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Abstract: We consider the problem of discovering patterns from a giveu logic that
are significant (i.e. interesting and sufEciently valid) with respect to a given data set.
We first define two types of patterns that extend the notions of query and clause,
and we propose new measures of interest and confidence. In this framewotk, we
establish connections between our measures, first-order logic and logics of probabil-
ity of Halpern. Then, we present mining algorithms ba.sed on the generic levelwise
search method proposed by Mannila, and discuss implementation issues in a rela-
tional database environment. Finally, we ofer concluding remarks and suggestions
for future research.
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L Introductron

In the last decade, the usage and size of databases and datawarehouses have grown
dramatically, due to a constant decrease in the cost of both the collection and the
storage of huge amounts of data. The need to develop techniques and tools with
the ability to exploit these amounts of data has grown accordingly and has given
rise to an exciting and rapidly evolving research freld known a.s Data Mining and
Knowledge Discovery in Databases (KDD) (Fayad et al, 1996). This new field, at
the intersection of Machine Learning, Statistics and Databases, aims at discovering
relevant knowledge in very large databases.

One problem that ha.s received great attention from the KDD community is the
mining of significant patterns (Faye et al, 1998; Faye et al, 1999; Dehaspe 1998).
Given a data set S, a logic É, aud two measures of interest called support and
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confidence, mining significant patterns aims at discovering patterns of 4 that are
interesting (meaning that their support is over a user given threshold called the
minimum support threshold) and sufficiently valid (meaning that their confidence
is over a user given threshold cd'lled the minimum confidence threshold) (Agrawal
et al, 1996; Faye et al, 1998; Dehaspe, 1998).

In this paper, we propose an extension ofthese approaches, in the sense that the
patterns considered in (Dehaspe, 1998) are particular ca.ses ofthose considered here.
In this framework, we define new mea.sures of interest and confidence, and address
the following issues:

- We establish important connexions between the measure of interest (which
we call support), and first-order logic on the one hand, and logics of proba-
bility (Halpern, 1990) on the other hand. In our opinion, this point is very
important because it allows to appreciate the reliability of the chosen mea-
sures.

- We show that, although the rules that are learned in our approach are not
clauses, it is always possible to transform them into a Datalog program (through
the introduction of new predicates). The importance of this point lies in the
fact that, in a database environme.nt, .only Datalog rules can be managed.

- We discuss implementation issues of our approach, ba.sed on the general fra.me-
work proposed in (Mannila and Toivonen, 1997). We note that the reduction
of the search space in our algorithms heavily relies on the properties men-
tioned in the first item above. Moreover, our algorithms combine techniques
from algorithms Apriori (Agrawal et al, 1996) and Warmr (Dehaspe, 1998).
We also define a language bias from which possible performance improvements
are designed, using by example join indices techniques (Li and Ross, 1998).

The paper is organized as follows: in Section 2, we define two types of patterns,
called K-query and K-rule, that extend the notions of query and clause. Then,
we present new measures of support and confidence, and study their properties on
a frrst-order logic basis. In Section 3, we introduce the declarative language bias
that is used to reduce the size of the search space, and we propose algorithms for
discovering interesting K-queries, as well as significant K-rules. In this section, we
also discuss implementation issues. In Section 4, we offer concluding remarks and
suggestions for future research. Due to lack ofspace, the proofs ofpropositions are
omitted.

2 Patterns

2.I Basic Definitions and Notation

We assume a fixed set of predicates with given arities. If p is a predicate with arity
m, then p(h,...,t*) is an atont,, whete each t; is a term, i.e. either a constant or a
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variable. Atoms are the basic ingredients of patterns. We also assume a fixed set
of. facts, i.e. atoms of the form p(ar,...,a-), where each a; is a constant. This set,
called the data set, is the set from which interesting patterns will be mined.

Moreover, we consider that the constants that appear in the data set come from
pre-defined sets of values that we call domains. More precisely we assume that, for
every predicate p with arity m, each entry k of p is a.ssociated with a pre-defined set
of  va lues,denotedbydom(le,p) ,where lc :L. . . rn.  Thedomain dorn(k,p)  is theset
of values 1 that a term appearing at the À-th position of an atom over p can have.
In the remaining of the paper, we assume the data set to be domain-releuant, i.e.
all constants appearing in the data set to be in the corresponding domains.

Let us illustrate the concepts introduced so far through an example that we shall
use throughout the paper as our running example.

Running Example 1 Suppose that we look for relationships between the cha,racteris-
tics ofcustomers and the categories ofproducts that they buy. Our fixed set ofpredicates
consists of Cust, Sole and. Prod,, wilh arities 3,2 and 2 respectively. AdditionallS assume
the following domains:

- dom(l,Cust) : dom(l,Sale) : {C|,C2,C3}; these constants are identifiers of
customers.

- dom(2, Cust) : {Manoger,Teacher, Lowyer}; these constants are the possible pro-
fessions of customers.

- dom(3,Cust): [0, 100]; thisintervaldefinesthepossiblevaluesfortheageof cus-
tomers.

- dom(2, Sale) : dom(I, Product) = {PL, P2, P3, P4}; these constants a.re identifieîs
of products.

- dam(2,Prod,) : {Beer,Tea,Milk}; these constants are the possible categories of
products.

Let the data set S be the following set of facts:

.9 : { C ust (C l, T eacher, 30), C ust (C 2, T eacher, 60), C ust (C 3, L aw y er, 40)
P r od(P L, B eer), P r od(P2, B eer), P r od(P 3, T ea), P r od(P 4, M iI k)
Sale(CI, PL), SoIe(Cl, P2), Sole(Cz, PL),
Sate(C2, P3), Sale(C3, P3), SaIe(C3, P4)).

