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Abstract This article is a small survey and pioneering as a starting point for a

longer research project: to utilize generalized semi-infinite optimization for purposes

of prediction. Firstly, it reflects tbe analyticai and inuerse (intrinsic) behau'iour of.

generalized, semi-infinite optimization problems P(f ,h,g,u,u) and presents inter-
pretations of them from the viewpoint of anticipatory systerns. These differentiable
problerns admit an infinite set Y(r) of inequality constraints g, which depends on

the state c. Under suitable assumptions, we present global stability properties of

the feasible set and corresponding stractuml stabi,Ii,ty properties of the entire opti-

mization problem t89]t90]. The achieved results are a basis of algorithm design.

In the course of explanation, the perturbational approach gives rise to reconstruc-

tions. By studying three applications of generalized semi-infinite optimization, sec-

ondly, we interpret these a.spects of. inuerse problems in the sense of predi,cti,on. The

three anticipatory systems arc (i) Reuerse Chebycheu approdmati,on, where we de-

scribe a given system by a neighbouring ea.sier one a.s long as possible under some

error tolerance. 
'We 

begin by a motivating problem from chemical engineering and

turn then to time-dependent systems. (ii) Time-mi,nimal or -mosi,mal optimizati'on
problems, where we want to pull or push the time.horizon of some process to present

time or into the future. We mention global warming and turn to further kinds of

biosystems. (iii,) Computational biology, where we axe concerned with prediction

and stability of DNA microarray gene-expression patterns.
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1 Introduction.

This article is a first contribution to a general theory of anticipatory systems by
mearls of semi-infinite optimization. In computational biology, medicine and tech-
nolory resea,rch and applications, we have to deal with questions of a long-term un-
derstanding and forecasting, e.g., of genetic or metabolic processes or of temperature
in atmosphere. Modelli,ng of such processes by dynamical systems or optimization
problems is followed by a stability and anticipation analysis and interpretations in
biological or technical terms of how meaningful, possibly: optimal, the modelling
has been. Based on this analysis and interpretation, maybe, the model must be
improved. There is a tension, some tradeoff, between the bounded time-horizon in
which the measurements and experiments were made, a.nd the long term in which
processes take place. Our topics in modelling, stability a,nalysis and prediction
are 'inuerse problems of understanding and cha,racterizing the inner nature and be-
haviour of systems, and they aim at leaming. Just from these viewpoints we study
and interpret our semi-infinite optimization problems.

The following introduction to generalized semiinfinite programming bases on

lA0][90]; for further foundations see also [73]. Concerning the results of them given
in this papers, we do not work out the proofs given there, but figure out main
inverse and dynamical-perturbational ideas underlying these results. Generalized
semi-infinite (ÇSZl optimization problems have the form

6/ r L _ ̂ .  ̂ .\ f Minimize /(r) on Mlh,gl, where
v \ L n , 9 , u , u )  

\  U b , g l : :  { r  €  R ' l  l r . i @ ) : 0  ( i  €  I ) ,  g ( r , y )  >  0  ( y  e  Y ( x ) ) } .

The semi-inf nite character lies in the typically infinite number of elements of Y(:
f (r)) [Z+][03], while the generalizedchancter comes from the r-dependence of Y(').
We suppose these index sets to be finitely constrained (f):

Y( r )  :  Ms lu (x , . ) ,a (x , . ) ]  ' :  {  y  eRq l  u r ( r ,U)  :0  (k  e  K) ,  u | r ,y )  >  0  ( l  e
L)\ ,  (r  e R").

Here we used the following notation: h: (hn)u.r, u : (ux)xei<, u : (ut)rcr,, where
h i : W  - - - + R ,  i € l : :  { 1 , . . . , m } ,  u x :  R ' x R q - - R ,  / c €  K : : { 1 , . . . , r } ,  u 2 :
R "  x  R q  - -  R ,  ( .  e  L ' :  { 1 , . . . , s }  ( m  <  r ; r  <  S ) .  L e t  /  :  R '  -  R ,  9  :
R"xRq ---+ R, h, (i e I), up(k e K), ut(, e L) be continuously differentiable (C1).
By Df (r), Drf @) we denote the row- (column) vector of the first-order partial

derivatives fi;f {"), and D,g(r,a), Dv9(r,y) consist of ftilr,y) and fto@,a)'
Let 1l C R', M[h,S]îU + 0, be some bounded, openset. For motivation a^nd
references ,o, 

".g., JablJOOl Recent ÇEl applications appeard, in optimal design,
namely, of civil and aerospace structures, of experimental design, and in the inverse
problems of discrete tomography of, e.g., VLSI chip design [10][15][65][89]. We make
the following assumption in order to start our continuity and stability research:



Assumption Aa: UrrvY(r) is bounded, (and hence, by continuity, compact).

In generalized semi-infinite optimization, Mlh,g] does not need not be closed

[41]. However, the following assumption ensures closedness:
Assumption 84: For all r €t, the linear independence constraint qualifi-
cation (LICQ) is fulfil led for MTlu(r,.),u(r,.)1, i.e., linear independence of

Drup(r,g), k e K, Dru{z,g), (. e Ls(n,g)

(considered as a family), where Lo(n,g),: {l e L I a(î,9) : 0} consists of
active indices. We shall realize strong Assumption B7 to be a central condition of
this article, but also a structural frontier overcome by recent research.

Under both assumptions we start our continuity and stability research. Using
differential topology [34][37], they admit local linearization of. Y(r) @ e û) by
finitely many Cl-diffeomorphisms d; , Vi -- Si (i e J) in such a way that the
image sets Zi of indices are r-'ind,ependent squares in a linear subspace. Herewith,
P(f ,h, g,u,u) becomes locally, namely in Z, equivalently expressed as an ordinary
semi-infinite optimization problem Posr(f ,h,go,uo,u0), where Moszlh,Solnt :
Ivffh,g]nT, f being unaffected [84][90].

On the upper stage of variable r, 1ve shall use a constraint qualification, too.
This cq geometrically means the existence of an at Mlhl : h-t({0}) tangential,
"inwardly" pointing direction at r:

Definition 1.1. We say that the extended Mangasarian-Fbomovitz con-
straint qualification (EMFCQ) is fulfilled at an î e Mlh,gl, if EMF1.2 àrê
satisfied:

EMF1. Dhi(T), 'i Ç I, are linearly independent.

EMF2. There exists an "EMF-uectod' ( e R" such that

D h i @ ) ( : 0  f o r a l l z e - I ,
D,sl@,Z)e > 0 for ùl z €. Ro, j e J, with (&)-t(") € %(7),

where Ys(z) :: {y eY(t) | g(a,U) : 0} consists of actiae indices.
EMFCQ is said to be fulfilled for Mlh,sl on û, if EMFCQ is fulfilled for all
r  e  Mlh ,s lnû .

