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Abstract We consider the role of the time delay parameter in basic models of eco.
nomic grorth. We study the Solow model with a time lag. We also consider the
dynamical optimization in the Solow model. We demonstrate that, both for Solow's
model and Cass' model with a delay, there appeax cyclic fluctuations whose param-
eters we have calculated. These fluctuations have a consbant period and appear
through the mechanism of the single Hopf bifurcation.
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1 Introduction

Recently, there has been a renaissance of the deterministic approach to the economic
fluctuations. This is undoubtedly because the so-called exogenous models are rurable
to explain cyclic fluctuations, whereas the latest achievements of dyna^urical systems
theory (which model deterministic processes) hold out the possibility of describing
complex chaotic behaviour. At this point the argument that the superposition of
simple cyclic behaviour cannot reproduce the complexity oJ the cycle loses its basis,
since the economic fluctuations can belong to a class of dyna.miçally complex systems
in which the internal mecha,nism of sensitive dependence on the initid conditions is
a source 61 somplexity which is simultaneously chaotic and deterministic. Moreover,
according to the Rule-Takens scenario, the superposition of several periodic solutions
leads to complex cha,otic behaviour.

The situation is completely analogous to Landau's conception of turbulence,
which for many years was treated âs a superposition of infinite number of periodic
solutions.

Irr this context, an obvious question enquires about a source which generates this
behaviour. It is not, therefore, inappropriate to dust off M. Kalecki's idea of the
"time to build" to explain the complexity of the fluctuations in the theory of the
economic cycle.
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In this approach, the time to build becomes an alternative to the standard tech-
nology shock real business cycle model. In the simplest case, one assumes that the
time to build is a constant pa,rameter for va.rious sectors of the economy.

Of course, other factors leading to complex behaviour can also exist. In this work
we attempt to examine the forces leading to complexity in the simplest possible case
where the time to build is included into basic models of growth theory.

We consider the problem of the influence of the delay of the time parameter on
the delivery of new capital goods. This problem in context of economic growth was
addressed by Zak et al. [9]. The assumptions of their model are as follows:

1. a production technology in which it takes constant periods r ) 0 to receive
and install capital before it becomes productive. 2. the output y at time t is given
bV y(t) : l&(t - r)) where /(k) ir a standa,rd neoclassical production function
satisfying the Inada conditions. 3. production structure as in the Solow model [8]
is embedded in the following way

i c : s |& ( t - r ) ) -  i k ( t - r )

where È(t) : ô(t) for t € [-", 0].
Note that in this approach, Solow's equation for the change of capital per capita

is the starting point for introducing the delay r. Equation (1) can be put in the
following way. The change in capital per capita is a function of the output y taken at
anear l ie r t ime( t -1 ) ;  s€(0 ,1)  i sacons tan t ra teo fsav ing ,ôe [0 ,1 ]  i sacons tan t
of depreciation.

Equation (1) is an example of an equation with a delayed parameter belonging
to a wider class of functional equations for which many mathematical techniques
have been developed, and which allow them to be treated analytically. For our
aims it is important the existence of the generalization of Hopf's theorem [fl on the
existence of periodic solutions. There a^re some applications of the Hopf theorem in
economics, for the case of autonomous finite.dimensional systems. The generalized
Hopf theorem (more properly called the Poinca^re-Andronov-Hopf theorem) has been
applied in economics since the work of Benhabib and Nishimura [21.

Let us introduce the time delay and adopt Kalecki's ideas to Solow's equation
(and other basic models of growth theory) for the change in capital

Rçt1 : sY(t - r). (2)

If we augment (2) with the equation for labour we obtain a closed dynamical system
of the form

(1)

# : tnr: nL(t)

# 
: kç1 : sF(K(t - r), L(t - r)).

(3a)

(3b)

Conventionally, we assume that F(K,L) is a first-degree homogeneous production
function, which means that the right-hand sides of system (3) are also first-degree
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homogeneous functions. It means that this kind of symmetry can be used to re"

duce the dimension of the system by one. It is suficient to introduce the following

projection coordinates

,K1* :  
Z ,  

u :  
L .