Here, a fact such as Cust(CI,Teocher,30) mea.ns that customer Cl is a 30 years old
teacher, facts such as Sole(C2,Pl) and Sole(C2,P3) mean cugtomer C2 buys product

Pl and P3. Additionall5 facts such as Prod,(PL,Beer) and Prod'(P2,Beer) meanthat
both products P1 and P2 arc beer. We note that S is domain-relevant as every constant
appea^ring in S is in the corresponding domain.

tThe notion of domain, as defined here, corresponds to that of uactive domain" in relational
databases (Maier, 1983).
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In this paper, we also consider constraints that are conjunctions of elementary
constraints of the form 'ti : ai, ti : Uit ri 1 ai, h ) h where a;, ôi are constantsr
and r1, ft are variables. Let f be a conjunction of elementary constraints. We recall
that the solution of f, denoted by Sol(f) is the set of all substitutions 0 such that
fd is true. By example, if f is the constraint (r : Teacher Ay 1 30), then:

Sol(f) : {0 | 0(r) : Teacher and d(v) < 30}

Moreover, we say that a constraint I is more restrictiae than a constraint f iff
Sol(r) Ç 5ol(r').

2.2 Different types of patterns

Difi'erent types of patterns have been considered in the literature so far. In this
paper, we introduce two types of patterns, called K-query and, K-rule, that extend
the notions of. query, query-extensionand clauseptoposed in (Dehaspe, 1998).

Intuitively speaking, a K-query is a quantified conjunction of atoms and ele-
mentary constraints where some of the variables are universally quantified, and the
others are existentially quantified. Likewise, a K-rule is a quantified implication
where some of the variables are universally quantified, and the others are existen-
tially quantified. In the following definitions, we denote by Var(P) the set of all
variables in a formula P:

Definition 1 - K-query. Let L be a conjunction of atoms and I be a constraint
such thatVar(l) ÇVar(L). We call K-query, a quantifi,ed' formula of the fonn
(VI?XIITXC Al), where K is a subset of Var(L) andY :Var(L)\K. We denote
such a formula bu @ nl)x.

Running Example 2 In the context of our Running Example 1, the quantified formula
(Yy\()r, z)(Cust(*,y, z) n (z > 30)) is a K-query that can be written as (Cust(a,y, z) A
(z > 30))r. The meaning of this K-query is that for every profession gr, there exists a
customer s who is more than 30 years old,

It is now important to note that the notion of K-query extends the notion of
query proposed in (Dehaspe, 1998). In our framework, a query is a K-query Q6
without constraints and where no variable is quantified universally i.e. K = 0.
We can also note that different K-queries can be formed from the same conjunc-
tion of atoms and constraints. Let us consider the conjunction of atoms É :
Cust(r,Teacher,z) n Sale(x,y) n Prod,(y,Beer). The .I(-query 4,,, means that
every teacher buys every type of beer, whereas the K-query É, means that every
teacher buys beer. Finally, the K-query É, means that every type of beer is bought
by at lea.st one teacher.

We also note that in a previous paper (Faye et al, 1998), we considered only
K-queries of the form Qx = (E A l)6 where:
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- there is no occurrence of constants in the atoms of ,C,
- the constraints in I are only ofthe form ri : ei, where r; is a variable occurring

in ,C and a; is a constant,
- K is the set of all variables in É and f, i.e. X :Var(L).

We now define the notion of K-rules.

Deûnition 2 - K-rule. Let B and, ?{ be two ennjunctions of atoms, and 11 and
12 be two constraints such that Var(l) Ç Var(B) and Var(12) Ç (Var(B) u
Var(?t)). We e-a,tl K-nrle, a quonti,fied formula of the form (VIiX(liXB n t1) -+
(1f)(B A?t Af1 n f2)), where K is a subset of Var(B), Y = Var(B)\K and
y' : (Var(B)uVar(?l))\K. We d,enote such a formula by (B nf.1 -+ ?l A tz)r.

Running Example 3 In the context of our Running Exa,mple 1, the formula:

(Ya,z)( Cust(a,Teacher,z) A (z > 30) -+
(1y)(Cust(t,Teocher, z) Â (z > 30) A Sale(a,g) A Prd,(y, Beer)))

is a K-rule that can be written as (Cust(r,Teacher,z) n (z > 30) -+ Sale(x,y) A Prod(y,
Beer))r,". The meaning of this K-rule is that every teacher who is more than 30 years
old buys beer.

We note that the notion of K-rule extends the notion of. clouse, as well a.s the
notion of query-ertension proposed in (Deha^spe, 1998). Indeed, a clause is a K-rule
(B -+ ?l)y where every variable is quantified universally, i.e. K : Var(B)UVar(?t).
On the other hand, a query-extension is a K-query (B -+ ?l)x where no variable is
quantified universally i.e. K = 0.