For turther information and versions of EMFCQ see [32][37][41][42)157)[74], but
aho [1a]1361.

Let a local minimizer î of Pff,h,g,u,t,) be given and EMFCQ be fulfilled at
â. Then, we can state the existence of. Lagrange multi,pliers \i, 1.trn, such that the
conditions KT1:

Df (î): I ^iDhi(î))
ie I

+ t pr*D,gl^(û, z"),
xe{1, . . . ,Ê}

F * )  0  ( r c e { 1 , . . . , Â } )



are satisfred, referring to ordinary semi-infinite (OSf) data [32][84] [90]. Now' we call

û a Ç-0 Kuhn-Tucher point. Here, the points z* €. Zi" are suitable active indices.

n u t o @ s e t o f z e Z j b e i n g a c t , i a e f o r s | @ , . ) . R e f e r r i n g t o
all the giien jEI data, a further evaluation yietds the following Kuhn-Thcker

conditions with corresponding Lagmnge multipliers \i, P*, Qn,k, 0x,(, [84][90]:

KT. DfG:) : D ^iDhi(û) + t F*D,e(î,a*)
i e l  rc€{ l ' . . . 'Ê }

- D ao,*D,rx(i,y*) - t P*,2D'u2(î,Y^)
r{€K ,_..11i::fi

KTz.  F* ,  g*  ) -  0  ( ( '  e  Lo(û ,U*) ,  rc  e  {1 ' ' . . '  Â } ) '

Again, the 3r* € %(t) are actiræ. Now, we call â a Ç Kuhn-Tuclcer point. Un-

dei general assumptions, the necessar5r optimality conditions KT1,2 were for

the first time proved by Jongen, Riickmann and Stein [41]. Note, that the linear

combination KT1 contains the derivatives of al| the defining functions. For further

information see [ao][74][a4][90]. lo ftft, let LICQ be satisfred at a given point â as

an element of. Mfh), and M[à] n|t be star-shaped with star point î. Moreover,

Sl(.,") (z e Zi,i é n be iuasi-concaueand f be pseudo-conueron Mlhlnû.

This means the following implications for all r € MlhlnU [$][49]:

sl@,2) > s?@,2)+ o,s?(î ,2)(r  - t )  > 0 and D/(â) (r-â) à 0 +
r@) > T@).

Then, â turns out to be a local minimizer of. P$,n, g,u,u) [45][84]t90]. concerning

structural frontiers in (.F) nonconaer optimization see [44]. After this introduction

of basic conditions, we make the following convention for the ease of presentation.

In fact, as the theoretical treatment of the equality constraint functions is merely

technical [26][66][S0J[90], we may delete them:

Convention: Until the end of Subsection 4.1 we assume: I : A, K :0'

Before we introduce the second-order condition for strong stabi'lity we state (un-

der Ay, B4):

Lemma 1.2 [90]. Let â: e Mlgl ntt be given, and EMFCQ be fulfilled at

â. Then, â is a 9-O Kuhn-Tuclcer poi,nt for P(l,g,u), if and only if the ex-

tended Mangasaria,n-Fromovitz constraint qualification on fut [(g, -/ + /(t) )]' called

nfrFÔ], is violated at â.

We prepare our introduction of strong stability of a stationary point by assuming

that /, glu a,e C2 and putting for any bounded open neighbourhood V Ç Rq of

U Y(r) and any subset M çW I
ret



(  ( , - .  n  A r  ê ,  A r f  , \ , ' lnorm[(/ ,  s,u),M] : :sup{ ruo { t f t" l t  + !  l*@l +
I re,,u,r [ 

-' ' ' 
f,, ' 'ôrn'*" 

' Laalôra"i\r)l 
I '

sup mâx { ,n," , ,  * i r?@,yl t  + i l *@,y) l  + i '  02q '  \ ,
f f i  i l î l i l i t  [  

" - ' '  
?o 'ô ,o r - rv r t  

I  
k 'u* ' * 'a ) l+  

L l6 '16r \x ) l+

t i t=t! (,)t* i r=æ: r"lr] I
? A'  Ar;Ay, ' " " '  uy=. , '  urrArt ' * "  J  J '

In .F or CIST optimization we replace f; by J, Y or disregard u, using notation
norms[., .], normesT{.,'] then. By continuity stated in Section 2, the next condition
is well-defined.

Definition 1.3. Suppose apoint î e M[g]ÀLl for P(f,g,u) (of class C2),
Pos(1,90,u0) be locally (in Z) representing P(f ,g,u), and î be a Ç-0 Kuhn-
Tucker point of P(l,g,u). Then, we say that âu is (Ç-0) strongly stable, if for
some e > 0 with B(û,8) Ç1'l and for each e e (0,e1 there is some ô > 0 such

that for each C2-function (/, i-o) *itrr norrresT[(/ - î , go - î\, B(t,e )] 5 d the

open ball B(û",e) contains m. ordinary Kuh,n-Tucker point îd of. PSsxG,î\,:

Post(î,îo,ro), which is unique in B(î,8).

Referring to a Ç Kuhn-T\rcker point â" and to norm[(/-/ ,9-0,u-û), B(î, e)),
we get the condition for (9) strong stability.

Here, "?t, d' sta,nds for (un)d,isturôed (respectively). For our preferred (9-O)
strong stability expressed by original ÇEI data, see [90]. In Section 3, we utilize an
algebraical characterization of strong stability in the way of Kojima a,nd Rûckmann

[64[47].

2 Stability of Feasible Sets and Its Characterization.

Rpsults called Mani,fold Theorem, Continuity Theorvm, Genericity Thenrem arrd
Stability Theorem [39][90] underline the importance of EMFCQ for concluding that
M[g,ul.: MlSj is a topological manifold with boundary, behaving continuously and
stable under perturbations of our defining Cr-functions. With these perturbations
we remain inside of suitable C!-open neighbourhoods of (g, u). Here, C$ stands for
the strongor Whitney topolory, which respects a.symptotic effects (for topologies
C!, te e D{u{oo} cf. [34][3fl). We call a given M çPc" a Lipschitzian manifold
(vdth boundary) of dimension n, if for each 7 € M there are open neighbourhoods
Wr ç R" of i, W2 Ç R' of 0,,, and a bijective g : Wr u W2, ç(z) :0,,, \'s"ith
Lipschitzian continuity of g, g-r such that g carries MnWr to the relatively open



set ({0n-,} x R")n}ry2 or to the set ({0'-'} x {w eRl, à 0} xR'-r)n)4/2 with

(relative) boundary. So, Lipschitzian manifolds can locally be linearized, however,

without preserving "a,ngula,rs" in the boundary. According to our Convention, we

shall focus on the case d : n. ln F optimization, that preserrration is given by the

stronger condition LICQ, using Cl-smooth linearizing "charts" '

Foi topologi cal stabitity, where the given a^nd any a^rbitrarily slightly perburbed

feasible set can be mapped onto each other by a global homeomorphism, EMFCQ

is even chamcterizing in the sense of equivalence. In the next section, we embed

this stabitity Theorem in the model given by our entire problem P(r,g,u), where

additionally the level parameter r of the objective function arises.