Then the sepa,rated equations take the form

it(t) : se-"' f (k(t- r)) - (n + ô)k(t)

ù( t ) :  -nu.

The difference in our and Zak et al.'s method of introducing the delay r manifests

itself through the prêsence of the factor e-'" in (5a) and the lack of a delay in the

factor (n + ô)k(t) [9]. Note that even in the case of a constant population n : 0

equation (5a) does not coincide with (1).
It is possible to generalizettLe above results from the case of Solow's model to

the case of basic models of growlh theory classified in Jensen's monograph, where

they are ordered in terms of the governing function à(k). Then the equivalent of

(5a) becomes the equation

* :  e-" h(k(t  -  r))-  (n + d)f t( t )
dt

in whicb, if formally à(k) --+ s/(k) we obtain Solow's model.

2 Stability Analysis of Dynamical Systems with Lag

In order to study the stability of Solw's model with lag we can use the methods

of local stability a^nalysis by examining the characteristic equation of the system

linearized about the critical points satisfying the condition

s.f(/c.) : (n + d)&.. (7)

When the production function satisûes the standard Inada conditions the critical

point k- always exists. The system linearized about the critical point ,t* has the

form

(4\

(5a)

(5b)

(6)

#ru: Az(t - r) - Bz(t)

where

A:se-n'Wl-=r, ,  B:n*6

(8)
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and z(t) : k(t) - k* is the deviation of the state variable of the system fiom the
critical point &*.

We can easily recognize Kalecki's equation in equation (8) i6]. In Solow's models
with a zero delay the stable critical point k* is for A < 0. In our ca.se we have the
same critical points however the analysis of their stability is more complicated.

Kalecki obtained the same equation a^s (8) for dynamics of his business cycle
model. He put the following values of parameters B : -1.6 and A : -1.72.

Note that if we substitute z(t) : e-Btr(t) into (8) we obtain a simpler equation
for o(t) of the type considered by Tinbergen

dx
E 

: As(t - r). (9)

Since Â ( 0 as in Tinbergen's cas€, we can interpret the aboræ equation as the
inverse proportiouality of the rate of grovrth r(t) to the value of c at an earlier time
t - r. The explicit solution of (8) has the form of particular integrals of the type
e-Bt cosut, e-Bt sin at, that is

z(t) : 
"-nt

(10)

where À : ûft * 'ili6 are the solutions of the characteristic equation for (9); the
summation is taken from minus infinity to plus infinity since if À : ar * ir.,rr is the
solution of the characteristic equation then so is À : ax - 'it )x.

The solutions of equation (9) can be grouped according to the relation of the
parameter A < 0 to the delay r. If A < -fi then there are not any real solutions of
the characteristic equation. In Kalecki's equation, this condition is always fulfilled
because -L.72 < -! - -0.6. The presence of real solutions ) : r when A, -*
implies that there exist additional modes of type cetr in the general solution.

In the example under consideration when all solutions a,re complex we can find
their imaginary parbs a4 for a given delay r as the intersection of the plots of Y(X)

Y : utr : Xt Y : -Arsin(X)ex-tx (1 1)

Figure 1 illustrates that there is an infinite number of solutions. The value of the
k-th frequency arl decides the period of the k-th order cycle

) t

P1": i-
Ap

and determine the real parts of eigenvalues from the condition

ek: -ukcot(wpr).

We obtain the cha.racteristic equation for (8) by substituting the probe solution eÀt.
We then get an equation of the form

f/e+æ

II
L,t:-æ "or'(Cr,ocos 

crJ6t + Cr* sin ,r*t)]

(12)

(13)

À,: Ae-^' - B.
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Fig. 1: Intersections of diagrams of functions (11) which show the existence of an
infinite number of frequencies labelled by r,,,6 (for r* : 0.6 and A: -1.5)

Of course we have to remember that the lag is also included in ,4, which is why for
the discussion of À(i) it is more convenient to use the equation

À : s,f'(&)lt:o*6-(n+À)r - n - 6 (  r o j

where lc* is now determined from the condition Ah(k-) : (n * ô)k. since the critical
point represents the stationary states of the system which are invariant with respect
to the symmetry group (the homogeneity of time) t ---+ t * const. Of course, the
Inada conditions remain sufficient for the existence of stationary points.