Finally, it must be emphasized that K-rules, as well as query-extensions, are
not clauses, meaning that they cmnot be managed in Deductive Database environ-
ments. However, any K-rule can be transformed into a clause by introduction of
new predicates. For example, let us consider the K-rule:

R, : (Cust(x,Teacher, z) tt (z > 60) -+ Sale(r,y) n Prod(y, Beer)),

Given the new predicates OldTeacher and BeerCustorner defined by:

(Yr,z)(Cust(x,T'eacher,z) n(z > 60) -+ OldiTeacher(r))
(Vr,y)(SaIe(r,U) n Prod,(y, Beer) -+ BeerCustomer(x))

R, can be transformed into the clause (Vr)(OWfeacher(r) -+ BeerCustomer(r)).
Consequently, in the light of the above example, it turns out that any set of K-rules
generated by the algorithms given in this paper can be translated into a Datalog
program.
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2.3 Support of a K-query

In the remaining of the paper, we assume that if a variable r occurs at difierent
positions in a conjunction of atoms and constraints Q, then all these positions ane
associated with the same domain, denoted by dom(x,Q). Moreover, we denote by
O(Q) the set of ground substitutions d such that (Vr eVar(Q))(O(r) e d.orn(r,Q))
and (Vr /Var(Q))(0(") : 

"). 
Finally, we asume that if a variable r occurs in two

different conjunctions Q andP, then dom(r,Q): dom(r,P).
The previous condition is not a restriction, but rather a condition according

to which the use of variables is "coherent" with respect to their domains. Thus,
in our Running Example 1, the K-query Qx,u : (Vr, y)(Cust(r,r, gl)) is not con-
sidered, as d,om(L,Cust) I darn(2,Cust). On the other hand, the K-query Q,,u:
(Vr,y)(Cust(x,Teacher,70) ASale(r,y) nProd(y, Beer)) is considered, since wi-as-
sume dom(r,Q'): d,om(\,Cust): dom(l,SaIe) and, dam(y,Q) = darn(Z,SaIe) =
dom(L, Prod,).

We can now define the notion of example of a K-query.

Definition 3 - Example of a K-quer;a Let (t, ^ f), be a K-query wherc t, is
a conjunction of otoms and, I is a constraint. Giuen o data set S, an example of
(C ̂  f)rç in S is a substitution 0 in A(L) such that:

- t0 is trae, and,
- L0 is in S, for euery atom L in L.

The fact that 0 is an erample in S of the K-query Qx is denoted, by S ts Q0.

Denoting by 01x the restriction of 0 over the set of variables K (i.e. if c is
a variable in K, then 06@) : 0(x), otherwise 0(r)1y@) : r), the support of a
K-query is defined as follows:

Definition 4 - Support of a K-query. Let Qx be a K-query such that euery
uariable in K has o finite domain. Giaen a ilata set S, the support of Qy in S,
denoted by Sup(Qy,S), is defi,ned by:

sup(Qx,r, -l{ew .l-\e o@) n s ts.qe|l'  
l {owleee(a)} l

where lEl d,enotes the cordinolity o! o set E.
A K-query is called interesting (or frequent) cf ifu support in S is oaer a giaen
threshold,, called the minimum support threshold and denotd ùy minsup.

It can be noticed that the denominator of the support is equal to fl*,ex ld-n(k, e)1,
which explains why the support of a K-query is not defined if the set K contains a
variable rÇ whose domain is not finite.
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Running Example 4 In the context of our Running Example 1, let us consider the
K-query Qx -- (Cust@,Teacher, z) n (, > 40) A Sale(x,y) n Prod(y, Beer)),. Hete:

- the substitution d1 - {, -+ CL,y -+ PL,z -+ 30} is not an example of Q6 in
S as Cust(C|,Teacher,30), Sale(Cl,Pt), Prod(PL,Beer) are facts in S, but the
constraint (z > 30) is not satisfied. On the other hand, the substitution 02 =
{r -+ C2,y -+ PL,z -+ 60} is an example of Q6 in 5 as Cust(C2,Teacher,60),
Sale(C2, PI), Prod(Pl, Beer) are facts in S and the constaint (z > 30) is satisfied.
It is the only example of Qr in S.

- Ilrner ld'orn(ki, Q)l : ldorn(a, Q)l : ldom(l,Cust)l = 3.

Thus we obtain Sup(Qx,S\ -- Ll\.

So far, different measures of support have been proposed in the literature. Com-
paring our definition of support to those of (Faye et al, 1998) and (Dehaspe, 1998),
we have the following:

- The measure proposed in (Faye et al, 1998), is equivalent but less general than
the measure given in Definition 4. Indeed, in (Faye et al, 1998), we consider
only K-queries Qx where K is the set of all variables in Q.

- In (Dehaspe, 1998), the author defines the frequency frq(Q, key, S) of a query
9 with respect to a data set S, provided that a particular atom key occurs in
every query. In our framework, a query I that conùains this particular atom
freE is equivalent to a K-query Qr where K is the set of variables in key, and
we have frq(Q,key,S):  ( l la) x Sup(Qx,^9) where o: Sup({keAIx,S).

'We 
now give important properties of the support.

Proposition I For euery K-querU Qx and, eaery data set S:

1 . 0 <  S u p ( Q x , , 9 )  <  1 .

2. Sup(Qx,S) :  t  i f f  S is s mod,el  of  NhFt)(Q) whereY :Var(Q)\K.

The following proposition states that as the data set increases so does the sup..
port, provided that no Rew constants are introduced.

Proposition 2 Let S and, T be two data sets ouer the same set of pred,icates, and
with the sarne domai,ns. If S ç ?, then Sup(Qr,S) ( Sup(Qx,T) for euery K-
euerU Qx.

The importance of this proposition lies in the fact that it relates changes in the
data set to changes in the support, and thus to changes in the interestingness of
a K-query. More precisely, it implies that the insertion of new facts in the data
set may generate new interesting K-queries, whereas the deletion of facts will never
generate new interesting K-queries.

The following proposition will be used to reduce the size of the search space.



Propos i t ion}  Le t  Qx:  G,Af ' )K  and Q1a ' :  (LA l )y ,be two K-quer ies .  IJ
K'çK, then Sup(Qx,S) < Sup(Qy',S) for euery d,ata set S.

As a consequence of Proposition 3, the computation of interesting K-queries Qx
with some K fixed by the user can use the results of a previous step based on a set
of variables K'such that K'C K. Indeed, a K-query Q6 càn not be interesting if
a K-query Qx, with K' c K has been evaluated before as being not interesting.

