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Abstract
We consider a process of information transmission in the environment described by
the canonical distribution of noise, considered a^s the transmission channel in the
Information Theory. We derive the generalized form of the noisy entropy of tbis
environment. Then, the generalized information capacity formula is derived for the
geometric distribution of the output variable under the condition of greater or equal
than the minimal value of the mathematical o<pectation of the input variable. We
also state the hypotheses the capacity, when this input parameter is less or equal
than that minimal (critical, extreme) value, is just defined by the lower capacity
estimation which is the eapacity for the limit distribution with this minimal input
pararneter. This paper generalizes the paper [6] presented on CASYS'98.
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1 Introduction

In the present paper we study an information transmission in the environmat
described by the canonical distribution of noise

Pr(s):qp'0(s(r,  U=ff i ,

which is transformed into the Ferrni-Dirac distribution if we put P: e# and r : 1,
or into the Bose-Einstein distribution if. p: sî+ and r = oo.

We derive the generalized form of the noise entropy of this environment which
we consider as the information transmission char't'el of Information Theory

H-b\= h(p) - hw*')=,
- - 1 \ y ) -  

I _ p  l _ , p r + r '

where lz(.) is the entropy function -plnp - (1-p)ln(l-p). Information capacity
is then evaluated a"s

c(1t,rlw):9- H,(p)
rThis paper is an occerpt of Chapter 6 io [7].
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for0 < p 41, r ) l andgeometricaldistribution x(i): (L-x)ni, j 2 0 of the

output va,riable under the condition W 2 W"r;t for the mathematical expectation

I;Ir of the input variable. This condition is considered to be the main result of this

paper. We also state the limit distribution of the input variable for its extreme

eçectation value 

w = wou= 
(r * 1)y'+1'

L - Y + t

The condition binding the output and input variable together is orpressed in terms

of their e:rpectations as

E:e!j+w, where "=W{ffù
The lower capacity estimation for W l Won is then stated as

c.(p,rlw) = 
#, where # 

: #.
We orprees the hypotheses that CQt,rlW): C.(lt,rlW) for W 1Wo;t.

2 Generalized Formula of Physical channel capacities

2.1 Definition aad Fornulation of the Problem

Let us consider tbe Hermitian operator of energr e of quantum particles with

spectrum .5(e) of eigenvalues e; (energetic levels of the particle) in pure states Q of

the system i[ under consideration. \t'e assume that a variable c with a spectrum

.S(c) : {oo, ar, ...} is measured with the probabilities

p ( j - i )  r o r  j > i

0  j  < i ,

where {p(0), p(1), p(2), .. .} = Pr(.) is a probability distribution defined on the set

{0, 1, ...}. This situation occurs when, for exarnple, a particle is occited by a

random interaction from the energetic level e; to e;4g, and the spectral energetie
jump s is random with the distribution Pr(s), 8:0, 1, 2, '.. . Then, enerry of the

excited pa,rticle is measured. The excitement can occur as a result of interaction

with another particle or a wave. If the particle energy is ei = fe, then, for exarnple,

after interaction with a wave with energy €s: se, and after absorbing its enerry, the

additive energetic jump to the level €i+" : (i + s)e occurs. In the example stated,

it is the enerry distribution Pr(.) in the environment interacting with the emitted
particle that plays the key role. For an observer capable of measuring the particle

etrergy, that particle represents an information sigaal'

p1oi1ole,) = 
{



The distfbution Pr(s), e 2 0, also ha"s a similar meaning in a general ca.se, when

an observer of the rariable a can obtain information of the state 0 of the system i[. If

Pr(s) : 0 for all s I 0 and Pr(O) : 1, then, based upon the mea.sured value a = a&,

the observer can determine, without errors, that the system is in the pure state O5.

Otherwise the observer's determination will be less accurate. If we have a possibility

to bring gfadually the system {r into a^rbitrary pure states 0ir,0i", .. ., Oio from a

state subipace Os C 9, then the observer who takes n independent observations

of the variable o, thus obtaining independent random values Qtk, Qkz,. . . , a6 in

these states, receiv€s a certain arnount of information I(0;a)'

Let us assume we would like to transfer one of the messages from a source

Zn : {L,2, ..., Mo}, where the number of messages M" increases with numbers

of observations t? as the integer-related portion of the number eh, where R > 0

is an inva^riable called inlormation rate of the source. It follows from the Shannon

coding theorem (see [3]), that a message from the source Z* can be transferred to the

obssver with an arbitrary small error probability when the number of observations

n is great enough, provided that R ( C, where

C A c1v11c), Oo) = sup I(0;c) (1)

is cailed "relative capacity'' of the system Ù.

We will look for the probability distribution Pr(s), s ) 0, within the class of

the Gibbs canonical distdbutions in the form

o-FE(s)
Pr(s) :2W, s20,

where the enerry E(s) will be different from zero in all of the states s 2 0 of the

"ÉygtemnoiSe" underconsideration,oronly inthestates 0 ( s ( r, wherer > 0is

finite. Here , 0 > 0 is a pararneter and Z (il is the statistical sum. For simplicity,

we put pE@ = 0s, where the value of the para,meter 0 is usually considered to be

ef kTrwberee ) 0 is energy, T > 0 is ternperature and & is the Boltzman constant.

