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Abstract
The problem of recognition of geometrical objects in different types of data and signals
is considered. The main tool in the proposed methodology is a new definition of a
cluster based on the invariants of some transformations of space. The invariant
properties are closely connected to the symmetry groups of objects. As an illustration,
the classical symmetries of space such as continuous groups (Lie transformations) are
considered. The particular case of spike recogrrition in neurophysiology is described in
details. Preliminary investigations show the high potential power of method. The further
prospects of the proposed method are discussed including the problem of perception and
models of mentality.
Keywords: signal processing symmetry, invariant, spike, clustering.

I Introduction

The problem of recognition of abrupt changes and intrinsic struchues is very
important in the recent developments of data processing, pattern recognition and
modelling methods. The recogrition of structural elements in continuous time series
data has a particular interest in these studies. The examples are cycles in economics,
spikes in neurophysiology (Aksenova et al., 2003), pharmaceutical fingerprints in
analytical chemistry (Tetko et al, 1999), textures in pattem recognition. These studies
consider the structural properties ofthese objects as geometrical ones. The applicaton
of geometrical approach to recognition implies a new definition of a cluster of similar
objects. The current study covers the problem of recognition of objects that have the
form of mappings of a segment onto a manifold. The proposed method is based on
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symmetries analysis (Makarenko, 2001; Makarenko et al., 1999). The applications to
spikes recognition in neurophysiology are provided.

2 Abstract statement of the problem

Let us consider the following function of class È :

ç:la;bf-+ M , ( l )

wnere [a; â] c .R , and M is some manifold of class k . We shalt designate the sct of such

functions O. Therefore, functions of this kind (l) describe geometrical objects in M .
As is shown in (Kelley, 1965), manifolds are metrizable. Let us designate one of possible

distanees

d r : M x M - + [ O ; + - ) .

Similarly, we may introduce a distance function between geometrical objects in M :

d :@ xO -+ [O;+.o)

o

d (p,, ç,) - [0, (r,(r), ç,(*)\fu

Consider * 
"rUirr* 

transformation I that acts on (D:

1 :O-+ô .

Then we can define clusters Kr(e)of geomotrical objects in M :

(6)K, : (0;+æ) ) 2* ,

where 2 o is a set of subsets in (D , and

K, (e )=  {p ,d@p,p ) .  " } .  
( 7 )

Suppose ttrrt A c 2a consists of several clusters Kr,(t,) , i = 1..n. Then the problem of

classification lies in finding Ti if A is given.

3 Geometrical objects described by an ordinary differential equation

(2)

(3)

(4)

(s)
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Suppose we have n ordinary differential equations oforder m:

*'o' _ rr,.
dt

*"' _ ur4
d t ' ,

# 
= f bQ), vo),-.", v'^-")

(8)

where i =1..n,ûd f isaboundedfirnctiondefinedonsome area D ctR'.Thenall

functions y(r) tttat are solutions of (7) induce a set of geometical objects on .R'. In
this particular case (l) takes the form

r p :  A ,  c  R +  D ,

where

(e)

(10)

and e is a function of class l. Then for an arbitrary point peD exists the only

tunction y,Q\, fo, which (rll)(oly!')(oI...,yf-')(o)l = o. Let us define such

mapping X of D into R', that

x: pv+(yf)(o)yf)(o)... ,yf)(of (rr)

It is a vector field on D, induced by equation (8) (rù/arner, 1983). Similarly, we can
define a local one-parametric group G that acts on D:

s, : p è (yf)("), y!)( î\..., y('-t:) (î)'/ . (12)

Consider the action of G on set
(e):
g" : (D+O

O of geometrical objects represented by functions

e : t è (/(0)(r) /(') (r),. . ., y(^')(r)l

s,@k)= s"@Q -')).

( l  3)

(14)

Let us introduce set of functions
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l
Q,:Q-+[o;*-),

that act as

(t s)

Q":e-  d(s,@\q) (16)

It is obvious ûut Q"(p)=0 for any admissible r if and only if ç is a solution of

(8). If we find the numerical representation of the vector field, we shall have a simple

"rit"rion 
of evaluation of adjusnnent the geometrical object to the given differential

equations (8).