It is now important to note that our Definition 4 of support complies with logical
implication, as stated in Proposition 4 below. Roughly, this proposition says that if
a K-query P6 implies a K-query Qr<, then the support of P7ç is smaller than the
support of Qx.

Proposition4 LetPx and, Qx be two K-queri,es. Gi'uen a data set S, if S is a
model of the K-rule (P -+ Q)x, then Sup(Py,S) { Sup(Qx,S).

Running Example 5 In the context of our Running Example 1, the data set S is
a model of the logical implication (Vr,y,z)(Cu,st(x,y,z) A (, > 50) -r Sale(x,PB)).
According to Proposition 4, it follows that:

. 
Sup((Cust(x,9, z) n (z > 50)),, S) < Sup((Sale(r, P3))", S)

Indeed, it is easy to see that Sup((Cust(a,U,z) A(z > 50))",5) = L/3 and Sup((Sale(a,
P3))a,S):2/3.

Most of the pattern discovery algorithms use an order relation on patterns based
on 9-subsumption (see (Plotkin, 1970)) to reduce the size of the search space. Ac-
cording to Proposition 4, we could use logicai implication to compare K-queries
and their supports. However, testing if a data set ,S is a model of the implication
(VX)(P -+ Q) cannot be efficient in any case. For that reason, we propose an other
order relatiorr based on subset relation (see Definition 5). This order relation is
less general than logical implication, but allows to compare eftciently K-queries,
independently from a data set ̂ 9.

Deffnition 5 Let (t4 A fr)r and (t2 A fz)x be two K-queri,es. We say that (Q n
fr)r is rnore general than (L2 Al2)ç, denoted by (Lt A fr)r \n (Ê, A|ùK il
h Ç Lz awt SoI(l) Ç Sol(fr).

Running Example 6 In the context of our Running Example 1, we have:

(C ust(a, y, zl), > s (C ust(x, y, z) A (y : T eacher)),
>s (Cust(x,y,z) A(y =Teocher) A (z > 30))'
tg (Cust(a,y, z) Â Sole(c, y) n Prod(y,w)A

(y -- Teaeher) n (, > 30) Â (ur : Beer)),

180



l\ow, we compare the relation F, defined above with that of C-subsumption
introduced in (Mizoguchi and Ohwada, 1995). To this end, we first recall that, if
(É1Afl)K and (f2nf2)6 are two K-queries, then (ClAf1)K C-subsumes (L2nl2)x
if there exists a substitution d such that Ltî C L2 and SoI(12) Ç Sol(|fi). It
turns out that the relation Fo is less general than that of C-subsumption. In-
cieed, in the context of our Running Example 1, the K-queries (Cust(r,U,z)),
and. (Cust(r,Teacher,z) n(z > 30)), are not comparable, whereas the.I(-query
(Cust(r,A,z)), C-subsumes the K-query (Cust(r,Teacher,z) n(z > 30)),. How-
ever, it can be shown that the following property holds:

Propos i t ionS Let  (41  Af1) r  and, (L2Afz ) r  be two K-guer ies .  I f  (LLAIùK
C-subsumes (L2nl2)y, then there eùsts a K-query @|Afl)K such that Sup((Ll2n
f")"' S) = Sup((Lz A lz)r, S) and (cl A f 1)K >n (LL AllJo.

Considering the previous example, it can be seen that, as the K-query (Cust(r, A, z))*
C-subsumes the l{-query (Cust(x,Teacher, z) n(z > 30)),, the K-query (Cust(r,y,
z) A (y : Teacher) A (z > 30)), is such that Sup((Cust(r,Teacher, z) n (z >
30)),, s) : Sup((Cust(x,y, z) A (y : Teacher) A(z > 30)),, s) and (Cust(r,u, z)),
rn (Cust(r,U, z) A (y : Teacher) n (z > 30))".

It is now important to note that the relation F, is a special case of logical
implication. Thus, according to Proposition 4, we have the following Corollary 1
which is used in Section 3 to reduce the size of the search space.

Corollary I Let Qx and,Px be two K-queries such that Qx ls Px. Then, for
eaery d.ata set S, Sup(P6,5) S Sup(Qx,S).

We end this section with an important remark concerning the relationship be-
tween our definition of support and Halpern's work (Halpern, 1990), which provides
semantics to frrst-order logics of probability. Indeed, it turns out that our defini-
tion of support can be expressed in terms of probability. Using the formalism of
(Halpern, 1990) and the notation introduced previously, we have:

SuP(P6,S) : tur((lhe))

where is the vector of variables inVar(P)\X, and,w7ç(()t)(P)) ls the probability
that the formula Ff)(P) is true if the variables in K are randomly chosen in their
respective domains (assuming a uniform probability distribution on all domains).

2.4 Confidence of a K-rule

Apart from frequency or support, rules are traditionally selected according to a
second quality criterion, called confidence. We now define the notion of confidence
in the case of K-rules as follows:
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Definition 6 - Conffdence of a K-rule. Let (B + ?t)x be a K-rale where B
and, ?{ are sets of atoms and constra'ints, anil let S be a data set. The confd,ence of
(B -+'lûx in S, denoted by Conf 

,((B 
-+ 7{)y, S), is def,ned by:

l {ew | 0 e @(B ^H)  ̂ ^s F (6  ̂ ?û0}l
Conf ((B -+'11)x,S) :' v )A 'v )  -  

l {e r "  I  o  e@(B)^sFBd} l

A K-ruleRx is sufficiently valid r./ its confidence is greater than a giuenthreshold,
called the minimum confidence threshold and denoted, ôgr minconf.

