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search method proposed by Mannila, and discuss implementation issues in a rela-
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for future research.

Keywords: Databases, Data Mining, Rule Discovery, Inductive Logic Program-
ming

1 Introduction

In the last decade, the usage and size of databases and datawarehouses have grown
dramatically, due to a constant decrease in the cost of both the collection and the
storage of huge amounts of data. The need to develop techniques and tools with
the ability to exploit these amounts of data has grown accordingly and has given
rise to an exciting and rapidly evolving research field known as Data Mining and
Knowledge Discovery in Databases (KDD) (Fayad et al, 1996). This new field, at
the intersection of Machine Learning, Statistics and Databases, aims at discovering
relevant knowledge in very large databases.

One problem that has received great attention from the KDD community is the
mining of significant patterns (Faye et al, 1998; Faye et al, 1999; Dehaspe 1998).
Given a data set S, a logic £, and two measures of interest called support and
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confidence, mining significant patterns aims at discovering patterns of £ that are
interesting (meaning that their support is over a user given threshold called the
minimum support threshold) and sufficiently valid (meaning that their confidence
is over a user given threshold called the minimum confidence threshold) (Agrawal
et al, 1996; Faye et al, 1998; Dehaspe, 1998).

In this paper, we propose an extension of these approaches, in the sense that the
patterns considered in (Dehaspe, 1998) are particular cases of those considered here.
In this framework, we define new measures of interest and confidence, and address
the following issues:

- We establish important connexions between the measure of interest (which
we call support), and first-order logic on the one hand, and logics of proba-
bility (Halpern, 1990) on the other hand. In our opinion, this point is very
important because it allows to appreciate the reliability of the chosen mea-
sures.

- We show that, although the rules that are learned in our approach are not
clauses, it is always possible to transform them into a Datalog program (through
the introduction of new predicates). The importance of this point lies in the
fact that, in a database environment, only Datalog rules can be managed. '

- We discuss implementation issues of our approach, based on the general frame-
work proposed in (Mannila and Toivonen, 1997). We note that the reduction
of the search space in our algorithms heavily relies on the properties men-
tioned in the first item above. Moreover, our algorithms combine techniques
from algorithms Apriori (Agrawal et al, 1996) and Warmr (Dehaspe, 1998).
We also define a language bias from which possible performance improvements
are designed, using by example join indices techniques (Li and Ross, 1998).

The paper is organized as follows: in Section 2, we define two types of patterns,
called K-query and K-rule, that extend the notions of query and clause. Then,
we present new measures of support and confidence, and study their properties on
a first-order logic basis. In Section 3, we introduce the declarative language bias
that is used to reduce the size of the search space, and we propose algorithms for
discovering interesting K-queries, as well as significant K-rules. In this section, we
also discuss implementation issues. In Section 4, we offer concluding remarks and
suggestions for future research. Due to lack of space, the proofs of propositions are
omitted.

2 Patterns

2.1 Basic Definitions and Notation

We assume a fixed set of predicates with given arities. If p is a predicate with arity
m, then p(ti,...,t,) is an atom, where each t; is a term, i.e. either a constant or a
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variable. Atoms are the basic ingredients of patterns. We also assume a fixed set
of facts, i.e. atoms of the form p(a, ..., an,), where each a; is a constant. This set,
called the data set, is the set from which interesting patterns will be mined.

Moreover, we consider that the constants that appear in the data set come from
pre-defined sets of values that we call domains. More precisely, we assume that, for
every predicate p with arity m, each entry k of p is associated with a pre-defined set
of values, denoted by dom(k, p), where k = 1...m. The domain dom(k, p) is the set
of values ! that a term appearing at the k-th position of an atom over p can have.
In the remaining of the paper, we assume the data set to be domain-relevant, i.e.
all constants appearing in the data set to be in the corresponding domains.

Let us illustrate the concepts introduced so far through an example that we shall
use throughout the paper as our running example.

Running Example 1 Suppose that we look for relationships between the characteris-
tics of customers and the categories of products that they buy. Our fixed set of predicates
consists of Cust, Sale and Prod, with arities 3,2 and 2 respectively. Additionally, assume
the following domains:

- dom(1,Cust) = dom(1,Sale) = {C1,C2,C3}; these constants are identifiers of
customers.

- dom(2, Cust) = {Manager, Teacher, Lawyer}; these constants are the possible pro-
fessions of customers.

- dom(3,Cust) = [0,100]; this interval defines the possible values for the age of cus-
tomers.

- dom(2, Sale) = dom(1, Product) = {P1, P2, P3, P4}; these constants are identifiers
of products.

- dom(2, Prod) = {Beer,Tea, Milk}; these constants are the possible categories of
products.

Let the data set S be the following set of facts:

S ={ Cust(C1,Teacher,30),Cust(C2, Teacher,60), Cust(C3, Lawyer, 40)
Prod(P1, Beer), Prod(P2, Beer), Prod(P3,Tea), Prod(P4, Milk)
Sale(C1, P1), Sale(C1, P2), Sale(C2, P1),

Sale(C2, P3), Sale(C3, P3), Sale(C3, P4)}.

Here, a fact such as Cust(C1,Teacher,30) means that customer C1 is a 30 years old
teacher, facts such as Sale(C2, P1) and Sale(C2, P3) mean customer C2 buys product
P1 and P3. Additionally, facts such as Prod(P1, Beer) and Prod(P2, Beer) mean that
both products P1 and P2 are beer. We note that S is domain-relevant as every constant
appearing in S is in the corresponding domain.