3 Structural Stability of the Problem and Its Charactenza-

tion.

3.1 Structural Stability of the Problem.

under Aa,B,,we still refer to the bounded æt Mlgl, but furthermore take / into

consideration. The stractur of the entire problem P(f ,g,u) is established by all

the lower level sets

L ' ( f , g , u )  : :  { r e  R ' l r e M l g , u \ ,  f ( t ) < r }  ( r e  B , ) .

We observe this structure under perturbation of all problem data now, and we define

stractural stability. Here, d,escent has to be preserved, if the level varies. We assume

that all defining functions arc C2. Then, this global stability can essentially be

characterizedby EMFCQ of. Mlgl and by strong stability of all considered stationary

points.
Two problems P(Tt, 9t, rt), P(f', 92,u2) (with defining C2-functions) are called

structurally equirralent :
P( f r  ,9 t ,u t )  -e  P(1 ' ,9 ' ,u ' )  ,

if there are continuous functions gp: R x Rn --+ R' and d , R ---+ R with the

properties f1,2,3:

F,r. gp,,: R' -t R" is a homeomorphism, where pp,,(x) :: pp(r,z), for every

r € R .

F,z. 4t: R ---+ R is a monotonically increasing homeomorphism.

E' gp,,(L '( f t ,9 ' ,ut))  :  7 'bG\(72,92,a2) for al l  r  € R'

Here, components have to go onto components continuously a,nd from the global

viewpoint of all level sets, anrJ continuously connected along of them' To guaran-

tee and prepare atl these mapping tasks, the level shift function I represents the

pairwise correspondence of two level sets.



Now, let us consider the first problem as und,isturbed and the second one as

slightly d,i,sturbed,. Then, we arrive at strtctuml stability [25][40][43][80][90] (cf. also

[zJ[o][rz][oo]):
P(r,g,u) (with defining c2-functions) is called structurally stable, if there

exists a C!-neighbourhood 0 of. (f ,9,u), such that for each (/, g,Û) €. CI

P( f ,g ,u )  -p  PU,g , i t ) '

3.2 Characterization Theorem.

Under Au, Bu we state:
Theorem 3.1 (Characterization Theorem or Structural Stability Theorem;

leOl).
Let X[[g] c U hold for problem P(T,g,o) (with defining C2-functions).
Then, P(/,g,t') is str"ucturallg stable, if and' only i'f the conditions Cr,z,e are

fulfilled:

Ct. EMFCQ holds for Mfs).

C2. Alt the Ç-O Kuhn-T\rcker points z of. P(f ,g,u) are (9-0) strongly stable'

C3. For any two different Ç-0 Kthn-Tucker points Tt +7' of. Pff,g,t'), the

corresponding critical values are different, too: f @') + f (î').

In this main result, we could also make a further assumption, excluding cer-

tain inequality constraints z from the relative boundary 62i (i e J). Then, we

could identify the 9-O Kuhn-Tucker points by some I Kuhn-T\rcker points. For

the validity of our Characterization Theorem, however, we need not make such an

a.ssumption [90].

3.3 Proof of Characterization Theorem: Main ldeas.

Preparations.-Im 
inrensi"ely apply Implicit Function Theorem 'in Banach spaces [37][55]; in

particular, we state a cont'inuous dependence of (io,Û0) on (fr,ô). consequently,

small perturbations on the data of P(f , g,u) cause slight perturbations on the data

of. Posr(r,g0,00). The inuerse problem arises: can srnall per-htrbations of the CIsT

d,ata be reconstructed under the problem representat'ion from sli'ght perturbations of

the gi,aen ÇST probtern? 
'We 

give a conditionally positive ansiwer. However, this

answer will be fitting for the perturbational argumentations on Characterization

Theorem:
Item 1: For representing OST problem(s),Û0 is of special linearly a,ffine form

a,nd, under sufficiently small perturbations of. the 9E1 problem, we may treat them

as fwed,. Hence, besides the perturbations î - f , lor Posr(1,90,o0) we a're



concernd with g0 -- g0 only. We therefore introduce the sirnplifying notation

Pôstff , go) :: Posr(f , 90,uo)'--M- 
Subsequently, *" mainly perform localperturbations for PS57(f ,go)'

Hereby, we treat the finitely many functions 9f U e J) separately in small di'sioint

open sets Vî (j e J), such that their perturbationt 9t * 930 ca"n be reconstructed

by one singlâ C2-function ! (given below). Therefore, we would need the perturba-

tionally stable
Assumption F*: For all it,i2 € J, it *j2, we have

/ \
u _ ( (f,')-'(23'(")) n @:)-'(23' (")) l : o

ceM[g]nF \ /

For the welldefinedness (possibitity) of this ha,rdly conlrollable assumption we take

into account that for aûy c e M[Sl n ffi the æts Z(" (r) merely consist oI actiae

inequality constraints z. Herewith. theyare suhets of zi- ^(K € {1'2}). while by

definition for some preimages (f,')-'(Zt') and (d;)-'(Zi') an overlapping must

exist, their subsets (f:Y'Q7'(rJ) una (f:)t(23'(r)) need not intersect.

We are going to exploit Assumption F*-after perturbations. However, if we may

suitablychoose our perturbed functions g0, then Assumption F* is naturally fulfilled

(after perturbation), and we need not make it in the unperturbed situation' Now,

under problem representation and joined by o, this function ! generates Of locally

in Vj U € J). Then, for each i e J, small perturbational (globat) effects outside

d Vi ti € J) have no influence and can be ignored. The function announced before

is

: , -  ^ . \  . -  |  î i t " , f , (v)) ,  r f '  ve ( f , f 'Vi)  and (r ,d,@)ev;,  i€J
e\r,a) ,: 

I ; i ;, ù: erse.

Item 3: Below we must consider a certain global perturbation of P[57(f ,90) to

receive C*-data or, finally, some (global) 'bpen and dense" property' Therefore,

we apply on the one hand the perturbation technique from the proof of Genericity

Theorem. On the other hand, whenever it is possible to turn from the ÇSI ptoblem

to an OEI (or ;Ê) one, then t4'e are back in the situation of Item 2 in order to perform

local perturbations.
For our proof of Characterization Theorem, the algebraical chamcteri,zation of

(Ç-0) strong stabilityfor a Ç-0 Kuhn-Thcker point f is important [67][90]. Here,

we assume EMFCQ at 7. That refined characterization refers to (restricted) Hes-

sians of Lagrange functions, and it bases on a case study where we refer to the

red,uction ansatz. This R,A demands strong stability in the sense of f optimization

[47] for the local minimizers of the problem from the lower (y-) stage' Herewith' RA

admits local representation of. P$,g,u) around â by Implicit Function Theorem

[62][eo]; see [at][0t].
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Case I: ELICQ and RA are fulfilled at â.