Definit ion 7 - Significant K-rule. A K-ru,IeRy:(B +'l l)x is significant a/i l
is sufficiently ualid and if the K-query @ A'11)K is'interesting.

The following proposition relates confidence to first-order logic, in the sense
that the confidence of a K-rule is 1 if and only if the data set ^9 is a model of the
corresponding formula. Nevertheless, it is important to note that this property holds
only in the case where the so-called Closed World Assumption (CWA) of (Clark,
1978) is assumed. We simply recall here, that a^ssuming CWA roughly means that
if an atom cannot be proved to be true, then this atom is considered to be false.

PropositionÛ Let (B -+ fl6 be a K-rale andlet S be a data set. Considerùng
the closed world, assumpt'ion, we have Conf ((B -+71)7ç,5) = t iff the data set S is
a model of (B -+ 7{)x.

It is important to note that, contrary to the support (see Corollary 1), the
confidence does not enjoy any monotonicity property. That is, if a K-rule R5ç is
more specific than a K-rule R',r, then neither Con,f(R6,5) < Conf(Rt,S) nor
Con.f(R'*,5) < Conf (Rx,S) hold in general. The following example illustrates
this point.

Example 1 Let S be the data sel $ : {p(a, ô) ,p(a' ,U),q(a)}, where dorn(l,p) : d.om(I,q)
- {o,o'} and d,orn(2,p) : {b, d}. Consider now the following K-rules over .9:

R, : (p(r,y) + S@)), and 7t| : (p(x,b) -+ q(æ)), and, R2, : @(r,d) + q(o)),

It is clear that?-L and?cz, are both more specific tllan&r. However, based on Definition 6,
we have Conf (R,,5) : Ll2, Canf (Rr,S) : t and Con,f(R2",S) : 0, showing that
Conf (R,,5) 3Conl(RL,,9) and Conf (R,,5) 2Cutl(Rz,,5).

3 Pattern-Discovering Algorithms

In this section, we present algorithms for interesting K-query discovery (see Sec-
tion 3.2) and significant K-rule discovery (see Section 3.3). To this end, we first
introduce the declarative language bias that we use to reduce the size of the search
space. Then we present the algorithms and discuss possible optimizations when
considering implementation issues.
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3.1 A Declarative Language Bias

In Inductive Logic Programming, the notion of declarative language bias has been
studied extensively (see (Dehaspe, 1998; Weber, 1998)) since it is crucial for reducing
the size of the search space.

In this paper? we define a search space by means of a declarative language bias
grammar Ç :1 Kc, Lc,lc > where:

- K6 is a set of variables whose domains are finite. It means only K-queries and
K-rules where K is a subset of Kç, are to be considered,

- Lç is a set,of atoms. The atoms in Lç arc the basic ingredients of the K-
queries and K-rules that we consider,

- f6; is a set of elementary constraints of the form ri : &i, ri I ai or r,; ) bi
where a1 and b1 are constants and r; is a variable.

Moreover, we consider only conjunctions of atoms that are connected,, according
to the following definition:

Definition 8 - Connectivity. Let L be a conjunct'ion of n atoms. We say that L
is  connected i , f  i t  can be wr i , t ten as L:  Lr  A L2 4. . .  A Ln where L i ,  i :1 . . .n ,  are
atoms such that: for euery k, 1 < È < n, there eaists'i < k such that Lp has at least
one uariable in common wi,th L;.

We now define the set of K-queries that corresponds to a given grammar ç -<

Kc, Lc,16 ) as being the set of K-queries Qç : (L A l)6 such that:

- K - Var(L) fl fç where K is not empty,
- L Ç Lc and Ê is connected,
-  f  c  fc  and.Var( l )  ÇVar(L) .

We denote this set by Ç*. Then, the set of K-rules that are built from the grammar
9 is the set of K-rules (B -+ ?l)6 such that By and (B AT{)x are in Ç*.

Running Example 7 In the context of our Running Example I, let Ç :1 Kç,Lç,
f6 > be the grammar defined by:

-  Ks:  {k1} ,
- L6 -- {Cust(leyst,az),Sale(fu,k2),Sale(fu,k!),Prod(k2,y2),Prod,(k!2,g1) },
-  fc :  { { t :Teacher, . t2  > 30}  U {gz :  a ,UL:  a I  a  e dom(2,Prod)} .

The following K-query and K-rule are in Ç*:

Qt : (Cust(h,Teacher, 12) n (rz > 30) ̂  Sale(h1, k2) A Prod,(k2, Beer)) 2,
E1 : (Sale(h1,k2) n Sale(fu,kL) A Prod,(k2, Mi,lk) -+ Prod(l|2,Tea))g
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whereas the following K-query and K-rule are not:

Q2: (Cust(k1,tr1û2) A Prod(k2,y2) n (rt = Lawger))6,
R2 : (Prod(kz,Vz) A (Az: MiIk) -+ Sale(fu,k))p'

Indeed, the K-query Qz is not connected and contains an elementa'ry constraint (c1 :

Lawyer) that is not in f6. On the other hand, the K-rule 7tz is not considered as valid,

since (Prod(k2 y2) A (Az : Milk))*, is not a K-query.

3.2 Discovering interesting K-queries

Given a grammar Ç, the purpose of this section is to give algorithms for the compu-

tation of all interesting K-queries in 9* over a given data set ^9. In order to explore

the search space Ç*, a K-query Qx : (L A f)6 can be specialized either by adding
a new literal L to L, or by introducing a constraint f' more restrictive than f. To

this end, we introduce two refinement operators p1 and, pc as follows:

Definition I - Refinement Operators. Let Ç :1 Ke,Lc,le > be a granxnxar

and Qx: (LAl)6 be a K-query inÇ*. Then, pr(Qx) is the set of specialized
K-queries (L n f A f)r' such that:

- L is an atom in Lç and (L A L) is connected,
-  K ' : V a r ( L A L ) À K c .