Flom the point of view of the theory of the stability of dyna^rnical systems, two
things are importa,nt. First, determining the regions of asymptotic sta.bility in the
system parameter space. Second, determining the values of r which correspond to
purely imaginary eigenvalues for which the Hopf bifurcation to a periodic orbit takes
place. This occurs when the curves ReÀ(r) cross the imaginâry axis tranwersally,
\."., # Re À(r) > 0 (the transversality condition).

2.1 Asymptotic Stability of the System

We can reach conclusions about the stability of a critical point by considering the
signs of the real parts of eigenvalues in different regions of the system parameter
space. This is a consequence of two facts. First, the roots of the characteristic
equations are continuous functions of the parameters, and second, the number of
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cha,racteristic roots with positive real parts can only change with the paxameters of
the system on passing through the imaginary axis.

If in equation (5a) we set the delay parameter r then the parameter space (A, B)
is the parameter space of the system. Then a useful way of visualizing the stability
of the system is the construction of a D-partition with hypersurfaces whose points
correspond to quasi-polynomials @(À) which have at least one zero on the imagi-
na,ry axis (À : û is not excluded). Of cours€, the points of each region d;, of the
D-partition correspond to quasi-polynomials with sarne number of zeroes on the pos-
itive imaginary axis (we refer to the number of zeroes, ignoring their multiplicity),
since a change in the number of zeroes with a positive real part can exist with a
continuous change of coefficients orrly when the zero passes through the imaginary
axis, that is when the point passes though the boundary of the D-partition in the
coefficient space [5].

Thus, one can associate with each region d1, of the D-parbition a number & of
zeroas of the quasi-polynomials with positive real parts determined by the points of
that region. Of course, amongst the regions of this partition one cân find regions
that correspond to quasi-polynomials which do not have any root with a positive
real component. These regions are regions of a^symptotic stability for solutions
which correspond to the stationary characteristic polynomials under consideration.
The use of D-partitions in studying the stability of systems with a delay parameter
wa.s presented in detail in El'sgol'ts and Norki-n's monograph [5]. In the case of
our characteristic polynomial of the form @(À) : À J- Àe-^' * B :0 where Â :
-Ae-n' > 0, B : ft, I ô, this method allows the construction of a D-partition.

The results are summarized in Fig. 2. The D-partition in the first quarter (Â >
0, B > 0) is signifcant from our point of view. The characteristic polynomial has a
zero root when Â - -8. A line in the parameter space (Â, ù of the system defined
by this condition is, of course, one of the lines of the D-partition. The remaining
lines can be found developing the case in which the eigenvalues of the characteristic
polynomial are purely imaginarg À: i,t't. Then, separating the real and imaginary
parts of the cha.racteristic equation /(À) : 0 we obtain the parametric form of the
equation of the curve, marked C on Fig. 2,

Acosur * B : 0, ar - Asinarz : 0. (16)

For B > 0 and Â : 0 the degenerate quasi-polynomial does not have any roots
with positive real parts, from which it follows that region I is a region of asymptotic
s tab i l i t y .  11  Â> | , thu t t fo rpos i t i vechangeof  Band a(d ,B >  0anddo >  0)
we find in region III two roots with positive real components. On the bound-
âJy cnrve B * AcosuT : 0, marked on Fig. 2 as C1, the roots a^re imaginary;
from the equation of the curve we find that d,r dB ( 0 since d,a: -Re;fr;.
Therefore, when crossing the boundary C1 from region I to region III, real parts
of a pair of complex conjugate roots become positive. Similarly by calculating the
derivative d,a : -R"DT 

#a"nl#, on the boundaries of the D-partition (where
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Fig. 2: The D-partition for equation (16)

Ô(À,crt,...%): 0 is the characteristic polynomial with parameter Qr,...ao), we
can, changing only one para,meter, obtain a complete picture of the stability of the
trivial solution with txed r and the parameters A x -sf'(k)lpp- and B : n* 6.