Cose II: EMFCQ -but not ELICQ - arÀ GRA are fulfilled at â.

Case III: EMFCQ -but not GRA - is fulfilled at â.

In all these cafies, we can also classify the type of the strongly stable stationary point

Z: While in case I a saddle point, a local minimizer or local maximizer is detected

by the "stationary indet'' of â (a topological invariant), in cases II, III we have a
strict local minimizer throughout [90]; cf. [48][6ï[80i.

Line of Proof.

Sufficiency Part:
I'et C123 be satisfied. We equivalently represent P(f ,g,u) by Posr(f ,go,ro)

a,nd interpret Cr.z,a a"s OSZ conditions Ces71,2,3: PSD constraint qualifrcation

EMFCQ, strong stability of all Kuhn-Thcker points in the sense of OEI optimiza-
tion, and separateness of the OEI critica] values. Under slight perturbations of
rbe ÇEI data, u0 does not (and need not) vary. Now, we are prepa,red fot OEI
explanations and, finally, f constructions from [40][43][80] in our ÇEî context.
An easy countere>rample shows that C3 can not generally be avoided for establish-
ing structural stability [80]. Here, two connected sets, say: (arcwise) components,
would have to be mapped onto one component, contradicting homeomorphy. A
similar counterexample shows that the r-dependence of the homeomorphisms is
necessary, too. Moreover, each 9-@ Kuhn-T\rcker point â" has to be mapped to
the corresponding stationary point âd of the slightly perturbed problem P(f,9,û).
Finally, from the overall boundedness, EMFCQ and strong stability we conclude that
the number of g-O Kuhn-Ttrcker points is fi,nite: î;! (o e {1, . . . , o0}) [43][30][90].'We 

start by dynamically constructing the leuel shift t!: We integrate à Cæ-
vector field such that each critical vaiue /(â|) becomes shifted in R, to the corre'
sponding critical vatue i(aj) (a e {1,. . . , o0}).
Now, we may think 4t: Idn, otherwise referring to f o t[. There are disjoint
open ball neighbourhoods B(îi,e) around â|, such that the smaller neighbour-
hoods B(îi, il contain î;! (o e {1, . . . , oo}). Without loss of generality we os-

sune that thé unperturbed and the perturbed lower level sets coincide in all the
sets  B(â | ,€ )  \  B@;)  (o  e  {1 , . . . ,d0} ) .
Having performed this reduction of t/ and based on the previous assumption, we

Iocal-gtobally proceed by constructing g'p,, (z e R"). At first, we realize which
undisturbed sets have to be homeomorphically mapped onto which corresponding
sets from the disturbed situation (mapping tasft). We distinguish three situations
given by levels r 1 T, r : T) ot r t T. Some area from outside of the feasi-
ble set possibly must be "carried in". Apart from the stationary points, the level

sets transaersally intersect with the boundaries. On thw fundamental domains ow
further construction will be raised.

11



Outside of. B(î[,e) (o e {1,...,o0}), we :uæ, "EMF-techniqud'based on
Lemma 1.1 and applied on L$"t(f ,g0) (: L(f,g,a)), f '6"t(i,go): Within of
tubular neighbourhoods we transform undisturbed boundaries onto corresponding
disturbed ones along trajectories of vector fields which are generated by EMF vec-
tors. Using differential topolory, this global construction is glued together in
uf4@@i,€) \ BGtsJ) with the local construction sketched next referring to
one unperturbed stationary point î"(: ûi) € {ti, ...,ît""r} and a corresponding
perturbed point âd. Now, we are inside of. B(î",e). We may restrict to n € {2, 3},
doing dimensional reduction by successive hyperplane intersection otherwise.

Case 1. û is lying in the interi,or Mosr[Sol(: Mlg,u]) :
Then, âd, being sufficiently slightly perturbed, lies in the interior of. Mssa[fi0].
Both stationary points are nondegenemte [37], and for each 7 vss flqnsform the
rlevels around â' onto the local r-levels at îd. In fact, this Morse theoretical
local construction can be made by a Cl-diffeomorphism [43][80],

Case 2: î is placed, on the boundary of Mss7[go]:
Then, âd may lie on the Uou"arty * io the interior of. MssTljol. Without loss
of generality we assume the bounda.ry câ.se. Actually, using an implantation of
a suitable level structure, we turn from stationary points at the boundary to fic-
tiaestationary points.in the interior. This level structure is locally given^by fictiae
objective functions Î" *ra Îo. For performing this implantation of i", io, *u
need precise knowledge of the configurations around the boundary points ûu,îd,
characterized by both position of cones or balls with respect to the boundaries and
growth behaviours of f , f . We have two conical types and one radial type, gov-
erned by strong stability (under EMFCQ) [43][80][90]. By means of fictive interior
problems, extrapolating the "characteristic" of îu, îd and implanting fictive sta-
tiona^ry points î'j;", ûjt, we a,rrive back in case l(interior position). Hence, in case
2, the entire mapping task is also fulfilled.

Necessity Part:
Let P(f ,g,u) be structurally stable; we prove Cssxr.z3 in indd,rcct ways. Based

on our assumptions, we carry over the proof of the OST necessity part from [40]
into our 957 setting.
Many details of a,rgumentations are Morse theoretical [25][42][43][80][90]. To avoid
loss of differentiability, we assume that all data are C* 1251. This smoothness can
be achieved by fine perturbations of. aII OET data and, by tracing them back, of all
Ç3T onæ.

Here, we make the inequalities of different indices 7o' 1Ze2 independent from
each other (by small shifts).

Cr: Since Mlgl is compact, there exists the finite mar<imum rilffi :: max{/(c)l
r e Mlg)(: L(f ,g,u) r e [rmu,oo)). Under sufficiently slight perturbations,
Mp] remains compact. Let imu for each slight perturbation U,E,û) denote the
maximal (feasible) value of /. Taking r* :: max{r^o,û-L(î*)}, the homeo-
morphism g'p,"- givæ topological equiralence between MlS,rl: L"(f ,g,a) and
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Mlg,ûl: L't'("')(f ,9,û). By Stability Theorem, topological stability implies EM-
FCQ.In fact, by suitable perturbations any violation of EMFCQ at a feasible point
leads to compact sets M[i), M[!], satisfying ELICQ but being not of the same
homotopy type l26lla2lt80l[90]. When, e.g., the two sets have a di'fferent finite num-
ber of connected components, this must contradict topological equivalence (cf. also

[37]).
Cz: Suppose EMFCQ, but Cz not fulfilled: some Ç-Q point â" be not (Ç-Cl\

strongly stable.

