105




Fig. 13: Enlarged image #1 (SD/Proposed)

Fig. 14: Enlarged image #1 (DA/Proposed)

106




Fig. 15: Enlarged image #2 (SD/Proposed)

Fig. 16: Enlarged image #2 (DA/Proposed)
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