1The notion of domain, as defined here, corresponds to that of “active domain” in relational
databases (Maier, 1983).
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In this paper, we also consider constraints that are conjunctions of elementary
constraints of the form z; = a;, z; = v;, z; < a;, z; > b; where a;, b; are constants,
and z;, y; are variables. Let I" be a conjunction of elementary constraints. We recall
that the solution of T, denoted by Sol(T') is the set of all substitutions 6 such that
I'9 is true. By example, if I is the constraint (z = Teacher Ay < 30), then:

Sol(T') = {6 | 6(z) = Teacher and 6(y) < 30}

Moreover, we say that a constraint ' is more restrictive than a constraint I' iff
Sol(T") C Sol(I).

2.2 Different types of patterns

Different types of patterns have been considered in the literature so far. In this
paper, we introduce two types of patterns, called K-query and K-rule, that extend
the notions of query, query-extension and clause proposed in (Dehaspe, 1998).

Intuitively speaking, a K-query is a quantified conjunction of atoms and ele-
mentary constraints where some of the variables are universally quantified, and the
others are existentially quantified. Likewise, a K-rule is a quantified implication -
where some of the variables are universally quantified, and the others are existen-
tially quantified. In the following definitions, we denote by Var(P) the set of all
variables in a formula P:

Definition 1 - K-query. Let L be a conjunction of atoms and I be a constraint
such that Var(T) C Var(L). We call K-query, a quantified formula of the form
(VE)(BY)(LAT), where K is a subset of Var(L) and Y = Var(L)\ K. We denote
such a formula by (L AT)k.

Running Example 2 In the context of our Running Example 1, the quantified formula
(Vy)(3z, z)(Cust(z,y, 2) A (z > 30)) is a K-query that can be written as (Cust(z,y,2) A
(2 > 30))y. The meaning of this K-query is that for every profession y, there exists a
customer z who is more than 30 years old.

It is now important to note that the notion of K-query extends the notion of
query proposed in (Dehaspe, 1998). In our framework, a query is a K-query Qg
without constraints and where no variable is quantified universally, i.e. K = 0.
We can also note that different K-queries can be formed from the same conjunc-
tion of atoms and constraints. Let us consider the conjunction of atoms £ =
Cust(z, Teacher, z) A Sale(z,y) A Prod(y, Beer). The K-query L;, means that
every teacher buys every type of beer, whereas the K-query £, means that every
teacher buys beer. Finally, the K-query £, means that every type of beer is bought
by at least one teacher.

We also note that in a previous paper (Faye et al, 1998), we considered only
K-queries of the form Qx = (L AT')g where:
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- there is no occurrence of constants in the atoms of L,

- the constraints in I" are only of the form z; = a;, where z; is a variable occurring
in £ and a; is a constant,

- K is the set of all variables in £ and T, i.e. X = Var(L).

We now define the notion of K-rules.

Definition 2 - K-rule. Let B and H be two conjunctions of atoms, and I'; and
[y be two constraints such that Var(I'y) C Var(B) and Var(I';) C (Var(B) U
Var(H)). We call K-rule, a quantified formula of the form (VK)((3Y)(B AT;) —
(3Y")(B AH ATy ATy)), where K is a subset of Var(B), Y = Var(B) \ K and

Y' = (Var(B)UVar(H)) \ K. We denote such a formula by (BAT; — H ATy)k.

Running Example 3 In the context of our Running Example 1, the formula:

(Vz,2)( Cust(z,Teacher,z) A (z > 30) —
(3y)(Cust(z, Teacher, z) A (z > 30) A Sale(z,y) A Prod(y, Beer)))

is a K-rule that can be written as (Cust(x, Teacher, z) A (2 > 30) — Sale(z,y) A Prod(y,
Beer))z,,. The meaning of this K-rule is that every teacher who is more than 30 years
old buys beer.

We note that the notion of K-rule extends the notion of clause, as well as the
notion of query-eztension proposed in (Dehaspe, 1998). Indeed, a clause is a K-rule
(B — H)k where every variable is quantified universally, i.e. K = Var(B)UVar(H).
On the other hand, a query-extension is a K-query (B — )k where no variable is
quantified universally, i.e. K = .

Finally, it must be emphasized that K-rules, as well as query-extensions, are
not clauses, meaning that they cannot be managed in Deductive Database environ-
ments. However, any K-rule can be transformed into a clause by introduction of
new predicates. For example, let us consider the K-rule:

R; : (Cust(z, Teacher, z) A (z > 60) — Sale(z,y) A Prod(y, Beer)),
Given the new predicates OldT eacher and BeerCustomer defined by:

(Vz, 2)(Cust(z, Teacher, z) A (z > 60) — OldT eacher(z))
(Vz,y)(Sale(z,y) A Prod(y, Beer) — BeerCustomer(z))

R: can be transformed into the clause (Vz)(OldTeacher(z) — BeerCustomer(z)).
Consequently, in the light of the above example, it turns out that any set of K-rules
generated by the algorithms given in this paper can be translated into a Datalog
program.
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2.3 Support of a K-query

In the remaining of the paper, we assume that if a variable z occurs at different
positions in a conjunction of atoms and constraints Q, then all these positions are
associated with the same domain, denoted by dom(z, Q). Moreover, we denote by
©(Q) the set of ground substitutions  such that (Vz € Var(Q))(8(z) € dom(z, Q))
and (Vz € Var(Q))(6(z) = z). Finally, we asume that if a variable z occurs in two
different conjunctions Q@ and P, then dom(z, Q) = dom(z,P).