Consequently, we consider the distribution

f o r  0 ( s ( r

fo r  s ) r ,
(2)

where 0 > 0 and Z(0) = (1- s-a{'+t1)l$ - e-0), or alternatively,

W" for 0 :! s S r, q: P?.Tr

0 for  s) -1,

( e-0"t rc
Pr(s ) :  

{
[ 0

,"(") = 

{

35
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where 0 < p < 1. In (2) and (3) r ) 1 is either a finite integer or r = æ. In the

case of r: oo the distribution Pr(s) is always positive and Z(0):1/(1-"-t),
respectively q = 1 - p.Then, in (3) *e substitute

P:e-o  resp .  P :e- f t

The extreme cases of the distribution given by relations (2) aad (3) coneepond
for the values r = 1 and I = oo with known distributioss of statistical physics

For r: 1, the only probabilities different from zero are

Pr(o) = -L and Pr(1) = 1- Pr(0) = +,. (5)
l *p  r  + ,

With the substitution (a) we obtain the knowa Fermi-Drac distdbution, see [9].There-
fore, the distributions (2) and (3) with r : 1 are called the F-D (Fetmi-Diræ)-type

distributions. If, instead of the subotitution (4), we ta'ke

e-o e-&
P=7=7:ô re6p' P=7=7n;,

we obtain the Ma:cwell-Boltzman distribution.
For r: oo, âll probabilities a^re different from zem,

Pr (s )=  (L -p) t ' ,  s )0 ,  (7 )

and when subctituting (4) we obtain the known BoseEinsteia distribution, see

[9]. Therefore, the distributions (2) and (3) with r = oo are called the B-E (Bos€!

Einst e in) - typ e dist ribut ions.

2.2 Additive Physical Channel Capacity

We wilt consider only such states O the distribution of which q(i) : q(rlo) holds

where W is the power p.rametæ of the "signal va^riable" 0 on the channel input
(if e; = ieo is the energy considered at the beginning of Subsection 2.1., and if

we use r > 0 as a symbol for "time windod', in which "modulation of input"
and a consequent process of measuring of the variable c is performed, which is an

"input-output communication action", thet esW f r is the power on the input of the
channel). In this paper we deal with the capacity

C(p,rlW) = I(ai9), W ) 0,

where Osr is a set of the states 0 the distributions of which satisfies the condition
(8) and I@;$ is the information transferred.

(4)

(6)

(E)
æ
Itq1t1:r4/,
i=0

(s)sup
Oeêw
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Lemma 2.1 In the additive physical channel it holds, for
I / (a l l 0 ; )  i n the inpu ts ta te  0 ; , f o r  a l l i >0 ,0 (p<1  and  1

h,,\ hkf+L\ ^rr(cl la;) : 
f f i- #2 H,(p),

where p- : lirnn*-y' : 0 and

h ( p ) :  - p h p  -  ( 1 - p ) l n ( l - p )

the output entropy
( r (oo tha t

(10)

(1 1)

(14)

is the eutropy function of the parameter p. Therefore the capacity of this channel is
given by the relation

c(p,rlw) = 
rÈiT 

n@lle) - H,(p)

for €w defined above and the output entropy A(all0).

(r2)

Proof. The relation (tO) follows from (3) and from that H(alla;) occurs with
probabilities s!lq.It follows from (10) and from the definition of f(a;0) that

I (a; 0) = fl(allo) - H,(p) (13)

and the relatios (12) follows from here, from (9) and from tbe definition of Op.

In the lemma below and further on. \,e consider a distribution of the state g

( c1'iq when i > o
s$):  i

L0  when  i <0

and the respective distribution of the variable c

( n@1lolo) when i > o
x( i ) :  \

[0  when  i<0
(15)

in the system !û under consideration.

Lemma 2.2. The following system of equations holds between the distributions
(14) and (15)

sA)  =q l fs( j  - r )+p ' - 'q( i  - r+1)+. .  .+wU- 1)+c0)1,  i  >  0 ,  (16)

which is equivalent to the system

q ( i ) : p , + r q ( i - r - 1 )  * t ( i ) - p ! ( i - t ) ,  i ) 0 ,  ( 1 2 )
q

where p,q,r arc the noise parameters appearing in (3)'
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Proof. By the probability definition p(aÀal0;) stated at the beginning of Subsec-
tion 2.1, for all j > 0 it holds that

r(i) =Dprsrilcrle;)q(i) : L rrU - ùq(t). (18)
i>0 i=i-i

By substituting Pr(i - i) from (3) we obtain (t6). By (t6)

s(j - I) = qlf q(j - r - 1) + p'-' qU - r) + . . . + wU - 2) +qU - 1)1,

ps U - \ : qlp' +t q (j - r - L) + f q (i-r) +. . .+wU - t)) : qf + L q (i - r -t\ + x (i) - qq (i),

xU):wU - 1)+qqf i )  -qp'+ 'q( i  - r -1) .

Then (17) follows directly from the equation (19).