I Particular example of methodologr implementation

Here we illustrate the application of the above methodology for the spike recogrition

problem in neurophysioiogy (Abeles, 1992; Tetko, Villa, 1997). For obtaining

ngmerical presedation of vector fields, we classifred sçarate spikes and formed their

spike classes. The algorithm includes three stages: spike detection from the noisy signal,

ùculation of distanies between the phase trajectories of the detected spikes and, at last,

forming clusters of spikes that hypothetically belong to the same neuron. More details

ofthis illustration can be found in (Polyarush et al, 2003).

4.1 Spike detoction from the noisy signal and derivative calculation methods

The first and second derivatives as well as the mean square of the latter were

calculated for the analyzed signal. The time points when the second derivative exceeded

3o were accepted as the centers of potential spikes. The duration of a spike was

specified to be 2.5 ms.
It is shown in (Aksenova, Shelehov4 1994; Aksenova et al, 2003), the i-th derivative

of function r(t) can be estimated using integral operator

D'"x(t1= lco'"(t 
-r)f (rY" ,

where a'" is the Ëth derivative of function oo, which satisfies the following

conditions:

CIo$4, if ltl>a; 
(18)

(r7)
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o:(t) =

b"uY' ='
and arohas i continuous derivatives.

D:fQ) tends to t* fd) if a -+0. A fast algorithm of derivative estimation

(Letevier, Weber, 2000) used piece-wise polynomial kernel functions as ott" and at'":

ral,(0 =

24 24- - t - i , r . l -u-a/21
)A- ; t , t  

e l -a /2,a/21 ,
d -

_?! ,  *2 !  1 . fa /2 ,a1
a t  a t

l t  +4c, t  e l -a ,4at4 l
a

- 9t -zr,t e[1a | 4,-a / 41,
d

" t , t  .1-o 14,01
d

where c = +. The kemel functions atiQ) na at'"Q) areused to estimate the first
fu'

and second derivative of the signal. The integral operator Q, acts also as a bandaass

filter on a signal. Low and high cutoff firquencies for kemels (10) and (l l) were found
(Aksenova et î1, 2003): oro,r^v0.88/cr, o1ig14.76la for at'", and a11,rcw*1,76/o.,

rl,rignol.44la fot al. The choice of parameter cr, depends on the noise frequency and

neuronal spike duration. The latter ranges from 0.5 to 4 ms, so in the prcsent study the
low cutofffrequency was set to I kHz.

4.2 Distance function for phase trajectories

Let x(t), wherer.[O;o], be an "ideal" spike (i.e., spike generated by a neuron

before its form is disturbed by noise), xtlr; and x'1t1 be the evaluation ofits first and

second derivatives respectively. Then r(r)= (r'{t),r'{t))t describes the phase trajectory

of that spike. For estimating the deviation of trajectory y(r) from r(r) we define such

vector n(t), that r(r)+ ng\= y@@) for some ar(r), and t(t) ir normal to /r(r)
(Gudzenko, 1962; Aksenova et al, 2001). Its norm can be calculated as

(te)

(20)

Qr)
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tn('O,y0Xr)i'=r.r,_fjfi,,,,(6'(r) - y'0)' *(',(r) - y,(t))') Q2)

We can introduce a difference function for phase trajectories of spikes x(t) and y(t)

(Aksenova, Shelehova, I 994; Aksenova et al 2003).

d(xg,yo) = min(7(4';,vtl)Z(vcl't'l))

7 ('o, yo) =min 
. 
jr(r)n(r 0' voY(),.' QYt,

and

*fr\=
t  

, t . fo;or)
al

l , la, ;ar l

!--!- ,@r;ol
d - d z

(23)

(24)

(2s)

is a weight function. In our implementation the paxarneters were as follows: a, =0.5

ms, az=l ms and a=2 ms. Then we define matrix D=V,,rl' whae

d,., = d6,(\r,('))'

43 Numerical representation of vector lleld and integration oa it

The vector field that characterizes the activity of a neuron can be described by phase

trajectories of the most typical representatives of its cluster. In our implementation, we

chose the center of the cluster of spikes corresponding to this neuron and two spikes that

are closest to the center.