The previous condition is not a restriction, but rather a condition according
to which the use of variables is “coherent” with respect to their domains. Thus,
in our Running Example 1, the K-query Q,, = (Vz,y)(Cust(z,z,y)) is not con-
sidered, as dom(1, Cust) # dom(2,Cust). On the other hand, the K-query Qy =
(Vz,y)(Cust(x, Teacher, 10) A Sale(z, y) A Prod(y, Beer)) is considered, since we as-
sume dom(z, @) = dom(1, Cust) = dom(1, Sale) and dom(y, Q') = dom(2, Sale) =
dom(1, Prod).

We can now define the notion of example of a K-query.

Definition 3 - Example of a K-query. Let (L AT)k be a K-query where L is
a conjunction of atoms and I is a constraint. Given a data set S, an example of -
(LAT)k in S is a substitution 0 in (L) such that:

- '8 is true, and
- L@ isin S, for every atom L in L.

The fact that 6 is an ezample in S of the K-query Qi is denoted by S = Q8.

Denoting by 6k the restriction of # over the set of variables K (i.e. if z is
a variable in K, then fk(z) = 0(z), otherwise 6(z),x(z) = z), the support of a
K-query is defined as follows:

Definition 4 - Support of a K-query. Let Qx be a K-query such that every
variable in K has a finite domain. Given a data set S, the support of Qk in S,
denoted by Sup(Qk, S), is defined by:

{fx 10 €0(Q) A S = 8}

_|
Sup(Qk, 5) = {61 | 6 € (O}

where |E| denotes the cardinality of a set E.
A K-query is called interesting (or frequent) if its support in S is over a given
threshold, called the minimum support threshold and denoted by minsup.

It can be noticed that the denominator of the support is equal to [I,cx |[dom(k:, Q)|,
which explains why the support of a K-query is not defined if the set K contains a
variable k; whose domain is not finite.
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Running Example 4 In the context of our Running Example 1, let us consider the
K-query Qx = (Cust(z,Teacher, z) A (z > 40) A Sale(z,y) A Prod(y, Beer)),. Here:

- the substitution 6, = {r = Cl,y — Pl,z — 30} is not an example of Qg in
S as Cust(C1,Teacher, 30), Sale(C1, P1), Prod(P1, Beer) are facts in S, but the
constraint (z > 30) is not satisfied. On the other hand, the substitution 6y =
{z = C2,y —» P1,z — 60} is an example of Qk in S as Cust(C2, Teacher, 60),
Sale(C2, P1), Prod(P1, Beer) are facts in S and the constaint (2 > 30) is satisfied.
It is the only example of Qg in S.

- [k,ex ldom(ki, Q)| = |dom(z, Q)| = |dom(1, Cust)| = 3.

Thus we obtain Sup(QK, S)=1/3.

So far, different measures of support have been proposed in the literature. Com-
paring our definition of support to those of (Faye et al, 1998) and (Dehaspe, 1998),
we have the following:

- The measure proposed in (Faye et al, 1998), is equivalent but less general than
the measure given in Definition 4. Indeed, in (Faye et al, 1998), we consider
only K-queries Qx where K is the set of all variables in Q.

- In (Dehaspe, 1998), the author defines the frequency frq(Q, key, S) of a query
Q with respect to a data set S, provided that a particular atom key occurs in
every query. In our framework, a query Q that contains this particular atom
key is equivalent to a K-query Qg where K is the set of variables in key, and
we have frq(Q, key,S) = (1/a) x Sup(Qk, S) where a = Sup({key}x, S).

We now give important properties of the support.

Proposition 1 For every K-query Qg and every data set S:

1. 0 < Sup(Qk,S) < 1.
2. Sup(Qk,S) =1 iff S is a model of (VK)(3Y)(Q) where Y = Var(Q) \ K.

The following proposition states that as the data set increases so does the sup-
port, provided that no new constants are introduced.

Proposition 2 Let S and T be two data sets over the same set of predicates, and
with the same domains. If S C T, then Sup(Qk,S) < Sup(Qk,T) for every K-
query Q.

The importance of this proposition lies in the fact that it relates changes in the
data set to changes in the support, and thus to changes in the interestingness of
a K-query. More precisely, it implies that the insertion of new facts in the data
set may generate new interesting K-queries, whereas the deletion of facts will never
generate new interesting K-queries.

The following proposition will be used to reduce the size of the search space.
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Proposition 3 Let Qg = (L AD)g and Qg = (L AT)g be two K-queries. If
K' C K, then Sup(Qk, S) < Sup(Qk, S) for every data set S.

As a consequence of Proposition 3, the computation of interesting K-queries Qg
with some K fixed by the user can use the results of a previous step based on a set
of variables K’ such that K’ C K. Indeed, a K-query Qg can not be interesting if
a K-query Qg with K’ C K has been evaluated before as being not interesting.

It is now important to note that our Definition 4 of support complies with logical
implication, as stated in Proposition 4 below. Roughly, this proposition says that if
a K-query Py implies a K-query Qg, then the support of Pk is smaller than the
support of Q.