Lemma 3.2 (Perturbation Lemma [90]). Let a Ç-0 Kuhn-Thcker point

în of. P(l,g,u) be given with EMFCQ being fulfilled, but (9-0) strong sta-
bility violated. Then, for each open C2-neighbourhood 0' of (f,g,a) there are

(î ,9,0),( i ,? j , i , )  € 0'  and k'e lN such that:

(\) P(1,!, û) has k' ç-O Kuhn-Ttrcker points, all being (9-(?) strongly stable,
except one (namely, â).

(11 P(i,fr, ô; has at least k'+I ç-O Kuhn-Ttrcker points, all being (9-O) strongly
stable.

(iii) In both P(/,!, u) and P(i,g,";, nltf'Cq is satisfie<l ever1where, and differ-

ent Ç-O Kuhn-Tucker points have difierent critical (/- ot /-) values'

In f or OSZ necessity parts of [25]la0][S0], these perturbations a.re realized by
three steps. Step l yields local isolation of â" as a stationary point where (E)LICQ

is guaranteed but unstability preserved. In step 2, outside of the local situation,
(E)MFCQ and strong stability of all (other) stationary points are established. In slep

3, finally, the unstable Kuhn-Tïrcker point f' "splits": By this bi- (or tri-) furcation
we locally get two new stationary points; they have strong stabili,ty. No, in this

ÇEZ situation, we use the algebraical characterization from our preparations. For

L' (î , g, u^), L'(i, g,i') we have to take into account each change of the homeomorphy
type of a lower level set. when r traverses (--, oo). Based on the perturbations

from above, we apply the following items on p(f ,9,Û), and P(î,i,i,). We look

at a C2-problem P(J,9, ô) with a compact feasible set fulfilling EMFCQ' and put

r | ( i , O , t t ) : : { x e M l d l a <  i @ )  < ô }  f o r s o m e  a , ô € R ,  a < ô  [ 6 7 ] [ 8 9 ] [ 9 0 ] .
Item 1.l1 Lb"G ,9, ô) does not contain a stationa.ry point, then L(f , ,9' Û) and

LuG, O,û) are homeomorphic.
Item 2. Ler Lb"(Î,!, û) contain exactly one stationary point â/. Moreover, let

" 
< j@') < ô anà'î'-be'(9-(2) strongly stable. Then, L(i,fi,tt) and' Lu(i,g,ù)

are nothomeomorphic.
Herc, Item Zcanbe expressed with attaching rc-cells (rc: stationary index at

â'). Bv Manifold Theorem and Lemma 1.1 we conclude for all noncritical levels r:

fi(i,à,ît): Ml(5,-Î +")l is a compactltopological manifold (with boundary).
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So, their homology spaces (over R) are of different f"nite dtmensions [71]. Since
these spaces are topological invariants, the two considered lower level sets cannot
be homeomorphic [37].

Now, we are prepaxed to make a "discrete" statement on topological changes

for the lower level sets: The homeomorphy type of L'(l_,fr,ô; cha"rges (at least)
at k'* 1 times, whereas the homeomorphy type of L(f ,9,Û) changes (at least)
at lct - 1 times, but at most at k' times. This contradicts structural stability of
P(f,s,u) [90].

C{ Let C3 be violated, but EMFCQ a,nd strong stability be satisfied. By local
addition of arbitrarily small constant functions on /, we get a problem P(f', g,u)
satisfying C3. Let k* denote the number of critical points of. P(f*,9, u). Then the
homeomorphy type of. L(t*,g,u) cha.nges /c* times, whereas the homeomorphy
type of L(f ,g,t') changes less tha,n k* times. Hence, ïve are faced again with a
situation which is incompatible with structural stability of. P(t,g,u). I

Our optimality conditions, topological results and teclrniques together prepare
iterationprvceduresfortreating P(l,g,u). Fordetailedexplanationofthedesignsee

[60][85][38][89][90]. F\rther new approaches and numerical methods are presented
in [23] [5a] [65] [75] [76] [74 [7s] [7e].

4 Generalizations.

We generalize our inverse and perturbational results along the following two direc-
tions:

(t) U[sl is unboundel, (noncompactness),

(II) / is of the nond,ifferentiable ÇST mo,rimum-m'inimum-tUw, i.e., the composi-
tion f : fpo fp-ro... ofi of finitely ma^ny functions which are of max-type

f i@) : ma,\érj(c) wi(t,c) or of min-type f i@): miDççrilclui(r,c)-

On (I): 
'We 

overcome noncompactness by turning to the family of. excised,subsets of

MN The effect of intersection is generated by subtracting lower semi-continuous
functions from g [68][80][90], yielding cuts, e.g., by cylinders or balls, by R" itself
or by bizarre sets. Referring to alJ excised sets, we get the condition of excisional
topological stability which can actually be characterized by the overall validity of
EMFCQ in the unbounded set M[9]. The (Excisional) Stabillty Theorvm is given
in [e0].

On (II): In the case where / is of mar-type, nonsmoothness can be overcome
by representing P(/,9, u) æ minimization of r,11 over the epigmph E(f) ::

{(r,c"+r)l r e Mfgl, f@) < zn+r}. lFrom this problem in R'+r we obtain our
stationary points of. Pff,g,u) and the appropriate condition of strong stability

[80][81][90j. Now, (max-) structural stability of our nondifferentiable problem can
again be characterized by EMFCQ, strong stability and the technical separateness
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condition. This Characterization Theorem and the one for the case cornb'ination

with (I) are presentetl in [90]. A classical example of minimization of max-type

functions is given by chebycheu approgi,mation; we refer to this in section 5.

In case of.amin-type J, we turn to E(-/) a,nd use geometrical insights from the

max-t1pe case. Now, in our general case of frnite mar-rni,n composition, we unfold

nondifferentiability step by step, finally getting o1:lr rno,r-rn'in structural stabi,li,ty and

its characterizing conditions [87].
Remark: In (II), we treated the discrete-combinatorial nondifferentiability

structure underlying f by unfolding or lffing along continuous parameters. For

fruther examples of tracing back structures in the way ud'iscrefe -'+ cont'inu,o't1,s", ot

"cnnti,nuotn --+ cnntinuous', "continu,olts --+ d,iscrete" and "d'i'screte, ---+ d;iscrete", cÏ.

[52][eo].

5 AnticipatorySystems.

5.1 Prediction and Reverse Chebychev Approximation.

(a) Approximation of a Thermo-couple characteristic (chemical Engi-

neering).

The following motivation of reverse Chebychev approximation from chemical

engineering was formulated by Hoffmann and Reinhard [35] and also modelled in

tgg]. A thermo-æupte f is some spline of polynomials with different degrees between

3 and 13. It is defrned on an interval [o,â] (a < b). lFYom the engineer's point

of vi,ew, the practical use of a thermocouple characteristic is very sophisticated.