(1e)

(21)

Now, we will derive the relation between the powen para'meten W --W(0) of the
state 0 from the formula (8) and the similar power para,meter of the variable a

n=E@): t j 'o)>0.
il)

Lemma 2J. The power para^rneters W = W(0) and E = E(a) are related by

(20)

E:P++*rr where,

c:c,(p)e f  
r+i-+' t '+i)- ' :  ("1r)p1!1, e) € (0,1).  (22)

\  r * 1  )  L - p " + l

Proof. Multiplying both sides of the equation (19) by i > 0, we obtain that

jx(j) = pU - t)x(j - t) + wU - t) + qjq1)-
-qf+'(j - r - L)q(j - r - 1) - qp'+t(r + t)q(i - r - 1).

By summing up both sides over all i > 0, we obtain

E = pE +p+ (1 -  p)W - qp"+L(r * I) .

According to (3) and (22), for g : (1 - p)l$ - y'+t) and c = c,(p) it holds

qp'+'(r+ 1) : 
(1 - ?)P'+-r(r + 1) P(r + 1)

L):  
L- f .+t-  

= 
ITJT_J; 

=Pc'

Therefore it holds E(1 - p) : p(L - c) + (l - p)W, which implies the relation (21).

In the next part we are interested in a solution r of the equation

n =p9 
-,1 

+W where c : c@) from (22). (23)
l - * -  L - p  

T "  w u r



Lemma 2.4. The solution o of the equation (23) satisfies the condition

,:p(L 
- c) +.(L --f.)Y 

€ (0,1)
L - P * ( L - y 1 v ,

and meets, for c from (22), the relation x ) p if and only if

w, ( r ,+ l ) { : '  wt '  ' -  
l=  ry+ l - :  T -  p '

Proof. Fbom the equation (23) we obtain

(24)

(25)

Therefore, the equality in (24) is valid. Also it holds that 0 < s < 1. F\rrther, we

obtain

So that r - p > }if and only if (1 - p)W - pcZ 0, which is the condition stated in

the equivalmce (25).

Lenma 2.5 l,er s(j\, i ) 0, be an a.rbitrary probability distribution defined on

the set {0, 1, . . .} . Its entropy l{ - - DË ru) 1""(r) achieves, under the condition

'*=g
x (ù : ( t - x )d ,  i  )  0 ,

where o is the solution of the equation

-L  =  6  (28)
L - î

and à(c) is the entropy function defined in (11). (This key lemma follows from

ta,grange multipliers method or from more general Theorem 9.37 in [15].)

(20), the maximum

if and only if

(26)

(27)

p(L- c) + (t -p)w _p(r - c) + (L - ?)w
i (=Q+ (1-  f l (w  + t )  L -pc+ (L -p)w

39



Lemma 2.6. If c, given by the relation (24), leads to a non-negative solution
q(i), i ) 0, of the system of equations

t - a  f o r  i = 0
.I

f*tq(i- r - 1) * k14, @ for i ) 1.,

then the supremum appearing in the formula (12) satisfies the equality

sup fr(cllâ) : rr(alla) = 9,
ô < 6 *  

\ - - r r - l  L - x '

where O € 9w is the state with distribution q(il0) = q(i), i > 0.

Proof. By Lemma 2.5 and L6, Hi,as ê supw(I/(olle)) is the maximal entropy
of the distribution rff), j ) 0, which solves the system of equations (16) under
the condition the distribution g(a), i ) 0, in (16) satisûes (S). gV Lemma 2.3, thi6
condition holds if and only if the solutioa t(j), j > 0 itselfsatisfiec the condition
(20) for positive ̂ O defiued by the relation (21). Hence, following Lemma 2.5, the
value fffio is less or equal I[-o in (26) and the equality Hil - H** b achieved
if and only if it is possible to find out such a solution sU), j ) 0 of the system
(16) satisfying the condition (20) for .E given by the formula (21), which is the
geometrical distribution (27) with the para,meter c, solving the equation (28) for E
given by the formula (21). This also means that o solving the equation (28) for .E
given by (21) means nothing else than that o solves also the equation (23), i.e. that
it is given by the relation (24). According the equivalence betwees the systems of
equations (16) and (17), the geometrical distribution (27) satisfies the conditions
stated above ifand only ifthe solution C$), i ) 0, ofthe systern (29) is, for o given
by (2Q, the probability distribution. As we can see, this solution always satisfies
the equality EPoC(i) = 1, so it is obvious that the condition of the probability
distribution holds when q(i) > 0 for all i > 0. This is the neceosary and sufrcient
for the equality âi* : .E[-o. The lemma thus holds when fl-o" = h(x)/(l- x)
holds, which is guaranteed by Lemma 2.5.

Theorem 2.1. For all parameters 17 satisfying the condition

W t W n , a  
( r + 1 ) P ' . + 1  -  W

l - P t + r  l - P

the capacity (9) of the additive physical channel with pararneters 0 < p < 1 and
1 ( r ( oo is given by the formula

,,u: 
{

(2e)

(30)

(31)

c(p,rlw):g-H+W, (32)



where o : û(p,rlW) e (0,1) is the variable stated in Q$ and à(') is the entropy
function defined by (11) on the interval (0,1). The capacity is achieved, i.e. the

equality C(p,rlW) = f (a;g) is valid, in the state 0 with the distribution q(?id)' i à
0, given by the relations (14) and (29).