Onthe other hand, pc(Qx) is the set of specialized K-queries (LAl')K suchthat:

- f is a subset of lç more restrictiue thanl, i.e. Sol(l') C Sol(f),
- there does not erist a constraint f" ç fc such that Sol(f') C Sol(tt') and

Sol(T") c .9ol(f).

We now emphasize that, if T denotes the set of K-queries in Ç* without constraints,
then:

Ç : p."(0) and,

where pi(0) and pi(,6) are defined by:

Ç*: U ,Vex)
Exeî

lcel lrcl
pï.(0): U pL@ and pi@y): U ic@*)

i=r j=r

Given a K-query Qx e Ç*, we can also note that for every K-query Q'x,in pt(Qx),
we have Qx l_c Qts and K Ç K'. On the other hand, for every K-query Q'6 in
pc(Qx), we have Qx \e Q/". Therefore, according to Proposition 3 and Corollary 1,
we have the following corollary:
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Corollary 2 Let Ç :1 Kc, Le ,le > be a grarnnxar. For euery K-query Qx i,n Ç* :

- If Q'x, is a K-query in pr,(Qx), then Sup(Qty,,S) ( Sup(Q6,5),
- If Q'* i,s a K-query in pc(Qx), then Sup(e,s,S) < Sup(ey,S).

The implementation of the operator p; follows directly from its definition. In
Figure 2, we propose an algorithm that builds fr from a given grammar ç -<
Kc,Lc,f6r ). On the other hand, the implementationof the operator p6 depends
on the form of the elementary constraints in fç. Let us assume that the set 16
contains only elementary constraiuts of the form ïi = ai, r; 1 a4 or ïi ) bi,
and that, given a variable r, it contains either equality constraints or inequality
constraints (but not both) concerningr. Let Qx: (t.Af)6 be a K-query inÇ*.
Then, the ser pc(QK) contains all the K-queries Qx: (L A f')* where:

-  f ' : l Â ( r ; : a i ) , i f  ( s ; : a . ù  € f 6 a n d  r ; / . V a r ( T ) ,
-  l ' : f  A( r i  S  û , i ) ,  i f  ( r i3a , )  €  l ç  andor :ma: r {a ,  l ( " ,  <a . )  e  f6 \ f } ,
-  l ' : f  A  ( r ;  >  ô1) ,  i f  ( r ;>br )  €  fc  and à ; :  m in{ù  |  ( *n>  ô)  e  f6 \ f } .

Based on the operators pa, and ps, the algorithm MIQ (MIQ stands for Mining
Interesting K-Queries) that computes all interesting.I(-queries is shown in Figure 1.

Most algorithms for interesting pattern discovery are based on the generic level-
wise search method proposed in (Mannila and Toivonen, 1997). This method starts
from the most general patterns, and builds all interesting patterns level by level.
Each iteration step consists of two phases:

- t'he candidate generation phase computes the candidate patterns of level d + 1
using the interesting patterus of level d. This generation pha.se is based on
the property that a pattern can not be interesting if it is more specific than a
pattern that was evaluated before as being not interesting.

- the cand,idate eualuation phase computes the supports of all candidate patterns
at level d + 1. One important property of this phase is that all the supports
can be evaluated through a single database pass.

In our framework, the computation of all interesting K-queries is decomposed
into N steps, where N is the number of atoms in Le. At step u,0 ( n ( N,
algorithm M IQ builds for every K-query of cardinality n * 1 in 7, the set À76(,C)
of interesting K-queries in pi(Ly), i.e. )6(É) : {Qx e pb@r,) | Sup(Qx,S) >
minsupj. It can be seen that the sets À6(É) have a semi-lattice structure with
respect to the order relation F' and thus, these sets can be obtained according
to the geueric levelwise search method of (Mannila and Toivonen, 1g97). In this
respect, algorithm MIQ computes every set )76(É) level by level, using algorithm
MIQ-Eval (see Figure 3) for the candidate evaluation phase, and algorithm MIQ-Gen
(see Figure 4) for the candidate generation phase. More precisely:
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Algorithm:
Inputr the gramma.r Ç :1 Kc,Lç,16 )
Output: all the sets of interesting K-queries À1ç(4) where L eq
IJses: a minimum support threshold n'Linsup and a data set ,S
L. Compute fr using MIQ-Init and Initialize n: 0
2. While n ( N where N is the cardinality of .C6 do
3. For each K-query .C76 of cardinality n * I inÇï (Lx e ffi) ao
4. / / Compute the set À6(É) of interesting K-queries (L A|)K
5. Initialize level d: 0 and ̂ K@) :0
6. Initialize the set of candidate K-queries Co : {Lx}
7. IMhile Cd is not empty do
8. Compute Sup((t. Â l)r,.9) for all (f ^ f)K € Cd using MIQ-Eval
9. Delete fuorn Cd the K-queries (,C n I)5 with support below minsup
10. Add all K-queries (É n f)x €. Cd to ^K(L)
11. Compute the set of candidate K-queries Cd+r û:om Cd using MIQ-Gen
12. Increment d
13. End
14. End
15. End

Algorithm MIQ-Eval computes the supports of a set Cd of P candidate K-
queries (L nl)y, j :1...P. While the main loop (step 3.) iterates over all
possible substitutions o of variables in K, the inner loop (step 4.) iterates over
all examples 0 of Lx such that 01x : o. According to Definition 4 of support,
a boolean ô1 allows to increment at most once the support counter ci, when
there exists several examples 0 of a K-query (L A fi)r such that 06 = o.