There are several reasons, which call for an approùmation of the characteristic

by a simpler firnction. For instance, the cha,racteristic cannot be presented in a

closed form, the polynomials' degree is too large, and often only a small region of

temperature is of practical interest. (Applications in chemical engineering ca,n be

found in [93].) Hence, the engineer may look for an approximation by means of only

one polynomial p(ù : 
F.-ru*t 

o (A e R) of some order no such that the domain

of approximation is as large as possible, certain interpolation properties are fulfilled

and lower and upper ertvr bounils are not violated. This optimization problem is

naturally called a reverse Chebychev approximation problem' Therein we put

n :  na  *2 ,  xo :  ( r t r , . .  r rno+t )T ,  rT  :  ( rT  rz r r )  and

no

V(x.,y) : :  D x*+tUk, 6(r" ,u): :  i [ r (ro,  y) -  l (y) (ro € R'- ' ,  y € R),
lc=O

referring to some a e la,b). Then we may model our problem in R' in the

following way, which can easily be seen to be of generalized semi-infinite character:
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Ps", 

{

Minimize - tn o'D Mçst,
where Mçs7 :: {, € R" | Ù("., yo) - În : 0 (i e l(r")),

6(x",y) -  6 '  (y) > 0 (y e la,r^ l) ,
-6 ( r " ,y )+6" (u)  >  0  (ye la ,x , l ) ,
rn- d )  0,  -rr+b > 0("" -  (rT,rn),  ro € R'-r ,  r"  eR)).

Namely, taking two different numbers c,d e R\ [o,b] we would define Y"(x):

l a , r n l ( u  €  { 1 , 2 } ) ,  Y s ( r ) :  { " , d } ,  r € R "  ( f  : L ,  u €  { 1 , 2 ' 3 } ) .  H o w e v e r ,

with the appearânce of the r-dependent set t(r") ç I -- {1,...,rn}, there is an

additional generalization of discrete cha,racter h Pç"t. Here, the most important
practical situation is given by l(r") : {i e Il a' e [o,t']]. (A motivation of

general ind.ex sets can be given in optimal control theory [89][90].) Originally' the
points (û0, i) can be interpreted as interpolation points. Moreover, the continuous

functions T, 61, 6t' need not always be continuously difierentiable. In this paper,

we stick to the case of | : .I (c-independence) and of Cl-firnctional data'

Of course, there are otber Chebychea bases, for instance trigonometric ones, to

which onemaysuitablyrefer insteadof {r ,- .x i  (x € [o 'b]) l  j  e {0 ' . . . ,n"}} .
Based on our mathematical modelling by a generalized semiin"finite optimization

problem, all our structure and stability considerations from the previotts sections can

be applied on our example from chemical engineering here.

(b) Optimization of Arrticipatory Systems.

In the previous part (a), we extended the region of approximation, consisting of

values of the variable g. This rrariable, with respect to which we want to extend

the horizon optimally, ca,n be of some, e.g., physical dimension, for instance, of

a variable or transformation of time, or just time t itself. This interpretation of

our foregoing chemical process, or of another biochemical, physical, technological,
economical or social process, can be given in terrrs of pred'i,ction: We a,re looking for a

ma,si,maltim*interrral along of which the process can be well described or controlled.

This wide (in time) understanding, or anticipation, of the considered process is

meant in an approximative sense where, additionally, interpolation requests can be

integrated. Here, by that interval maximization, we want to optimize the entire

a,nticipatory system. By those interpolating conditions, we ban put emphasis on

some very important data, or highly accurate measurements or operiments. Finally'

this understa,nding can be expressed as a solution of two kinds of problerrs: (ù

inuerse problems, dealing with the "inner" properties of a system or process ba.sed on
'buter", "selected" or "sample wise" experimental oI measurement data [3][10]' and

of the problems from recently rising (ii,) statistical leant'i,ng, dealing with estimation
of parameters based on those data [28].

We underline that all our structural and stability considerations from the previ-

ous sections about generalized semi-infinite optimization can by this problem rep

resentation be applied here. This is very important for validating our data and the

model based on these data or, in terms of statistical learning theory for testing or
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I
t goodness-of-fit measuring of the model quality. In fact, by stability (in time f) of

the process dynamics or, in the topological sense of generalized semi-infinite pro'
gramming problems representing the system to be optimized (cf. previous sections),
we express the robustness and well-posedness of a system.

In Characterization Theorem on structural stability, we stated that strong stabil-
ity of the stationary points to be one of the central features. This is a second-order
condition (in terms of derivatives) which can also be measured by "topological in-
variants" such as eigenvalues of Hessian matrices (on extended tangential spaces) or
by so-called Morse indi,ces (for a basic introduction cf. [37][a8]). In inverse prob--
lems and statistical learning, second-order conditions can be found with the help of
covariance matrices. There, significant information is given by confidence regions
(ellipsoids), i.e., by the lenghts of its principal axes. These lengths and the pro-
jections of the ellipsoids on coordinate axes measure "ellipticity", where also the
correlation coefficients of the unknown parameters are indices for [3].

In the following subsection, we continue with our interpretation y : t, i.e., of a
widely (in time) reliable prediction. Then, anticipation will be understood by right
now, at present time, studying the time-horizon of obserration, by pushing it into
future, which means: ma,rimi,zation. Before we maximize) we briefly introduce a
corresponding rn'inim'ization problem which is classical in generalized semi-infinite
optimization.

5.2 Prediction and Heating Processes: Time.Optimal Control.

(") Time.Minimal Control in Heating and Cooling Processes.

Let us think that a given ball B consists of a homogeneous material. We study
the following problem of heating or cooling B from an initial to a terminal temper-
ature [50][51][e0]:

Pt*

Min l(T,u) :: T such that there is a bounded function
0: l0,Rl x [0,oo) ---+ R, where 0l(0,Æ] x (0,oo)
is partially differentiable, u : 0(R,.)l[0, 7] is continuous, /r \
*à 0,1", i) : oAr,U,ù : ft&(r'e,1i,t11' 

(tJ
((r, t) e (0, .Rl x (0, oo)), 0(r,O) : go
(r e [0, R]),0(.R, T) :0p,7 > o,Io,(R,t) l  < o" (t e [0,7']).