Proof. The condition of non-negativity of the variable c$), i ) 0, in Lemma 2'6
will be satisfied when the solution o of the equation (23) satisfies the condition

x )* p.By Lemma 2.4 this happens when the power pararneter llll satisfies the con-
dition (31). Under this condition Lernma 2.6 guarantees the equality (30). Now,

the required equality (32) follows directly from Lemma 2.1 and from the equality
(30). The condition for the capacity achieving follows from the formula (13) for
information I(a;O), and from the formula^s (12) and (30).

Note that the power restriction (31) holds

Ws,;s 1 0, more accuratelY Wæit: o(rq'),

for rp' -f 0, i.e., for o<ample, for any p and r 4 @, or for any r ar'd p + 0. For

the critical value of power pa.rameter

w :wait-  
(r  + 1)P'11 

(33)
1 - Yit+t

the capacity formula streamlines, following Theorem 2.1.

Consequeace 2.1. The capacity (9) of the additive physical channel, with the
power critical value (33), is

CQt,rlw*;)- fS+ (34)

It follows from this result that C(p,rlW) < hW*')10 - y'+t) fot W 3 Wæôt,

where the upper bound is small occept for mall values 1 < r S oo and great values

0 < p < 1. However, the formula of the capacity c(gt,rlw) of the additive physical

channel for the under-critical power norm W 1 Wæit remains to be as an open

theoretical problem.

2.3 Capacity Estimations in tbe Area of W 1Wn*

Now we will concentrate on upper and lower estimations

C.(p, rlW) < C (p, rlW) S C. (p, rlW)

4 l

(35)



of the capacity C(p,rlW), given by the formula (12) for the area of the low input
power paranneter W 1Wo;r.

Let s* = t,(P,rlIV) be a solution of the equation

. ' *  =  w .  (g6)
l - r *  r *1 '

T h e n 0  < r . <  l f o r a l l 0 < p <  1 ,  1 ( r ( o o  a n d W  ) 0 . F o r a l l m e n t i o n e d p , r
and W', we define

C,(p,rlW) = g, a,,d C(p,rlw) = 9- H. y#,

where t : s(p,rllIr) is the solution of the equation (23), i.e., is given by (Z ).

theorem 2.2. The functions in (37) are estimations of the capacity C(p,rlW) of
the addit ivechannelforthewholerançof thepara,meters 0 <p< 1, 1(r  S oo
and lfz > 0.

Proof. The tunction C(p,rlW) features ar appearance of â(o)/(1 - c) - E.(p),
while for h(r)l$ - s) : 8,,-, we argued in the proof of Lemma 2'6 that

-sup lr(cllo) = g

Therefore, the inequality C(p,rlW) S C'@,rlW) follows from (12). \ilhen proving
the other inequality for C.(p,rlW) we will use a state 0. e 8w defined by the
condition that for every i ) 0,

(37)

( (r - î,)r! i f i : k(r + 1), & > o,
aQlo.) = 1

[ 0 otherwise.
(38)

For the state 0, defined in this way it is ea.sy to see, from the definition (36), that
0, e Ow, from the definition (37) and from Theorem 4.4 in [7], that

C,(1t,rlW) : ?{(0,), (3e)

where ?l(0*) is the Shannon entropy of q(.10.). Now we will prove that it holds

I/(all0.) :?1(0,) * H,(p), (40)

where ff,b) is that entropy defined in (10). By the definition of information trans-
ferred and by the relation (10), it is obvious that .t(a;0,):?l(0') and, therefore,

I(a;0): C(p,r lW).

42
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This means that (39) is the lower estimation of the capacity which was left to

prove. Then, the problem shrank to proof (40)' As for this proof, we will use that

for q(i) = q(i,1l,),the probabilities ofu) à p(ailall'), i > 0, satisfv

s(ù: Pr(s)q(k(r + 1)) :  qP'(r  -  s*)t f ; ,

where rt ) 0 and 0 ( s ( r are unadrbiguously specified by the equation j =

h(r + 1) * s. As we denote 14 ê h[qp"(1 - r-)c!] : 1n(qy') + 1n((1 - c.)cl), it is

easy to find out that 

æ æ I
Il(cllo,) = -DrU)lnsff) : - t |-qp'(r - 4)xf;t"1,

. j=0 &=04=0
r o o

: - I cp" lo( w') - E tt - r')cf tn((r - ,,)s!)
l=0 &=0

: H,(p) + fJ(q(.14,)) = H,(p) +?{@,).

Theorem 2.S. The probability distribution (38) we used for the lower estimation

c*(qt,rlw) of the capacity c@,rlw) ir the area w 1 wtit is the limit of the

optt*"I dLttibution (29) for x { p, i-e. for W I Wott and for a = pt, i'e' for

Vi : Wo;, it is identical with this distribution. Therefore, it holds for W = Woct

that the àftimal state 0, in which accordi"g to Theorem 2.1 the capacity is achieved,

is for this W =Wæn identical with the state 0* used in the proof of Theorem 2.2.