4.4 Modelling of neural activitY

The proposed method was verified using data from our previous study (Aksenova et

aL 200j). Invsse Fourier transform was used to gorerate 50 seconds trial of an artificial

noise with evenly distributed phases and magrritude that represented l// noise

signature. The sampling frequency was 44 kHz. The mean-sqruue deviation of the noise

equaled o2 æ1.ffi957e+06. 30000 templates corresponding to 10000 spikes of three

different neurons were imposed additively on the noise. Spikes did not overlap. The
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duration of every spike equaled to 2.43 ms, the duration of the whole experiment was
1097 s.

The distance from the every template (vector freld) to the potential spikes were
calculated. If the distance from the template to the spike did not exceed the radius of the
class, the spike was considered to belong to that class.

The calculated results (Table l) indicate higher performance of the new method
compared to the template matching in phase space of (Aksenova et al, 2003).

Table 1: Comparison of recognition methods.
'Uclassified' is the number of spikes of the given class that were not detected or were
refened to another cluster.
'Misclassified' is the number of impulses that belong to another class or represent noise
btrt were classified as spikes of the given cluster.

Errorlndex = ("*t^WraY * @ittl;t;if*dY

Tem
platc

Symmetry grorp (current approach) Tenplatc matching in phæe specc
(Aksenova et a|.2fi)3)

Unchssificd Mirchsrilûcd Error
indcx

Unclassifrcd Misclsssifi€d Error
irdex

I 32 0 32 l0 tz 15.6
ii 103 t20 lst r 122 r65 2032
ni 94 J ' 965 165 76 Itl.7

5 Some possible applications and generalbations

The proposed methodology may have a great number of applications in different
fields of science. For example, it can be applied to analysis of sound signals, such as
speech, music and rhythms (Morgavi et al,200l), electrocardiogram (Abarbanel, 1995).
Another possible fields of application may constitute signals with bursts: sea
hydroacoustics, seismic activity, bursts on the sun, objects recognition in astronomy and
radio location, spectral analysis, chromatogtaphy (Tetko et al, 1999) and the decoding
theory.

The proposed methodology can be also generalised. Fint of all we may consider not
only problems of recognition of geometrical objects of type g:la;bl-+ M, but also

some projection maps to another space rff, P:gQ))PrelV, where Pa

geometrical object in W. This problem is of particular interest in studies on objects
stimulus in perception (Rosenblatt, 1962). Some of the examples of such projection
include the so-called attractor reconstruction procedure from time series (Abarbanel,
1995) and design of attractors (Feo, Hasleç 2003). In such cases, the interaction of
object with observer in experiment is important. Our methodology potentially may be
applicable to the pattern recognition of synchronization and clustering in oscillator
arrays.



It is also possible to consider maps of type (P: N -> M , whete N may be the space

Rh , kr l,or some manifold. While the scope of the method stay the same the difference
will be in spaces, transformations classes and criteria. Of course, it needs special
investigations of necessary mathematical properties for each particular problem.

Let us describe some possible examples.
Example 1. Differential equations in Banah spaces with one-parametrical

transformation group. The method will allow considering the partial differential
equations (Henry, l98l). Of course, it requires the development of appropriate
approximation theory.

Example 2. Multivalued maps and general transformations. In such case there is also
a question on changeable fiansfonnation groups for equations with anticipation.

Exarnple 3. It is known (Ovsiannikov, 1978) that the general differential equations
may be represented as geometrical object in extended infinite-dimensional extended
spaces with special (Lie group) transformations. The proposed methodology may be
useful also for such objects too.

The generalization of the method can be also useful to analyse geometrical objects in
threedimensional space, in pattern recognition, rnorphogenesis and in analysis of art.

6 Conclusi,ou

A new general definition of a cluster of geometrical objects was proposed. An
important featrne of this definition is an absence of strict bourds of the cluster. In our
example the objects from the same cluster wele generated by the same set of differential
eqgations. The proposed methodology is very general and may be useful for many fields

of investigations where the recogrrition of the bursts is important, including many

aspects of anticipatory systems. Moreover we can suppose that the approach can help in

anticipation and recognition of spikes in anticipalory systems.
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