2.2 Tbe Existence of Per*rdic Orbits in Solow's Model with Lag

In this section we prove the existence of periodic orbits in our model by using a
useful method provided by the generalized PAH theorem of the Hopf bifurcation.

To this end, we fix all the parameters of the system except for the time to build r
and examine whether in zuch a system with varying r there exists a r : Tbi for which
a Hopf bifurcation to a peiodic orbit appears. The first step involves demonstrating
the existence of one pair (À, À) of purely imagrnary eigenvalues fe1 s serta.in r : Tbi
- called the bifiucation pa,ra,rneter of the time to build. To do this it is convenient
to exa,mine the characteristic equation (15) and to look for complex solutions in the
form À : a*ia. Then we rewrite (15) separating real and imaginary parts to obtain
the system of equations

B + a: Ae-* cosul

r,l: -Ae-* sinar.

(17a)

(17b)

Note that system (17) has mirror symmetry with respect to the complex part, i.e.,
it is invariant with respect to the transformation o --+ -t r. This means that if
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À : o* * i*t' is a solution then so is À : a,* - 'iu*. Therefore, without loss of
generality, we can consider the case a,r > 0. We obtain the parameters of the Hopf
bifurcation when we substitute Re À : a : 0 into (17). We then obtain the equation

B : À"-n' cosar?
-i 

-nt .

a :  -Ae  ' - '  s l nu7

(18a)

(18b)

where.A is that part of ,4 from which the delaydependent part has been separated,
Â : A(r : 0). Squaring both sides of equation (18) and âd.ting we obtain the
relation

e-h' - f;W'+ (n+ô)21. (1e)

Alteraatively, moving the appropriate coefficients in equation (1E) containing sine
and cosine functions over to one side and dividing we obtain

1 f  /  '  1
r : - la rc tan l - :  I ; )+r " l  tzo)r , r f  \  n + ô /  J

where arctan is the branch of the inverse tan function in the range (-T/2,r/2).
Using formula (20) we can calculate the value of the bifurcation pa.ra,meter r when
we know the frequency c,r. Inserting (2û) into (19) we obtain the implicit equation
f.or a

3 [*"* (;;) 
- r^]'"t$t, k ez. (21)

It is difficult to find analytic solutiorrs for ar but we can exa,mine the equation
graphically as the intersection of the graphs of the function çlnA$t with the
function arctan,* (r"" Fig. 3 and Fig.  ). The results give the following theorem

Theorem I For system (5a) there erists eractly one pair of purcly imaginary eigen-
ualues of the chamcteristic equation ), : L'iu* , where w is o solution of e4totion (21)
and, the ti,me to build, parameter conzsponding to a si,ngle Hopf bifurcat'i,on r : rur
is giuen by (20). The period of cycli,c behauiour for r N 16; is eryal to P : #.

Of course for a given r the characteristic equation have an infinite number of so-
lutions indexed by ùhe parameter k - the order of the cycle. If r is fixed then the
flrst of equations (20) determines an infinite class of solutions for difierent /c, but
as k : 0,I,2.. . grows then so does c.rr which gives cycle periods shorter than the
main period. It seems that only those cycle periods which are larger tha^n the time
to build have any economic relevance.

The equations which we have derived seem somewhat complicated to be able to
understand them intuitively, but let us look more closely at the particula,r exa,nple

88



Fig. 3: Graphical solutions of equation (21) show
n :  0.01, ô:  0.02, A :  -1.5)

the bifurcation value of c.., (for

Fig. 4: The dependence of bifurcation value of r on frequetcy a, is presented
some values of ,t.
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of constant labour when n : 0.
the period of the cycle is

Then from (19) we obtain u: JE - (n+ 6P aod

2r
P N

M
(22)

In a similar fashion we obtain for the Kalecki model

P -
21 6.28

(23)
v/E=82 0.67

- 10 yea,rs.