Here, Ad represents the Laplacian of d and Ê denotes the radius of B. The
temperature 0(r,t) is a function of the radial variable r, where r measures the
distance from the center point 03 of B, and of the time t. Moreover, we start with
an initial temperature ds and finish with an intended target (end) telrperature
0n ) 0o (or 0B d 06, respectively). Because of this inequality, each time 7 which is
optimal for flm, can not be zero (1 t O). The temperature is essentially governed
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by the impiied heat equation, where a > 0 stands for the heat conductivity. This

can effectively be realized by the substitution r'(r, t) :: rî(r,t). we interpret

u7(.) :: u(.) : d(Ë,.)l[0,?] as a control uariable (7 > 0). Now, we are focussing
on partial di,fferenti,al equat'i,ons with the following unique solution of the (boundary-

ralue) problem:

0(r,t) :2r i r-t-)i*' exp(-o($)2t)0s| sin($r) + f
ft=1

t

/ "*p(-o(S)'(t 
- 

"))u(s)ds. I sin(Sr).
0

Furthermore, ou(r,t) denotes thermal stress tangential to the boundary ôB of

B (r: R); o* is a given upper bound of the stress.
Under suitable physical assumptions, at the boundary ou: 4 ha.s the form

n
(o,(Ë,t) :) of,o(E,t) : fr(Êt [ O(r,t)r2dr - u(t)).

Here, .E is the modulus of elasticity, p and a are the coefficients of cross-extension
and linear heat extension, respectively. For more detailed explanations and refer-
ences we refer to [50][51], where also an interpretation of Ptm as a problem from

twostage optimization is given, based on the achieved representation of temper-
ature,

On the lower stage, for each f > 0 we consider the one-parameter family
(Pl )r.W,aæ nonn-ninimal control problems on the thermal stress at the bound-

ary, given by the approrimation problem,

P+ { tutio," ll"t:,(R,')ll*,2, where ur eC([0,1],R) fulfil ls ur(T) : 0t.\

Item [50]: For each T > 0 the problem Pflm has precisely one solution rû4. . This

(unique) solution ùr of. Pi Q à 0) is rû7(t) ': \fffi 'nr\) +|r(t) (r e

[0,4), where (or,gà is the unique solution of some system of integral equations
(cf. [so][st][90] for details):

t t

ùr(t) - I  n(t- s)21(s) d,s : tpr(t) - J /c(t-s)!7(s)ds :60(t) (t  € [0,"])
0 0

The mapping u$(t, f) :-- ù7(t) is called ̂  core of a Kuhn-Tucker functio?z or, more
precisely: a global rninirnizer function. Inserting the optimal control variables (z :

)ûa into the given problem Ptm leads to the w!g! rlegt,given by the following
generali,zedsemi-i,nfinite (ÇStS optimi,zationproblemof class C0, with r::T and
y : : t :

æ
I (-r)&*t t t t t '
k:r

Min f (r) :: x such that
+on(R,y )+o*  >  o  (ye  Y( r ) ) ,
r > 0, where Y(r) :: [0,r] (re R).

Pssr(f , g,r)
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Here, g, u comprise the three or two continuous inequality constraints on r and
gr, respectively. The problem Ptm is an example fot a terrninal problem. For first
numerical treatments including convergence results see [ 6J[51][90j. Because of the
form of this generalized semi-infinite problem with its special implication of time,
i.e., I and 7, such that a differential equation is becoming reflected, the corre-
sponding stability condition is right between the stability conditions on differential
equations [Z][t0] and structural stability of generalized semi-infinite optimization
(Subsection 3.1). This special form of optimization problems and stability condi-
tions is important not only for technical applications but also flor bi,osystems. In
the follovring paxt (b) and in Subsection 5.3, we mention three of them, located
in control of global warming, of temperature control for premature infants and in
genetics, respectively.

(b) Control of Global 
'lVarming, 

Optimization of Anticipatory Sys-
teuls.

'When 
marcimizing the time-horizon, we usually do not refer to a terminal state

where the system should be controlled to, but to a set where the state trajectories
a,re requested to lie as long as possible. As we did in Section 5.1, a maximization
problem can directly be tra,nslated to a minimization problem. The problem of
global warming [61] can on the one hand be considered as a controllability problem
of keeping the temperature in atmosphere (or stratosphere) within certain bounds,
or to achieve emission reduction (assumed to contribute to global wa.rming). For
this reduction, Kyoto Protocolrequæts a collaboration between the countries, called
joint implementation [SO]; [f0] offers optimization and dynamical systems theory.
On the other ha,nd, itr cn.n be interpreted as the maximization problem of respecting
the temperature bounds in time as long as possible. Besides the basic characters
and targets of the considered problems, there a,re some further important differences
between the time-minimal control (part fo)) and the global warming problem' In
fact, the latte,r one refers to atmosphere as a thin and gaseous boundary layer of the
earth rather than to a solid (bail) such as the ea,rth itself. This surrounding layer
is not homogerleous. In particular, the temperature also depends on the degree of
latitude [61]. A more refined model needs to incorporate also topographical aspects,
the underlying distributions of the continents or oceans and, finally corresponding
ca.rbondioxid cycles. All these rea.sons require that our global problem of earth
wa,rming is formulated with the temperature O(r,r,t) , depending also on the 2- (or
$) dimensional locally interpreted variable r. Our second application of thermo-
regulation comes from medicine: It deals with keeping the heads of premature infarrts
in an appropriate, i.e., not too wa,rm surrounding temperature. Such a care is
very important for those babies [7]. Herewith, we have turned to applications from
computational biology and medicine. Our third practical field is located in genetics
and it consists in the modelling and prediction of DNA microarray patterns. Here,
in the sense of our Subsection 5.2 (ô], optimized anticipation mearls a maximized
time.horizon. In following Subsection 5.3, we introduce into this field of research.
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reaerse version of. Chebycheu approrimationin the sense of Subsection 5.1 (b). In
Subsection 5.2 (b), we made a very related approach by directly addræsing the time-
horizon T andmaximizing it. There, however, the controllability aspect of reaching
a terminal state is included. In computational biology, such a required end state
may be imposed as a medical thrmhold or intended health state of the patient. For
both of these approaches (ô) from Subsections 5.1-2 with their formulations by gen-
eralized semi-infinite optimization, all structural and stability results and reflections
from Sections 1-4 can be utilized for the prediction ofgen+expression patterns.

Another approach by optimization theory to computational biolory exists in the
investigation of protein structure. This research is very important for, e.g., the dis-
covery and design of drugs. One distinguishes between four kinds of structure: prl-
mary strwctzre, which denotes the amino acid sequence, secondary structure, which
refers to coûrmon substructures into which the a^rnino acid chain forms, ter"tiary
strwcture, related to the three dimensional structure of a single protein, and quar-
tem,ary stracturz for a complex of several proteins. All these can be characterized
differently in our topological terrrs of the previous sections. While in a protein
string the primary structure gives more pointwise information, the secondary struc-
tures connects pointwise to local information; tertiary structure incorporates glaàal
shape information in space, wherea.s quarternary structure allows disconnected con-
figurations grven by the appea,rance of different protein chains. For more information
and, in particular, secondary structure prediction, see [92].