Proposition 4 Let Px and Qg be two K-queries. Given a data set S, if S is a
model of the K-rule (P — Q)k, then Sup(Pk,S) < Sup(Qk, S).

Running Example 5 In the context of our Running Example 1, the data set S is
a model of the logical implication (Vz,y,2)(Cust(z,y,2) A (z > 50) — Sale(z, P3)).
According to Proposition 4, it follows that:

Sup((Cust(z,y,2) A (z > 50))s, S) < Sup((Sale(z, P3))s, )

Indeed, it is easy to see that Sup((Cust(z,y,z2) A (z > 50))g,S) = 1/3 and Sup((Sale(z,
P3))z,5) =2/3.

Most of the pattern discovery algorithms use an order relation on patterns based

* on f-subsumption (see (Plotkin, 1970)) to reduce the size of the search space. Ac-

cording to Proposition 4, we could use logical implication to compare K-queries
and their supports. However, testing if a data set S is a model of the implication
(VX ) (P — Q) cannot be efficient in any case. For that reason, we propose an other
order relation based on subset relation (see Definition 5). This order relation is
less general than logical implication, but allows to compare efficiently K-queries,
independently from a data set S.

Definition 5 Let (£; AT1)k and (L2 AT2)k be two K-queries. We say that (£, A
I'1)k is more general than (Ly A I'y)k, denoted by (L1 AT )k =g (L2 AT2)x if
Ll Q £2 and SOl(F2) g SOl(F])

Running Example 6 In the context of our Running Example 1, we have:

(Cust(z,y,2))s =, (Cust(z,y,2) A (y = Teacher))s
=g (Cust(z,y,2) A (y = Teacher) A (z > 30))s

=g (Cust(z,y,z) A Sale(z,y) A Prod(y, w)A

(y = Teacher) A (z > 30) A (w = Beer)),
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Now, we compare the relation >, defined above with that of C-subsumption
introduced in (Mizoguchi and Ohwada, 1995). To this end, we first recall that, if
(£1AT'1)k and (L£2AT2) g are two K-queries, then (£1AT') g C-subsumes (Lo AT2) K
if there exists a substitution 6 such that £,60 C Ly and Sol(T';) C Sol(['10). It
turns out that the relation >, is less general than that of C-subsumption. In-
deed, in the context of our Running Example 1, the K-queries (Cust(z,y,2))s
and (Cust(z, Teacher,z) A (z > 30)), are not comparable, whereas the K-query
(Cust(z,y, z)); C-subsumes the K-query (Cust(z, Teacher, z) A (2 > 30)),. How-
ever, it can be shown that the following property holds:

Proposition 5 Let (£, AT )k and (L2 AT3)k be two K-queries. If (L1 ATk
C-subsumes (L2 AT2) g, then there ezists a K-query (LY ATS)k such that Sup((LhA
FI?)K’ S) = Sup((ﬁz N FQ)K, S) and (£1 A FI)K tg (£’2 A FIQ)K

Considering the previous example, it can be seen that, as the K-query (Cust(z,y, 2))
C-subsumes the K-query (Cust(z, Teacher, z) A(z > 30)),, the K-query (Cust(z,y,
z) A (y = Teacher) A (z > 30)), is such that Sup((Cust(z,Teacher,z) A (z >
30))z, S) = Sup((Cust(z, y, 2) A (y = Teacher) A (z > 30)),, S) and (Cust(z,y, 2)):
=4 (Cust(z,y,2) A (y = Teacher) A (z > 30)),.

It is now important to note that the relation >, is a special case of logical
implication. Thus, according to Proposition 4, we have the following Corollary 1
which is used in Section 3 to reduce the size of the search space.

Corollary 1 Let Qk and Pk be two K-queries such that Qg >4 Px. Then, for
every data set S, Sup(Pk, S) < Sup(Qk, S).

We end this section with an important remark concerning the relationship be-
tween our definition of support and Halpern’s work (Halpern, 1990), which provides
semantics to first-order logics of probability. Indeed, it turns out that our defini-
tion of support can be expressed in terms of probability. Using the formalism of
(Halpern, 1990) and the notation introduced previously, we have:

Sup(Px, S) = wg((3Y)(P))

where Y is the vector of variables in Var(P)\ X, and wg ((3Y)(P)) is the probability
that the formula (3Y')(P) is true if the variables in K are randomly chosen in their
respective domains (assuming a uniform probability distribution on all domains).

2.4 Confidence of a K-rule

Apart from frequency or support, rules are traditionally selected according to a
second quality criterion, called confidence. We now define the notion of confidence
in the case of K-rules as follows:
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Definition 6 - Confidence of a K-rule. Let (B — H)k be a K-rule where B
and H are sets of atoms and constraints, and let S be a data set. The confidence of
(B— H)k in S, denoted by Conf((B — H)k,S), is defined by:

{61 [0 € O(BAH)AS |= (BAH)G}H|
[{6ix | 6 € ©(B) A S = Bo}|

Conf((B— H)k,S) =

A K-rule Ry is sufficiently valid if its confidence is greater than a given threshold,
called the minimum confidence threshold and denoted by minconf.

Definition 7 - Significant K-rule. A K-rule Rk : (B — M)k is significant if it
is sufficiently valid and if the K-query (B A H)k is interesting.