Thereforg the lower as well as the upper estimations satisfy the relation

C.(p,rlWoa1) = C(p,rlWo*): C(p,rlw'a)' (41)

Proof. It is obrvious from (æ) that for z - p it holds for alt ? > 0

f (1 - pr+l)(pr+l)& if i: (r + 1),t, /c > o

q(i) = {
I o otherwise.

However, for the state 0 with the distribution cu): q(ilo) faus into the set ow

(i.e. for it. dirtriUotion g(i), i > 0 that satistes the condition (8)) it ha"s to hold

nr+l æ

(r + 1)# : (r * lxl - P'+') t e@'*')n :w,

i.e. y'+l ha.s to be identical with the number o* defined in (36). In other words, the

distribution (2g) has to be identical with the distribution (38). As the distribution

(29) is a coutiuuous function of the \xariable x e l1t,ll in all common norms (e.g. in

ir-norm), it has to hold that lim,p EËo lq(tt) - q(ilO-)l : 0'

43



The significance of Theorem 2.3 is in the fact that it supports our hypothesis
saying that it holds

C(p,rlW): Ç*(p,rlW) for alt 0 <W 1Wo*. (42)

A rigorous proofofour hypotheses (42) calls for an application ofthe Kuhn-T\rcker
conditions in iqfinite.dimensional spaces, and therefore it is left for a later resea,rch.

2.4 F-D Channel Capacity

In this strbeection we will concentrate on the special channel case, when r : 1
in the general model studied till now.

Theor-em 2.4 For all para,meters of the power llr and para,meters 0 < p < 1
satisfying the condition2

w2wo;t I#, (43)

the capacity (9) of the respective !'-p çfurnnst is given by the formula

cro--ceo@tw):H-r(#) ,

where  
, -  w+p(w+ l \-  w11tegf i€(P'1)

@)

(45)

and â(.) is the entropy function deûned by the relation (11) on the interval (0,1).
The capacity is achieved, i.e. the equality Cpo = I(a;O) holds, in the state O with
the distribution

c{ip) __ (t +g)(1_- 
") (ai+r _ (_p)r*'), i > 0. (46)'  î +p

Proof. When we substitute c: Zpl(l * p), we obtain the condition (A!) from (31)
and the condition (45) from (2$. By (32), we obtain the formula

^ h(") h(p) , h@)
vFD:1 -o -1 - rT1 -7 '

Hence, after a verification of the equality

h(p) _ WL: h(  p \
r -p  1 - f  

' - \ t+p /

valid for all 0 < p 1L, we obtain (44).
The distribution (46), for which information in the variable c is ma:rimal, is not a

'Fl"r.rl" (43), -d (31), ***tr * inaccurate statement for !7 in Theorem 10 in [6].



canonical one in the sense of the exponentiality. On the pure states 0; of an even

order we spea^k about the addition of two canonical distributions which, after the

normalization to only "even states", takes on the form

e,**(i) : 
ffi$(ai+r 

a p;+t1, 'i € {0,2, 4, . ..} .

On the other hand, on the states 0; of an odd otder we speak about the sub-

traction of two canonical distributions which, after an application of the respective

normalization process on the set of "odd states", ta,kes on the form

i € { 1 , 3 , 5 , . . . } .  ( 4 8 )

Now, let us have a close look at these upper and lower estimations C*ro and

Clp ofthe capacity Cro inthe area 0 < W < 2f lG-p2). the upper bound is

identical to the right-hand side of (aa) and we include it for the sa.ke of completeness

only, while, with regard of the hypothesis at the end of Subsection 2.2, the lower

bound is more interesting and of a fa,r greater importance.

theorem 2.5. The upper and the lower estimations of the capacity cro are

crn: ! '(ù- -à f.+) and c,FD: #9i ror " 
*

- r u  
l _ r . - \ r + p /  

u - ! - r , ,  ; * : ï T ' f r

in the whole range of the parameters0 <p< l and 1I/ ) 0, o is the variable giræn

by the relation (a5) and h(.) is the sarne entropy function a.s in the previous theorem.

Proof. This result follows from Theorern 22. lt is sufrcient to verify that c is a

solution of the equation (23) for r : 1 and s* satisfies (36) for r = 1.

The formula for the lower estimation which follows from Theorem 2.5 is

/ 1  - w  /  2  \  /  

" { )  
f o r a l l  w > o -c , F D : ; t ( t * W ) * t ( , t  , ,

Our hypothesis says that, for 0 <W <2f lG-f),the capacity is exactly on this

bound. At the same time, for very low powers, the following formula is applicable,

ctFD : *'z(:* # *') + o(wz) ror w ro' (4e)

By substituting p : eEF from the relation (4), and by introducing "the effective

temperatwe" T* > 0 from the condition

W +p(W +r)

(47)

-ê
e W - w +L+p(w +2)

: g, where n 1L,



we obtain from (44), (45), the capacity expressed in the form

cpo="(&) - e(#),

a( t ) :  
* -  

h (1  -  
" - " )

Ê(t) =J- h(1 + "1 + # h(1 + e-t).

Cne:Cna@lw):*  
&

(50)

where3for t>0

and

where

It holds for temperature lrr tbatTyy > l when î) P,i.e. W )Wnæ, Tw:T
when lf :Wod, alld Îw < T when W <Wn*.