In computational biology, DNA microa,rrays are used. We began to study them
in a la,rger class of chips, to which also microchips belong. With the structure of
their atom clusters in boundary layers and with finther topics discrete tornogmphyis
concerned [10][171. We look at these chips from the unifying perspectives of inaerse
problems [Z], of eryertmental d,esign [15][16] (cf. also [6]) and of stati,stiu'l leaming

[28] (cf. [zz]).

6 Conclusion.

This paper contains a first approach to interpret and optimize anticipatory sys-
tems as generalized semiinfinite optimization problems. We introduced into this
wide, well motivated field of mathematical programming problems, and we studied
their structure and stability. Finally, we represented problems from chemical engi
neering and of heating or cooling in the form of generalized semi-infinite problems.
These problems are reverse Chebychev or timeoptimal probleûrs; rve interpreted
both problem classes as optimization of anticipatory systems. The stability results
which we provided before, serve for a validation of these systems from the view-
point of mathematical modelling, a,nd for a testing of them from the viewpoint of
statistical learning theory.

The present contribution may be a first contribution and encouragement for a
new view and treatment for important prediction problems from various fields of
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Here, we ask for stabikty or instability of the system of differential equations depend-
ing on certain (control) parameters in the matrix M(E). We call them etpress'ion-
metaboli,c (em-) paramefers. Answering this question also means anticipati,on of the
future, and (statistical) Ieami.ng. Based on (in-) stability, which we detect by our al-
gorithm for the given parameter constellations (having done the time-discretization)

[1][21][19], we optimize the process and experimental design such that our mathe-
matical model is permanently under improvement (optimization). Here, we need an
intensive interdisciplinary exchange between mathematicians and biologists. This
all means a joint process of leami,ng in a wide sense.

That approximation problem in its simplest version is unconstrained. In princi-
ple it can be solved with well-knonvn mathematical methods. But there may occur
problems in a biological sense, like, e.g., having much more genes than time-points'
what leads us to an underdetermined system of equations. We face this problem

by introducing some biological meaningful constraints, so that we have art approx-
imation problem with inequality constrains. We assume, e.g., that between two

time-steps the decrease of the transuipt concentration is restricted by a constant
vector.
The matrix-valued function M may, for simplicity, be regarded to be constant.
Then, by an Euler discretization, our time-continuous dynamics turns into a time-
discrete one, and we can interpret the entries of I[, i.e., our em-parametêrs Tl,ii,

as the coefficients or rates of how gene z influences gene J. These interrelations
become represrented by a gene regulatary network. We would like to obtain a net-

work with a biologically comparable and reasonable interpretation. Therefore, as
a further constrain, it is useful to limit the maximum outdegree and indegree of a
node. Since bounding of the maximal outdegree leads to a loss of a valuable de'
composition property of our minimization, we bind the indegreas. This is done by

meâns of binary variables. They make our modelling and inverse problem become
a mi.red,'integer prograrnm,ing problem [20] which can computationally be treated by
a branch and cut algori,thm. If we look at the bounds in a time'depending way, the
programming problem becomes serni,-i,nfini,te. In the following, we present a further

approach to semi-infrniteness.
In fact, sometimes there is a^n infinite set of data given which may be countable

or uncountable. For example, if we expect periodic behaviour of a process, we could
repeat a finite data set or the hypothesis of a continuous nature law periodically.

These sets or laws may, however, depend on randomness or they may be numerically
or by communication systems hard to evaluate. Therefore, we try to approximate
them in a very convenient vray so that noise becomes ruled out. An optimal appfox-
imation would again mean d'iscrete or Chebgcheu approrirnation. In the case of an

infinite number of data represented, e.g., by a continuous variable, this approxima-

tion problem can be represented by a semi-infinite optimization problem [32][37]. If'
however, our aim is to maximize the time-domain where the approximation under
some elror bounds, possibly, under interpolation conditions, takes place, we do the
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5.3 Computational Biolory and Medicine:
Prediction of Gene-Expression Patterns.

In this biological and medical context, we point out a few relations between gener-
alized semi-infinite optimization and forecasting into iilr open time-horizon. Here,
we refer to optimized anticipatory systems in the sense indicated in the parts (ô) of
Subsections 5.1 and 5.2, and we give some closer explanations.

DNA-chip or microa,rray experiments offer the possibility to observe several thou-
sands of expressed genes within a cell simultaneously. This can even be the whole
genome of an organism. It is therefore a very convenient technique, e.g., to exarnine
the differences in concentrations of gene products, i.e., messenger RNA, between
treated and non-treated cells or between different states during development of a
cell, which can be detected by several measurements at different tim+points. This
is especially interesting if we ask for the reaction of a cell when treated with a cer-
tain medicine. In the first step of such a chipexperiment the concerning genes a,re
labelled with fluorescent markers. Then they are verified via hybridization with spe
cific probes called oligonucleotides, which a^re localized on the chip in a matrix-like
scheme. A laser scanner reads out the light signal. In order to compare between
difierent genomes one cân label them with different markers, so that they can be
detected via various colours. It is even possible to get a quantitative result if you
distinguish between different nuances of the intensity of the genes' signals, which can
be encoded with different integers. Our aim is to model the development of a cell's
expression states over time and to make a prediction. Therefore, we canonically
represent the matrices of integers which we get from time.series data by column
(expression-) vectors E(t). We represent this process with a system of ordinary
differential equations E : M(E)E and find the matrix-valued function M(E) by
meâns of Gaussianor least-squ,arvs approximationbased on the finitely many DNA-
chip measurements [18][19]. This approximation me€lns nonlinear opti.mization; æ
there are only finitely many data given, we also call it discrete approrimationor data

fitting. To be more precise, we ask for the least sum of squares of differences (errors)
between difference-like quotients, based on the measurements, and the correspond-
ing values of M(E)E. We use a parametrical ansatz lor M(E), whose selection
bases on the biologists' experiences and expectations in view of the future, e.g., poly-
nomial, piecewise polynomial (spline), exponential or periodic (e.g., trigonometric)
developments. Especially, Hill-curves are often used. The hypothesis for using that
kind of function to model the functional dependence of Ei on Ei is simply that
the concentration of the product of the regulating gene must first reach a certain
threshold value before it has a meaningful effect on the gene it regulates. By this
ansatz and the least-squares approximation we approach the open time-horizon-

We may first refer to the deterministic optimization and control model. (This
can later be e'xlended by switching into a stochastic framework, where we take into
account normally distributed and uncorrelated DNA-chip data errors and where we
may extract the model parameters according to maximum-likelihood estimation.)
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science, technology and economy by means of modern optimization theory' As a re'

cent a,nd more and more important application field, we mention modern life sciences

which encompa.ss research and education about biosystems and human sciences from

micro and macro perspectives under criteria like learning and improvement of the

quality of live.
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