The following proposition relates confidence to first-order logic, in the sense
that the confidence of a K-rule is 1 if and only if the data set S is a model of the
corresponding formula. Nevertheless, it is important to note that this property holds
only in the case where the so-called Closed World Assumption (CWA) of (Clark,
1978) is assumed. We simply recall here, that assuming CWA roughly means that
if an atom cannot be proved to be true, then this atom is considered to be false.

Proposition 6 Let (B — H)x be a K-rule and let S be a data set. Considering
the closed world assumption, we have Conf((B — H)k,S) =1 iff the data set S is
a model of (B — H)k.

It is important to note that, contrary to the support (see Corollary 1), the
confidence does not enjoy any monotonicity property. That is, if a K-rule Rk is
more specific than a K-rule R', then neither Conf(Rg,S) < Conf(RY%,S) nor
Conf(R%,S) < Conf(Rk,S) hold in general. The following example illustrates
this point.

Example 1 Let S be the dataset S = {p(a,b),p(a’,'),q(a)}, where dom(1,p) = dom(1,q)
= {a,a'} and dom(2,p) = {b,b'}. Consider now the following K-rules over S:

Ra : (p(2,y) = q(2))z and Ry : (p(z,b) — q(x))z and R : (p(z,) = ¢(2))s

It is clear that R] and R2 are both more specific than R,. However, based on Definition 6,
we have Conf(R;,S) = 1/2, Conf(RL,S8) = 1 and Conf(R2,S) = 0, showing that
Conf(Rz,S) < Conf(RL,S) and Conf(Rs,S) > Conf(R2,S).

3 Pattern-Discovering Algorithms

In this section, we present algorithms for interesting K-query discovery (see Sec-
tion 3.2) and significant K-rule discovery (see Section 3.3). To this end, we first
introduce the declarative language bias that we use to reduce the size of the search
space. Then we present the algorithms and discuss possible optimizations when
considering implementation issues.
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3.1 A Declarative Language Bias

In Inductive Logic Programming, the notion of declarative language bias has been
studied extensively (see (Dehaspe, 1998; Weber, 1998)) since it is crucial for reducing
the size of the search space.

In this paper, we define a search space by means of a declarative language bias
grammar G =< Kqg, Lg,'¢ > where:

- K¢ is a set of variables whose domains are finite. It means only K-queries and
K-rules where K is a subset of Kg, are to be considered,

- L is a set of atoms. The atoms in Lg are the basic ingredients of the K-
queries and K-rules that we consider,

- I'; is a set of elementary constraints of the form z; = a;, z; < a; or x; > b;
where a; and b; are constants and z; is a variable.

Moreover, we consider only conjunctions of atoms that are connected, according
to the following definition:

Definition 8 - Connectivity. Let £ be a conjunction of n atoms. We say that L
is connected if it can be written as L= Li ALy A...A L, where L;, i =1...n, are
atoms such that: for every k, 1 < k < n, there erists 1 < k such that Ly has at least
one variable in common with L;.

We now define the set of K-queries that corresponds to a given grammar G =<
Ke, L, T'¢ > as being the set of K-queries Qx = (L AT) g such that:

- K =Var(L) N Kg where K is not empty,
- L C L¢ and L is connected,
- I'CT'¢ and Var(T') C Var(L).

We denote this set by G*. Then, the set of K-rules that are built from the grammar
G is the set of K-rules (B — H)k such that Bx and (B A H)g are in G*.

Running Example 7 In the context of our Running Example 1, let ¢ =< Kg, Lg,
I'¢ > be the grammar defined by:

i ’CG = {kl}a
- Lg = {Cust(ky,x1,x2), Sale(ky, k), Sale(k1, kb), Prod(ks, y2), Prod(kh, y5) },
- I'g = {&1 = Teacher,z, > 30} U{y2 = a,y5 = a | a € dom(2, Prod)}.

The following K-query and K-rule are in G*:

Q1 : (Cust(ky, Teacher, z3) A (z2 > 30) A Sale(ki, k2) A Prod(ks, Beer)),
R1 : (Sale(ky, k2) A Sale(ky, ky) A Prod(ks, Milk) — Prod(ky, Tea)),
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whereas the following K-query and K-rule are not:

Qy : (Cust(ky,x1,T2) A Prod(ks,y2) A (z1 = Lawyer))g,
Ry : (Prod(kz,y2) A (y2 = Milk) — Sale(ky, k2))k,

Indeed, the K-query Qs is not connected and contains an elementary constraint (z; =
Lawyer) that is not in I'g. On the other hand, the K-rule R, is not considered as valid,
since (Prod(ks,y2) A (y2 = Milk)), is not a K-query.

3.2 Discovering interesting K-queries

Given a grammar G, the purpose of this section is to give algorithms for the compu-
tation of all interesting K-queries in G* over a given data set S. In order to explore
the search space G*, a K-query Qg = (L AT)g can be specialized either by adding
a new literal L to £, or by introducing a constraint IV more restrictive than I'. To
this end, we introduce two refinement operators pr, and p¢c as follows:

Definition 9 - Refinement Operators. Let G =< Kg, Lg,'¢ > be a grammar
and Qx = (L AT)k be a K-query in G*. Then, pr(Qk) is the set of specialized
K-queries (LA LAT)g such that:

- L is an atom in Lg and (L A L) is connected,
- K'=Var(LAL)NKg.