'We 
can see from these simple estimates how effectirc a tool the bifurcation theory

is.
For completeness ofthe proofone should check the fulfrbnent ofthe transversality

condition- Differentiating the characteristic equation (15) we obtain

a^ -À2 - BÀ- : -
& r  1 + B r + À r

from which

aÀl ,R e ^  I  : u J ' ) 0 .
dr lo:o

Let us note that the methods we have applied can also be used for the other simple
models of growth. These models have been classified in terms of the governing
function h(k). Our results apply directly to the linear case h(k) : ok + e, where
a, € : const. Note that the constant term e in tr,(h) can always be eliminated by
an appropriate translation of the coordinates. The formulae we have found remain
valid if by À we understand ff(k)l*:*., where if necessary we have ea,rlier performed
the transformation k -- k * ô to eliminate the constant term present in à(/r).

In summary, we can see that the introduction of the time delay in the spirit
of Kalecki's ideas generates cyclic fluctuations for a wide range.of basic models of
growth theory.

3 Dynamical Optimization in Solow's Model with Lag

In this section we will consider dynamical optimization of the system under discus-
sion, into which we can easily introduce the growth of knowledge A(t) increasing
with a constant rate g, i.e., A : gA(t). Then we obtain an equation of the form

ou:! : se-'+ùr f Ur(r - 
")) 

- (n + e + ô)k(r).
dt

where k(t) : $(t) for f € [-r,0].

90

(24)



We base optimization on the classic work of Cass [3], where this procedure was

carried out for zero delay and based on existing generalizations of Pontryagin's
ma>rimum principle for the case of dynamical systems with delay.

The fundamental problem which we wish to solve rests on answering the question

whether the delay also induces cyclic behaviour in models of optimal growth and
under what conditions? This question was posed by Asea and Zak and the answer
wa.s in the a,ffirmative [1]. Now we must to ar]swer this question in our case. It there-
fore seems appropriate to obtain a solution to the question as stated in the current
approach. To this end we assume that consumers saving depends on their income
from work, their wealth and the interest rate. The preferences of representative in-
dividuals are given by the continuous, strictly increasing and convex utility function
u(c(t)) (which fulfils the standard Inada criteria) and the subjective discount rate
p > 0. The problem of planning with an infinite horizon for this economy is defined
bv the extrernals of the functional

1æ
max / u(c(t))e-Ptdt

clt) Jo

with the constrairt

È(r) : se-(n+ùr l(k(t - t)) - (n + s + 6)k(t) - c(t)

(25)

(27)

(28a)

(28b)

(26)

where consumption per capita c(t): 0 < c(t) < se-@+ù,T(k(t - 
")), 

and ô e [0,1).
We can develop the model using standard Ha^rniltonian methods for the general-

ized maximum principle. For this problem the Hamiltonian has the form

?{ : u(c)e,t + À(r) lse-@+st" 7 7k(t - r)) - (n + s + 6)k(t) - 
"(r)]

and lla.milton's equations have the form,

tl{(^(t),k(t),k(t - r),  c(t))
aÀ(r)

_tH(^(t), k(t),  k (t - r),  c(t))
ak(t)

where  r :  p  -  n  -  g ,  Lo :  I ,  Ao :  L .
Of course the first of Hamilton's equations (28a) reduces to a constraint condition

(26) while (28b) along with the condition fHlÙc: 0 (or u'(c) : Àe") determines
the second equation of motion

(2ea)

(2eb)

È(t) : se-b+sb f (k(t -')) - (n + s + 6)k(t) - c(t)

è(t) : 
ffif + 6 - se-@+c)' r &e- ?))l

k(r) :

.r(t; :

where a dot means the differentiation with respect to time t and a prime means the

differentiation with respect to consumption per capita c.