2.6 B-S Qhqnnel CaPacity

In tbis ffibcectiou we will study the other extreme case for which the nalue r = æ
in the general model.

Theorem2.6. Forallthepowerparameters W >0 andpa,ra,meters 0< P 1L,
the capacity of the respectiræ B-E channel is giræn by the formula

(51)

(52)

(53)

(54)

and â(.) is the entropy function from (11). The capacity is acbieved, i.e. the equality
Csp : I(a;0) holds, in the state A with the distribution

( fr  i r  i=o
{ i lQ: I

t *dfit"l if i > r.
(55)

sFormula (51) corrects a small misprint in formula (26) in [6].
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Proof. It is sufficient to apply Theorem 2.1 and notice that in this ca"se Wn;'is
reduced to 0, and that c from the relations (24) and (22) also shrinks to 0. With r+
gards ofthese features the condition (31) is reduced toW ) 0, the va.riable s stated
in (2a) shrinks to the value (54), and h(p'+r) l(1 - y'*t) from (10) is reduced to 0'

Therefore the formula (53) follows from (32). The formula (55) follows from (14) and
from the equations (29) after setting r = oo and g - 1-p, as it follows from (3) for q.

The effective temperature Tw > A can be established from the condition

- a

e W -
p+ (1 - p)w

: l, where r <'J'.
1+ (1 -  p )w

As s is now a solution of the equatioû r/(1- a) = pl$ -p)+ Irtrl, see (23) with
c = 0, where W > 0;it holds

"-& 
e-ir

r:78tu-'T=;=6-'
i.e. in the B-E channels the effective temperature Tw of the variable a in the state

of the ma:rimum informatiou rate is always higher than the temperature ? of the

whole system.

3 Conclusion

We presented the generalized formula (32) for the capacity of the physical infor-
mation trausmission channel with the additive system noise with an arbitrary, finite

or infinite, number of discrete levels, wbich is considered to be a novelty. This noise
follon's the Gibbs canonical distribution (3). All our results we demonstrated for
the special cases of the B-E and F-D noise.

The main result a;rd novelty of this paper, however, is the formula (31) for the
expectation value (8) of the input rariable (the averAge eûergy level of the input

signal, input pararneter W) for an a,rbitrary number of levels of the system noise.
The further result, also of importance and noveltg is in the hypotheses (42)

that the capacity C exists even when the input parameter ilr does not follow the

condition (31), and that the lower capacity estimation C, from (37) is then defined

b'y (34) for the critical vaheW",;1from (33) and, that is the capacity d for this ca.se.
For the case the input pararneter W is above the critical rralue l7oi1, the capacity
C is equal to the uppel capacity estimation C. in (37). Both thæe estimations
strearnline together when the equation (33) holds a.s stated in ( l). The probability

distributions (47), (48), ofnot canonical type, also are to be considered a.s a novelty

and of interest similarly as the distribution (29) and its limit (38).
As mentioned at the end of Section 2 the hypotheses about the existence and

properties of the non zero and positive capacity under that condition of the critical
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and lower value of the input pararneter l\r is to be studied more deeply in a math-
ematical way. The same is for a physical description of this phenomenon.
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Abstrâct
Embedding techniques provide a powerful advance in the development of experiment
chaos. However there seems no universal method to find the best set of parameters to
use. In this paper, we analyze the drawback of an algorithm of automatic embedding
dimension and time delay presented in Referencet'r(Massayuki Otani and Antonia Jones,
Oct. 2000), and propose a new approach for computing the embedding dimension and
delay time based on the multiple autocorrelation and f-test. This approach is provided
with a sound theoretic basis, and its computing complexity is relatively lower and not
strongly depended on the data length. The experimental results indicate that a near
optimum embedding dimension and delay time can be estinrated by using this approacb,
and the accuracy of invariants in phase spzrce reconstnrction is efftciently improved.
Keywords: Phase Space Reconstruction, Embedding Dimension, Delay Time, Multiple
Autocorrelation, f -test.

I Introduction

The characæristics of strange attractors of a chaotic system can be analyzed by
sampling a part of the output cbaotic time series of system. The method in common use
is the state-space recsnstruction in delay coordinate proposed by Packadtzl. It can be
proved by Takers' theoremt'r that the unstable periodic obits (strange ætractor) could be
recovered properly in an enùedding space whenever a suitable embedding dimension m
>-2d+1, (d is the dimension of chaotic system) were formd out, iæ. the obits in the
reconstructed space R- keeps a differential homeomorphism with the original system.