On the other hand, pc(Qxk) is the set of specialized K -queries (L AT")k such that:

- T" is a subset of ['¢ more restrictive than T', i.e. Sol(I') C Sol(T),
- there does not exist a constraint T" C T'g such that Sol(I") C Sol(I') and
Sol(I'") c Sol(T).

We now emphasize that, if G* denotes the set of K-queries in G* without constraints,
then:
G =p;(0) and G* = |J po(Lk)
Lr€EG*

where p} (0) and pi (L) are defined by:

La| IFal

: .
p1 (@) = U pL0) and pt(Lk) = U pb(Lk)

i=1 j=1

Given a K-query Qx € G*, we can also note that for every K-query Q% in pr(Qx),
we have Qg =, Q% and K C K'. On the other hand, for every K-query QY in
pc(Qk), we have Qg >4 Q. Therefore, according to Proposition 3 and Corollary 1,
we have the following corollary:
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Corollary 2 Let G =< Kg, Lg,I'g > be a grammar. For every K -query Qg in G*:

- If Q. is a K-query in pr(Qxk), then Sup(Qy:, S) < Sup(Qk, S),
- If Qk is a K-query in pc(Qk), then Sup(QY, S) < Sup(Qk, S).

The implementation of the operator p; follows directly from its definition. In
Figure 2, we propose an algorithm that builds G* from a given grammar § =<
Ka,La,I'e >. On the other hand, the implementation of the operator pc depends
on the form of the elementary constraints in I'c. Let us assume that the set g
contains only elementary constraints of the form z; = a;, z; < a; or z; > b;,
and that, given a variable z, it contains either equality constraints or inequality
constraints (but not both) concerning z. Let Qx = (L AT)k be a K-query in G*.
Then, the set pc(Qxk) contains all the K-queries Q% = (£ AT')x where:

-I'=TA(zi = @), if (z; = a;) €Tg and z; € Var(D),
-I"=TA(z: < @), if (z; < a;) € g and a; = max{a | (z; < a) € g\ T},
-I"=TA(z; > b;), if (z; > b;) € g and b; = min{b | (z; > b) € T'g \ T}

Based on the operators p;, and pc, the algorithm MIQ (MIQ stands for Mining
Interesting K-Queries) that computes all interesting K -queries is shown in Figure 1.

Most algorithms for interesting pattern discovery are based on the generic level-
wise search method proposed in (Mannila and Toivonen, 1997). This method starts
from the most general patterns, and builds all interesting patterns level by level.
Each iteration step consists of two phases:

- the candidate generation phase computes the candidate patterns of level d + 1
using the interesting patterns of level d. This generation phase is based on
the property that a pattern can not be interesting if it is more specific than a
pattern that was evaluated before as being not interesting.

- the candidate evaluation phase computes the supports of all candidate patterns
at level d + 1. One important property of this phase is that all the supports
can be evaluated through a single database pass.

In our framework, the computation of all interesting K-queries is decomposed
into N steps, where N is the number of atoms in Lg5. At stepn, 0 < n < N,
algorithm MIQ builds for every K-query of cardinality n + 1 in G*, the set Agx (L)
of interesting K-queries in p5(Lk), i.e. Ax(L) = {Qk € p&(LL) | Sup(Qk,S) >
minsup}. It can be seen that the sets Ax(L) have a semi-lattice structure with
respect to the order relation >,, and thus, these sets can be obtained according
to the generic levelwise search method of (Mannila and Toivonen, 1997). In this
respect, algorithm MIQ computes every set Mg (L) level by level, using algorithm
MIQ-Eval (see Figure 3) for the candidate evaluation phase, and algorithm MIQ-Gen
(see Figure 4) for the candidate generation phase. More precisely:
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e Algorithm MIQ-Eval computes the supports of a set C? of P candidate K-
queries (L AT})k, j = 1...P. While the main loop (step 3.) iterates over all
possible substitutions o of variables in K, the inner loop (step 4.) iterates over
all examples 8 of L such that 6,k = 0. According to Definition 4 of support,
a boolean b; allows to increment at most once the support counter c¢;, when
there exists several examples 6 of a K-query (£ AT;)k such that 6jx = o.

e Algorithm MIQ-Gen computes a set C%*! of candidate K-queries from a set

| C? of interesting K-queries. For every K-query Qx = (£ AT)g in C%, MIQ-

Gen adds to C%! every K-query Q% = (L AT")k in pc(Qk). Nevertheless,
| MIQ-Gen reduces the number of candidates, using Corollary 2. More precisely:

— At step 5., MIQ-Gen tests if there exists a K-query Pk in pg'(QY), that
was evaluated before as being not interesting (Px & C%),

~ At step 6., MIQ-Gen tests if there exists a K-query (L' AI")g such that
K' CK, L' CL, Sol(l') C Sol(I'"), that was evaluated before as being
not interesting ((L' AT") g & Ag/(L')).