91



The condition lirtr1--'17 : 0 plays the role of the tranwersality condition for
the problem with an infinite horizon, where the terminal time 7 is free, and so the
variance A? is non-zero [4]. In order to test that the steady state solutions fulfil the
transversality condition we note that the conditions of equilibrium determine the
critical points which are somewhat different in comparison with Cass' case, that is

c* : sf (k*)e-@*e)r _ @+ g + 6)k.

sf' (k*1s-O+ùr : (n * g + r)

(30a)

(3ob)

(31a)

(31b)

where (/c*, c*) is the critical point of system (29). Just as in the case of Ca.ss' model,
this is a saddle point, since the eigenva.lues of the linearization matrix are real and
of different sigu

À1À2 : det J: -ffitf(k)e-(n+e)' < o

because /(k) fulfils the Inada conditions.
To find the Hopf bifurcation appearing in system (29) ooe, a.s before, examine

local instability through the cha,racteristic equation- Linearization of system (29)
about the critical point satisfying (30) gives

- oy'(n\
è(t): -rf"(k.)lô(k(t - r) - k.)

i '(t): -("(t) -c.) + "i '1tc"11tc1t-r)- 
k.) -(d +p)(k(t)-k-)

where /(/c) is a function which has abeorbed the factor s-(n*e)t, that is l(t) :
e_@+s)î f (k).

îo find a critical point we redefine the phase variables c(t) --* e(t) : c - c*,
k(t) --+ E1t1 : k - lc*. System (31) can be written using the new variables as a single
second-order equation

E(r) : ,i"1x7drl:)^8ft - r) + ,i'1t'1'n1t - r) - (t + p)'*(t). (82)'u"(c)

Formally, we obtain the characteristic polynomial for the linearized system by sub
stituting a probe function E: e\' into (32). We then obtain

s2  -  4 " -À t  -  B) ,e -^ ' *  dÀ:0

where the constants

t r :  
!9 r f ' f f j ) ,  

B :  s , f ' (O) ,  C  :6  *  p
u, , (0 )_J  \_ ,

a,re positive because both z(c) and s/(k) axe convex.

(33)

(34)



We are interested in complex solutions of (33). Let À : o*i,ube the root of (33).
Then sepa.rating the real and imaginary parts we obtain the system of equations

-u2 + o' - (Ai Bo)e-"" cosur - Bue-o'sina,rz * Co :0

2ou * (A+ Bo)e-o' siîcrtr - Bue-o'cosol * Cr.r : 0.

Fbom the form of equations (35) one can see their invariance with respect to the
reflection symmetry u) + -oJti.e., if À : o * ia is asolution then so is À : o -'iw.

Therefore we discuss only the case û/ >_ 0. The Hopf bifurcation occurs when a pair of
complex conjugate eigenvalues (À(r), ,\(r)) cross the imaginary axis Re À(r) : 6 : 0
transversally such that doldr > 0. Then (35) gives a solution for the bifurcation
values of the delay pa^rameter.

(35a)

(35b)

(36a)

(36b)

Moving terms ar2 and Cu to one side of equations (36), then dividing sides of the
first equation by the second one and a,fter some rearrangement we obtain

Bw2 + AC Bu2 +ÂC-vattrrwT : ---j--;-
u(A - BC) a(A - BC)

where Â,8 are A(r :0), B(r: 0), i.e., they are no longer functions of r.
The above relations allow us to calculate r : Tbi if we know c,r

where arcta,n refers to the inverse tangent in the interval (-nl2,rl2).
Moving terms ruz alld Cu to one side of equations (36), squaring both sides and

adding we obtain

(38)

u2 + Acosar * Bwsinc,,rr :0

Asinur - Bu cosur I Cu : 0.

u -

1 l -  /  Br t2  +ÀC\ .  I'ai : J larctan \;w:e ) 
* t" J

(37)

(3e)

Substituting (37) into (38) we obtain the implicit equation for a;

u  l aa+Cu f \  /Bu f  +ÀC\  .-16+ 
ù^\w;æ ) 

: arctan 
\;ea- )* t"'

Equation (39) is difficult to treat analytically, but it can easily be shoqrn graphically
that for all system parameter we can always find a corresponding value of c.r.