Algorithm MIQ-Gen computes a set Cd+l of candidate K-queries from a set
Cd of interesting K-queries. For every K-query Qx : (L Af)r in Cd, MIQ-
Gen adds to Cd+l every K-query Q'x = (L A f')6 in pc(Qx). Nevertheless,
MIQ-Gen reduces the number of candidates, using Corollary 2. More precisely:

- At step 5., MIQ-Gen tests if there exists a K-query Px in pcr(Q'*), that
wâs evaluated before as being not interesting (Px / Cd),

- At step 6., MIQ-Gen tests if there exists a K-query (L' trl')6, such that
K' Ç K, L'ç L, Sol(f) Ç,Sol(f'), that was evaluated before as being
not interestin1 ((L'A l')r, Ê Àx,(L')).

Figure 1: The MIQ Algorithm
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Algorithm:
Input:
Output:

nit
the gramma.r I =1 Kc,Lç,|ç )
the set Ç of K-queries Lx where,C C Lç is connected
and K =Var(L) oK6 is not empty

1. Init ialize T :0, n.: L and 4: A
2. For each literal .L € 4ç such thar V ar(L) n KG + A
3. Add the K-query Ly toQwhere K : Var(L) h Kc
4.  F :Tu4
5. While n < N where N is the cardinality of É6 do
6. Init ialize ff i:6
7. For each K-query Lx eÇi
8. For each literal tr € 4c such that L ( L6
9.  r f  (Var(L6)  nVar(L)  l0)
10. Add the K-query (LAL)K, toÇf,i where K' :Var(LnL)nK6
11.  T :Tuq ;
12. Increment n
13. End
14. Return 0;

Figure 2: The MIQ-Init Algorithm

Figure 3: The MIQ-Eval Algorithm

Eval
Input: a set Cd of P candidate K-queries (L nl)s, j : L... P
Output: the supports of K-queries (L nTi)y e Cd
Uses: a data set ,9 and the set O(K) of all substitutions o such that

(Yr e K)(o(a) e dorn(û, L))
1. For each K-query (L A|'ùK e Cd
2. Initialize support counter cj :0 and boolean bi: false
3. For each substitution o e O(K) do
4. For each substitution 0 e @(L) such that 9tx = o and E0 Ç ,S do
5. For each K-query (L Af iK e Cd
6. lf bj : f alse and fr'd is true then
7. bj : true and increment ci
8. End
9. For each K-query (L Af j)K ecd do bi: f alse
10. End
11. For each K-query (L ATùK € Cd return c1/10(K)l
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Gen
Input: a set Cd of interesting K-queries q* = (L ttl)K where Lx is a K-query

of cardinality n * 1 in T anàf Ç fc
Output: a set Cd+l of candidate K-queries Q'y : (L A l').. where Ér is a K-

query of cardinality n + 1 inT and f' Ç fç

IJses: all the sets À7r,(É') where K' Ç K, Ê' e 4 and L's, is a K-query of

cardinality n inÇ
1.. Initialize level Cd+l : 0
2. For each K-query Qx : (Ln I)6 in Cd do
3. For each K-query da : (L A f'){ in pc(Qx)

4. Add the K-query Q'y into Cd+r unless
5. o There exists a ii-q,l"ry Pr such that EK e pc(Px) andPx I Cd or

6. e There exists l' Ç 16 such that Sol(l) Ç Sol(f') and

K' ç K, g ç L such that lx, Ç0ï anà (t'' A f')r(' / \x'(L')

7. Return Cd+1

Figure 4: The MIQ-Gen Algorithm

3.3 Discovering Significant K-rules

In ihis section, we propose an algorithm (see Figure 5) that mines significant K-

rules from a pre-computecl set of interesting K-queries. This algorithm discovers

only significant K-rules with one atom fI in the head. Moreover, we consider only

K-rules (B A fB -+ H A ls)6 such that:

- the constraint fs concerns only variables that occur in the head fI, but not

in the body 6 (see Step 7.),
- the set K is a subset of Var(B) (see Step 6). According to this condition,

it follows that any significant K-rule discovered by algorithm FSË could be

transformed into a sa/e clause. We recall here that a rule is safe if every

variable appearing in the head also appears in the body (see (Ullman, 1989)).

3.4 Implementation Issues

The algorithms presented in Sections 3.2 and 3.3 are general purpose tools. In this

section, we disuss possible optimizations in case of impiementation in a relational

database environment. In such an environment, we first recall that the facts in a

data set ,S are stored as tuples in associated tables. We denote by RPi the table

associated to a predicate p;.

We first consider the possible optimizations of the candidate evaluation algorithm

MIQ-Eval given a grammar I : l Kc,Lc,lc >. Let Lv : (L1A ' ' . ^ L^)v be a
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Input: the set .IQ of all interesting K-queries in Ç*
Output: the set Sft of significant K-rules
(Jses: a minimum confidence threshold minæn f and a data set S
1 .  SR :o
2. for each K-query Qx : (LA f)r e IQ do
3. for each literal .EI € É do
4. Let, Ry: (B A ls -+ rlt A fr)r be the K-rule such that:
5 .  c  L = B A H a n d , l : f r Â I s a n d
6 .  .  KçVor (B )and ,
7 .  .  ( Y t e t ) ( V a r ( ù c V a r ( B ) + 7 e t B )
8. ïf Conf (R6,5) > mincon,f
9. Add the K-rule Rr to SR
10. end
11. end
L2. Return,Sr?