|
|
‘ Algorithm: MIQ
‘ Input: the grammar G =< Kg, Lg, g >
Output: all the sets of interesting K-queries A\x (L) where £ € G*
‘ Uses: a miiimum support threshold minsup and a data set S
1. Compute G* using MIQ-Init and Initialize n = 0
‘ 2. While n < N where N is the cardinality of Lg do __
3. For each K-query Ly of cardinality n +1 in G*.(Lx € G},;) do
‘ 4. // Compute the set Ax (L) of interesting K-queries (L AT)g
5. Initialize level d = 0 and A\g (L) =0
‘ 6. Initialize the set of candidate K-queries C° = {Lx}
7. While C? is not empty do
‘ 8. Compute Sup((L AT)g,S) for all (CAT)g € C? using MIQ-Eval
9. Delete from C¢ the K-queries (£ AT')gx with support below minsup
‘ 10. Add all K-queries (L AT)g € C? to Ak (L)
11. Compute the set of candidate K-queries C4! from C? using MIQ-Gen
‘ 12. Increment d
13. End
‘ 14. End
15. End

\ Figure 1: The MIQ Algorithm
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Algorithm: MIQ-Init
Input: the grammar G =< Kg, Lg,[¢ >
Output: the set G* of K-queries L where £ C Lg is connected
and K = Var(L) N K¢ is not empty
Initialize G* =0, n =1 and G} = 0
For each literal L € L such that Var(L)NKg # 0
Add the K-query Lk to Gf where K = Var(L) N K¢g
=0 ug’
‘While n < N where N is the cardinality of L do
Initialize G, = 0
For each K-query Lx € G},
For each literal L € L such that L & Lg
If (Var(Lk) N Var(L) # 0)
Add the K-query (C A L)k to Gy, | where K' = Var(LAL)NKg
F=0F00
Increment n
. End
. Return G* J

DO IOy G i o0l s

== e O
W N~ O

i
=

Figure 2: The MIQ-Init Algorithm

Algorithm: MIQ-Eval

Input:  aset C% of P candidate K-queries (CAT;)k,j=1...P

Output: the supports of K-queries (CAT;)x € C?

Uses: a data set S and the set ©(K) of all substitutions o such that
(Vz € K)(o(z) € dom(z, L))

1. For each K-query (CAT;)k € C¢

2. Initialize support counter c; = 0 and boolean b; = false

3. For each substitution o € ©(K) do

4. For each substitution # € ©(L) such that 0 = o and £d C S do

5. For each K-query (L ATj)k € C¢

6. If b; = false and I';6 is true then

7. b; = true and increment c;

8. End

9. For each K-query (CAT;)x € C? do b; = false

10. End

11. For each K-query (CAT;)k € C? return c;/|0(K)|

Figure 3: The MIQ-Eval Algorithm
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Algorithm: MIQ-Gen

Input: a set C? of interesting K-queries Qg = (LAT')k where Lk is a K-query
of cardinality n + 1 in G*andI'CT¢g

Output: a set C%*! of candidate K-queries Q% = (£ AT")x where Lk is a K-
query of cardinality n + 1 in G* and I" C ['g

Uses: all the sets Ags(L') where K' C K, L' C L and LY, is a K-query of
cardinality n in G*

1. Initialize level %1 =@

2. For each K-query Qx = (LAT)k in C¢ do

3 For each K-query Q) = (LAT')k in pc(Qk)

4. Add the K-query QY into C%*! unless

5 e There exists a K-query Pk such that Q% € pc(Pxk) and Pk ¢ C% or

6 e There exists I' C I'g such that Sol(I') C Sol(I") and

K' C K, £' C L such that L € Gy, and (L' AT") g & Ak (L)
7. Return C%+!

Figure 4: The MIQ-Gen Algorithm

3.3 Discovering Significant K-rules

In this section, we propose an algorithm (see Figure 5) that mines significant K-
rules from a pre-computed set of interesting K-queries. This algorithm discovers
only significant K-rules with one atom H in the head. Moreover, we consider only
K-rules (BAT'p — H ATg)g such that:

- the constraint T’y concerns only variables that occur in the head H, but not
in the body B (see Step 7.),

- the set K is a subset of Var(B) (see Step 6). According to this condition,
it follows that any significant K-rule discovered by algorithm F'SR could be
transformed into a safe clause. We recall here that a rule is safe if every
variable appearing in the head also appears in the body (see (Ullman, 1989)).

3.4 Implementation Issues

The algorithms presented in Sections 3.2 and 3.3 are general purpose tools. In this
section, we disuss possible optimizations in case of implementation in a relational
database environment. In such an environment, we first recall that the facts in a
data set S are stored as tuples in associated tables. We denote by RP; the table
associated to a predicate p;.

We first consider the possible optimizations of the candidate evaluation algorithm
MIQ-Eval given a grammar G =< K¢, Lg,['g >. Let Lx = (Li A... A Ly)k be a
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Algorithm: FSR
Input: the set IQ of all interesting K-queries in G*
Output: the set SR of significant K-rules
Uses: a minimum confidence threshold minconf and a data set S
1 SR=10
2 for each K-query Qg = (LAT)g € IQ do
3 for each literal H € £ do
4. Let Rk = (BATp = H AT )k be the K-rule such that:
5. o L=BAHandI'=ITpAT'y and
6 e K CVar(B) and
7 o (VyeTI')(Var(y) CVar(B)=y€Tlp)
8. If Conf(Rk,S) > minconf
9. Add the K-rule R to SR

10. end
11. end

12. Return SR

Figure 5: The FSR Algorithm

K-query in G* where each L; is a literal over predicate p; (1 < ¢ < n), and C? be
a set of candidate K-queries Qg = (L AT')x where I' C I'g. In order to evaluate
the supports of K-queries in C%, algorithm MIQ-Eval has to make one pass through
the join of the relations RP;, ¢ = 1...n, assuming that the join is sorted by the
attributes corresponding to the variables in K. The cost of processing this sorted
join can be improved if ordered join indices (Li and Ross, 1998) on the join attributes
are available, and we note that this set of join indices can be determined from G*.
For instance, in the context of our Running Example 7, the table RSale can be seen
as a join indice between the tables RCust and RProd. Therefore, the computation
of supports is efficient if the table RSale is sorted by the attribute that corresponds
to k1.