It is very important to select a suitable pair of embedding dimension m and time
delay t when performing the phase space rcconstnrction. For doing this there are two
different points of view: one is that m and t are not correlated with each other, i.e. m
and t can be selecæd independently (Takens has proved that m and t are independent in
a chaotic time series with infinite length and noiseless). Under this golden rule, a
commonly used approach, G-P algorithm for calculâting the embedding dimension m
was proposed by GrassbergEr and Procaciatal. For the time delay r , there are three
criterions to select it: l. Series csrrelation approaches, such as Autocorrelation tal,

Mutual Information t5l, and High-order Correlations [ul, etc. 2. Approaches of phase
space-.extension, e.g. Fill Factorf4, Wavering Product t8l Average Displacement t9l and
SïF trol, etc. 3. Multiple Autocorrelation and Non-bias Multiple Àutocôrrelationtrtl.
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The second viewpoint is that m and r are closely related, because the time series in
the real world could not be the infiniæ long, and hrdty avoid being noised" A great deal
of experiments indicate that m and t tie tightly up with the time window t*= (m-l)a for
the reconsûtrction of phase space. For a given chaotic time series, t* is relatively
sreadfast. An irrelevant partnenhip of m and r will directly impact the equivalence
between the original system and the reconstnrcted phase space. Therefore, the
combination approaches for computing B-?nd t are accordingly come.into being, e.g.
small-window solution tr21, C-C nr"tnoA tt3l and automated embeddingtU. We consider
that the second viewpoint is more practical and reasonable than the fint one in the
engineering practice The research on the combination algorithm of embedding
dimension and delay time will become a hotspot in the category of the chaotic time
series analysis.

2 Automrted emb€dding algorithm

This algorithm was proposed by Masayuki Otani and Antonia Jones in fu. 2000,
which is based on the Average Dijphcement Method (AD) and f-testtlal. By mems of
this algorithrn, a neæ optimum embedding dimension and delay time can be estimaæd.
A brief descripion about this algorithm is given as follsws.
l. 1,et X={x(t)}, i:1,2...N, be a part of chaotic time series wlrose evolution though

time is descriH by a ddimension dynamical system. Set an initial value for the
embedding dimension, i.e. let m:6a. Take the time delay t as a variable and let it
increase by one fsr each iteration. At each deterrrinate value of r, neconstruct X
intoM=N-(m-l)rdimensionsofvectors{x;1 , i=l2,...M,ri=(x;,xi+1,...,xi+{*r)")
xi€Rn. Then calculate the average displacement of entire vector space by using
formula (l).

( t )srri = lf
M ;

Where M is the number of data points used for the estimation. As the delay time
increases from zero, the reconstructed trajectory expands from the diagonal and S(t)
increases accordingly until it reaches a plateau. With large values of m'
reconstnrction expansion reaches a plateau at smaller value of the delay time, which
maintains the time span approximately constant. The corresponding value of delay
time when S(t) gets in saturation is the near optimum t under the certain value of m.

2. Take the result of step I as a constant and let embedding dimension m is a variable.
Estimate the near optimum m by means of f-test, which can estimate the best mean
squared output enor of a continuous or smooth underlying inpuVouçut model
*i&o.rt overfitting, i.e. zuppose the samples of chaotic time series are generated by

a continuous firnction f: R'--R, and let y be defïned as.y= f(xr,"'x.)+r.
Where T represents an indeterminable part, which may be due to noise or lack of
functional determination in the input/output relationship. At each given value of m,
reconstruct X into M=N-(m-l)r dimensions of vectors{x1}, and constnrct the
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inpuVouput pafu {6,,/,\as follows:

6. = lx(i),x((i +l)r\,"',x((i+ m-l)rl

y, = x((i+ m)t, i =1,2,"'M

Then find out the pù nearest neighbour €,(N(i,p\) to $. ( P**40-50)

corrpute the distances by means of the formula 3.

&(h') =lÉ*Éffg*t,p)) - 6(,')fpa ME',"
l p  |  È t

ôy(h)= -l-t + t ( y(N (i, p)) - y(i))'^\ ' 
P-n-'t2M ît

perform a least squares fit on the coordinates @, dy) to obtain a regression line in

the fomr of (ù = A&+T) ,where F is the estimated value ofy'
Increase the value m by one grâduaily and repeat steps 1 and 2. The estimæed value

of y will fur€ase accordingly rmtil it is much closed to zero. At this momsnî, the values
of m and r æe the neæ optimtmt embedding dimension and time delay for the given

chaotic tims series. By chance if the estimated value of y is not close to ?-ero, the data

set is nondet€nninistic; therefore we cannot hope to reconstruct the attractor accurately.
This may happen if the SNR is lower, or the choice of time delay is poor'

fne expèrinentat results indicate tbat this algorithm is very efficient for the

continuous chaotic time series. But the computitg accuracy of this algorithm is tightly
d€e€nded on that of AD algoritbm. The avcage displacements of Lorenz and Rossler

flows are depicted in fig.l and fig.2. It can be sæn clearly that the time delay is

decreasing with the hæasiry of enibedding dinrension, and also there are some
waviness when the wavesbpes get into saturation-

Figure 1: Average Displacement of Lorenz Flow.

and

(2)

(3)
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Figûre 2: Average Displacernent of Rossler Flow.

However, this algorifui c:mrot directly prmc€xrs tb discrete cbaotic time series, srch
as Henon, Logistic and Quadratic, etc. The major causation is that the sarpling spæing
of the discrete chaotic time series is'too large" that make the relativity betweeir the data
change so swiftly, and it seems that those maps behave like the random series. Hence,
the discrete chaotic time series must be interpolated before processing. Fig3 ad 4
depict the average displacements of Henon and Quadratic maps after the interpolation
with spline function. The data are the l0 times more than that of the originals.