We derive simpler relations for negligible rates of growth of labour and knowledge.
Formally it is enough to zubstitute C :0 into (37). We then obtain

* (*""" T *t")Tbi :
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where t.l is given by the positive root of the eguation

u a - B 2 a 2 - A 2 : o  +  ( t : (41)

Of course an appropriate ar6 always exists and then the intersection of the plots of
the functions y(r) : tanur6i and y : ? : 

"on*t 
shows the existence of infinitely

many values of r. Similarly, setting r 7 r6i, we obtain from a comparison of the
plots of the functions (this time of c.r) an infinite number of values a4 and their
corresponding periods P : hr /un.

It only rerufns to test the transversality condition. Etrementary calculations give

a 2 - C 2 (42)
a2 +  C2 '

4 Discrrssion
'We 

showed the important role of the delay parameter can play in basic models
of growth theory. Our conclusions are in agreement with those reached by Zak,
although the basis on which we introduce the build time is fundamentally different.
Even in the case of zero rates of growth of knowledge and labour the results of
tbose two approaches do not coincide. Only if we were to also set the constant of
depreciation of capital to zero the obtained equations are the same in Zak's a,nd our
approaches, but that is a special case.

We demonstrated that, both for the modified Solow's model and Cass' model
with a delay, there are cyclic fluctuations whose parameters we have calculated.
These fluctuations have a constant period and appear through the mechanism of
the single Hopf bifurcation.

In this paper, we have not discussed more complex bifurcations which can appear
as a result of interactions, for example the Hopf-Hopf second order bifurcation. We
also considered a single consta,nt delay of exogenous character. This is because of oru
aim to examine the simplest ca.se before moving on to the analysis of more complex
models in which, apa,rt from the delay in the build time, there appears a delay in
models of the growth of knowledge and population. We expect that this will be
the next step towards understanding the dynamic complexity of the cycle, since the
emergence of the Hopf cycle is, in some sense, a precrmnr of such behaviour.

As is well known, Solow's model does not explain the differentiation of income
between countries since the estimated influence of savings and population growth
is much greater tha.n the model predicts. The question is whether the introduction
of r can improve the predictive ability of the model. Note that the effects of r in
Solow's model with a delay can be interpreted in terms of a change of the effective
interest rate s -+ s - 

"-(n+c)ts, 
if, ofcourse, we are on the path ofbalanced growth.

This means that the path of balanced growth is achievable at a lower level of capital

R"?:
iJr
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ptr unit of effective work k : #,, or that increasing savings e@+e)r times we find
ourselves on the path of balanced growth only for r : 0.

e-@+s)r sf (lc(t - r)) - (n +9 + Ok(t) : 0.

The influence of the delay r on the product in the long term is given by

fu* -  r , ,n Ôk*(r ,n,s,g,6)
0r J \.'/ ôr

where g*: f(k.) is the level of the product per unit of effective work on the path
of balanced growth. After several straightforwa,rd rearrangements we obtain the
relation

r A y *  ,  ,  ,  a r ( k - )  ,  n * g * ô  o * ( k - )
y. a' ,  

:  -(n+ s)r L- . ,dk):-  
"1ç1 

1 -"tkt

where or(k.) is the elasticity of the product with respect to the capital when /c : /c*.
In the most countries 1/3 of the income is assigned to capital. Therefore the elasticity
of the product rrith respect to the delay time is

#T: -I''+ s)r (43)

Substituting into (43) the typical values n: 0.01, 9 : 0.01 and ô: 0.01 we obtain

r ay* : -ITor.
a* a"r

Thus, for example, a 10% growth in r produces a drop in the product in the long
term of only onethousandth r.

In summary, the effects of significant changes of r on the path of balanced growth
are proportional to r.

Substituting Cobb-Douglas type functions a.nd taking the logarithm of the equa-
tion of critical points defining the path of balanced growth we obtain an equation
which allows us to estim^ate the dependence of product on r on the bala,nced growbh
path

lny* :  a + ; :1@+e + ô) + ;à1"" + g.

The presence of the last term is linked to r, which implies that g will contain a
da,mping term of the form 

"-o'075r 
(tat<ing g + 6 :0.05, a : ll3).
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