As another possible optimization of algorithm MIQ-Eval, we also emphasize that
the set of candidate K-queries in C% have to be structured. Currently, given a
substitution # € ©(L), algorithm MIQ-Eval tests independently for each candidate
K-query Qg = (L AT)g, if ['0 is true. However, the candidate K-queries in C¢
may have a lot of elementary constraints in common. For that reason, it should be
more efficient to organize the candidate K-queries in C? based on a hash tree, as
algorithm Apriori does for the candidate itemsets (Agrawal et al, 1996).

We now argue that, in some practical cases, algorithm MIQ has not to compute
all the sets Ax (L) where Lk is a K-query without constraints in G*. Let us consider
again our Running Example 7. We may assume that the attribute K; of the rela-
tion RCust(K1, X1, X2) is a foreign key referencing the attribute K of the relation
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RSale(K, K,), whereas the attribute K5 of the relation RSale(K, K>) is a foreign
key referencing the attribute K, of the relation RProd(K},Yz2). If so, the data set
S satisfies:

(Vkl,zl,xg)(Cust(kl,xl,xz) — (Fk2)(Sale(kq, k2))) and
(Vk1, ko) (Sale(ky, k2) — (3y2) (Prod(ks, y2)))

which means that only customers who buy products are registered, and that all prod-
ucts that are sold are registered. Consequently, for every K-query (Cust(ky, z3,Z2)A
I')k, where I' C I'g, we have:

Sup((Cust(ky, z1,z2) ATk, S)
= Sup((Cust(ky, x1,29) A Sale(ky, ko) ATk, S)
= Sup((Cust(ky, 1, T2) A Sale(ky, ko) A Prod(ks, y2) AT)k,, S)

It follows that all interesting K-queries in Ag, (Cust(ki, z1,2)) can be obtained
when computing Mg, (Cust(ky, z1,22) A Sale(ky, ka) A Prod(ks,y2)). However, the
computation of A, (Cust(k1,z1,22)) can reduce the number of candidate K-queries
in Ay, (Cust(ky, 1, 22) ASale(ky, ko) A Prod(ks, y2)). Nevertheless, the benefit of this .
reduction is important only if the size of the relation RCust is much smaller than
the size of the join of the relations RCust, RSale and RProd.

More generally, given a grammar G =< K¢, £Lg,T'¢ >, let L and (LA L)k be two
K-queries in G*. If for every data set S, S is a model of (VX)(£ — (3Y)L) where X
and Y are the vectors of variables in Var(£) and Var(L)\ Var(L) respectively, then
the computation of Ak (L) before Ax (LA L) is relevant only if the size of the relation
that corresponds to £ is much smaller than the size of the join of the relations that
correspond to £ and L.

4 Concluding Remarks

In this paper, we have considered the problem of interesting pattern discovery in
the general framework of first-order logics. The main impact of this generalization
with respect to other approaches is, on the one hand that we can handle data sets
that are stored in multiple tables, not just in a single table, and on the other hand,
that the rules that are discovered can be transformed into Datalog rules.

Several open problems remain. In this paper, we considered only two measures
to evaluate the interestingness of K-rules, namely support and confidence. We have
now to study and investigate the use of other measures such as relative accura-
cy (Lavrac et al, 1999), lift or conviction (Brin et al, 1997). As these measures can
be expressed in terms of probability, we note that they can be defined in the general
framework of first-order logics using the formalism of (Halpern, 1990).

Another perspective is the study of negation. In this paper, we considered data
sets that contain only positive facts. If we consider data sets that contain both
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positive and negative facts, representing true and false informations respectively, we
can extend the notions of K-query and K-rule so that they contain both positive
and negative literals. The problem here is that the main property of confidence does
not hold any more. Indeed, in the presence of negative informations, we can not
consider the Closed World Assumption, implying that Proposition 6 does not hold
(i.e. the confidence of a K-rule can be equal to 1 although the data set is not a
model of this rule). Hence, we have to propose new measures of confidence.

In this paper, we considered only elementary constraints of the form z; = a;,
z; < a; or x; > b;, where a; and b; are constants and z; is a variable. An interesting
question would be to investigate other forms of constraints. These investigations
should use the propositions of (Lakshmanan et al, 1998) and (Srikant et al, 1997).

Finally, we are currently considering two other directions of research. The first
concerns the implementation of our algorithms in an OLAP (On-Line Analytical
Processing) and Data Warehouse environment as in (Kamber et al, 1997; Han,
1997), where data sets are stored in star schema structures (Kimball, 1996). The
second line of research concerns updates. When new facts are inserted or existing
facts are deleted, it may be the case that new rules become significant, while others
are no more significant. This aspect of rule discovery is considered in (Laurent and
Vrain, 1996), and is currently under investigation in the framework of the present
approach.
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