Figure 5: The FSR Algorithm

K-query in F where each .L; is a literal over predicate pi (I I i 1 n), and Cd be
a set of candidate K-queries Qx : (L A l)* where | Ç fc. In order to evaluate
the supports of l(-queries inCd, ùgorithm MIQ-Eval has to make one pass through
the join of the relations RPi, i - 1 . . . n, a,ssuming that the join is sorted by the
attributes corresponding to the variables in K. The cost of processing this sorted
join can be improved if ordered join indices (Li and Ross, 1998) on the join attributes
are available, and we note that this set of join indices can be determined from F.
For instance, in the context of our Running Example 7, the table RSale can be seen
as a join indice between the tables ,RCzst and RProd. Therefore, the computation
of supports is efficient if the table RSale is sorted by the attribute that corresponds
to k1.
As another possible optimization of algorithm MIQ-Eval, we also emphasize that
the set of candidate K-queries in Cd have to be structured. Currently, given a
substitution 0 e@(L), algorithm MIQ-Eval tests independently for each candidate
K-query Qx : (C A f)K, if f0 is true. However, the candidate K-queries in Cd
may have a lot of elementary constraints in common. For that reason, it should be
more efficient to organize the candidate K-queries in Cd based on a hash tree, as
algorithm Apriori does for the candidate itemsets (Agrawal et al, 1996).

We now argue that, in some practical cases, algorithm MIQ has not to compute
all the sets À1ç(É) where .C16 is a K-query without constraints in 9*. Let us consider
again our Running Example 7. We may assume that the attribute K1 of the rela-
tion RCust(Kr Xt,Xz) is a foreign key referencing the attribute Kr of the relation
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RSaIe(K1,Kz), whereas the attribute Kz of. the relation RSale(K1,K2) is a foreign
key referencing the attribute K2 of the relation RProd,(K1,Y2). If so, the data set
S satisfies:

(Y k 1, r y r.2) (C ust (k y, x; u r z) -+ (3k2) (,Sale (k1, &2) ) ) and
(Y fu , k2) (S ale(fu , k2) -+ ()y2) (P r od(kz, yù))

which means that only customers who buy products are registered, and that all prod-

ucts that are sold are registered. Consequently for every K-query (Cust(k1, c1, 12) A
l)6, where f Ç fc, we have:

Sup((Cust(fu, rt, rz) A f)1,, ,9)
: Sup((Cust(&1, c1, 12) n Sale(kt, kz) A f)0,, S)
: Sup((Cust(k1, 11, rr) n Sale(kt , kz) A Prod(4e2, y2) n f)1,, 5)

It follows that all interesting K-queries in Àpr(Cust(kr,rt,r2)) can be obtained
when computing Àr,(Cust(k1,r1,r2) n Sale(kt,kz) A Prod,(k2,g2)). However, the
computation of Àpr(Cust(lq, 11, r2)) can reduce the number of candidate K-queries
in Àp,(Cust(k1,r1,r.2) ASale(lq,k2) AProd(kz,Az)). Nevertheless, the benefit of this
reduction is important only if the size of the relation RCust is much smaller than
the size of the join of the relations .RCust, RSale and. RProd.
More generallg given a grammar Ç :1 Ke , Lc,le >,let .t.1a and, (L A .L)6 be two
K-queries in F. tt for every data set .9, S is a model of (V.f)(É -+ (:t7;Z) where -f
and f are the vectors of variables inVar(E) and Var(I)\Var(L) respectively, then
the computation of ^rc(E) before ^K(L A L) is relevant only if the size of the relation
that corresponds to ,C is much smaller than the size of the join of the relations that
correspond to L and L.

4 Concluding Remarks

In this paper, we have considered the problem of interesting pattern discovery in
the general framework of first-order logics. The main impact of this generalization
with respect to other approaches is, on the one hand that we can handle data sets
that are stored in multiple tables, not just in a single table, and on the other hand,
that the rules that are discovered can be transformed into Datalog rules.

Several open problems remain. In this paper, we considered only two measures
to evaluate the interestingness of K-rules, namely support and confidence. We have
now to study and investigate the use of other measures such a.s relatiae accura-
car (Lavrac et al, 1999), lift or eonuiction, (Brin et al, 1997). As these measures can
be expressed in terms of probability we note that they can be defined in the genera!
framework of first-order logics using the formalism of (Halpern, 1990).

Another perspective is the study of negation. In this paper, we considered data
sets that contain only positive facts. If we consider data sets that contain both
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positive and negative facts, representing true and false informations respectively, we

can extend the notions of K-query and K-rule so that they contain both positive

and negative literals. The problem here is that the main property of confidence does
not hold any more. Indeed, in the presence of negative informations, we can not
consider the Closed World Assumption, implying that Proposition 6 does not hold
(i.e. the confidence of a K-rule can be equal to 1 although the data set is not a
model of this rule). Hence, we have to propose new measures of confidence.

In this paper, we considered only elementary constraints of the form 14 = 41,
ri l ai or r; ) ô6, where ai and à, are constânts and 11 is a variable. An interesting
question would be to investigate other forms of constraints. These investigations
should use the propositions of (Lakshmanan et al, 1998) and (Srikant et al, 1997).

Finally, we are currently considering two other directions of research. The first
concerns the implementation of our algorithms in an OLAP (On-Line Analytical
Processing) and Data Warehouse environment as in (Kamber et al, 1997; Han,
1997), where data sets are stored in star schema structures (Kimball, 1996). The
second line of research concerns updates. When new facts are inserted or existing
facts are deleted, it may be the case that new rules become significant, while others

are no more significant. This aspect of rule discovery is considered in (Laurent and
Vrain, 1996), and is currently under investigation in the framework of the present

approach.
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