Flgure 3: Average Displacement of Henon Map.
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Figure 4: Average Displacement of Quadratic Map.

The average displacement algorithm is a geometry-based approach that can
ovencome the drawbacks of the autocorrelation-based methods, since the autocorrelation
can enslue xi and Xi+t, xi+r and xi+2r are not correlated respectively, but it cannot
guarantee that x; and xi+:tare not correlated, too. Therefore, the autocorrelation-based
method catrnot be generalized in the high-order dimensions. So the AD algorithm looks
like a suitable approach for the high-order system. ln practice, the sloping variation of
stâtistic S(r) should be measured to figure out the corresponding delay time, usually we
take the time point at the slope desreases to 40Yo of its initial value as the near optimum
time delay. But from Figrrres I and 2 rile can see that there intsrmix some wobbles in
the entirc vriation of S(t). Thereby, using the changng slope to det€tmine the time
delay soanetimes will introduce a non-ignored eror, and this error will influence the
computing accuracy of embedding dimension in f-test. Hence, a modification should be
done for the algorithm of tiæ delay.

3 Multipte Autocorrelrtion Approechltrl

The multiple autocorrelation approach is derived from autocorrelation and average
displacement. From fornrula I we can rewrite the statistic S( r ) of the chaotic time
series {.rd in m dimension as follows:

si'z.1r1 = 
**EUrt 

+ i r) - x(i)\2 G)
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Extend the left part of formula 4 and ignore the errors caused by the borda data.
r M l M

Consider tltztE=llr(i) 'z=jlx(i+ ir)2 is a constânt within 1( j(n-l '  we
Mfr. '  Mfr '

call get:
m-l

Sjlr; = 2(m-r)E -zln*Qc) (s)
j=l

Where, R,,(j r ) is the autocorrelation fimction of {.rr}.
,_l

Define R.[(r) = In_U"), the multiple autocorrelation approach for the series {x1}
JEI

in m dimension sçrace can be described like thac select the corresponding time as the

time delay r when the value of ni(r) decreasing to the l-e-r times of its initial value.

Obviously, this approach is the ecdysis of AD algorithm. It inherits the geometric
property of AD in the reconstruction of phase space. Meanwhile, it can be regarded as
the extension of autocorrelation approach in the higb-order dimensions. It overcomes
the drawback of the autocorrclation" i.e. the multiple autocorrelation not only guarailees

that x; and xi+.r Xi+. and xi*2, are not correlated with each other respectively, but also

ensures that xi and xi+2, nf,€ not correlated. Therefore, the multiple autocorrelation bas a

sound theoretic basis.
Finally, the algorithm we adop to replace the AD algorithm is the "Non-bias

Multiple Autocorrelation" :

ci@) = #Zio, 
- ïX.x(i + i r) - î)

= Ri(t\-(n-lXrl'

Where, T is the mean value of {xi}. So employing the non-bias multiple autocorrelation

for {x;} to select a near optimum time delay r in m dimension of phase space is to

choose the corresponding time when C.l(r) goes to zero at first time' The strongpoint

of this approach is that it is endow with the merit of AD algorithm but gets rid of its

drawback. The mathematic expression is sententious and easy to conrputation.

In order ûo validate the accuracy of the improved approach, we took Henon map and

Lorcrlz flow as examples to reconstnrct them with AD and non-bias multiple

autoconelation plus f-test respectively. Thereinto, the data of Henon map has been

interpolated 10 times with spline function and then took out 500 data to be in for

experiment, for Lorenz flow, we firstly generated 10,000 data and then chosen 1,000

points benveen 5,fi)0 and 6,@0 for experiment. Then calculate the correlation

dimensions of them and made a comparison with their nominal valuestrsl to figure out

the erors. The experimental results are shown in table l.

( 6 )

54



I
Table 1. Results

Modle
$splc

Pcriod

AD+f-ûest C;+f-ûest

Nominal

Value

EmHding

Dinffi6

TieDeliy

Coætdbn

Dimosio

Error

Emb€dding

Dimqsi6

TiæDehy

Cml,ùiotr

Dimsim

Enor

Henon

(p1.4,b4.3)
0.t

m=3

t=0.8
1 .3158 0.0558

m=3

eO.7
1.2734 0.0t34 1.26

Lqenz

(Flo,b4/3,

1E2t)

0.01
m=5

t-0.35
2.tt72 0.0172

m--5

çO25
2.0539 0.0ffi1 2.6

4 Conclusion

We bave described an efficient methd for choosing a pah of delay time and
embedding dimension which facilitates an accunate reconstnrction of the high

dimensional ôynamics. This technique is based on the non-bias multiple autocorelation
aod f-æst methods, the combination of which is computationally inexpensive. The

choices of delay time and embedding dimension tre important, as a good choice can
r€dlce both the amotmt of data required and th€ effect of mise. Throughout our
exp€rim€ntq we have consistently found that the delay time and embedding dimension
are tightly corelated. Choosing a ûear optimum pair of them can effectively describe
ùe strange aftractorc in a nonlinear chaotic system. Since the embedding techniques are

widely inptoyed to model a physical system in cases where the mathematical
description is unlnown" such m automated reccmstnrction has a wide applicability.
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