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Abstract

We present a new approach to get bounds on the service cycle time in acyclic fork-
join queueing networks. The approach is based on (max, *)-algebra representation
of network dynamics and involves analysis of iimiting behaviour of a product of
random matrices. As a result, a ne\ry' upper bound on the cycle time is established
which takes into consideration the network topology.
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Introduction

Fork-join networks, as introduced in (Baccelli, 1989; Baccelli, 1992), present a class

of queueing systems which allow customers (jobs, tasks) to be split into several
parts, and to be merged into one when they circulate through the system. The
fork-join formalism proves to be useful in the description of dynamical processes in a
variety of actual complex systems, including production processes in manufacturing,
transmission of messages in communication networks, and parallel clata processing in
multi-processor computer systems. As an illustration of the fork and join operations,
one can consider respectively splitting a message into packets in a communication
network, each intended for transmitting via separate ways, and merging packets at
a destination node of the network to restore the message (Baccelli, 1989).

One of the problems of interest in the analysis of stochastic queueing networks is
to evaluate the service cycle time of a network. Both the cycle time and its inverse
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which can be regarded as a throughput present performance measures commonly
used to describe efficiency of the network operation.

A natural way to represent the dynamics of fork-join queueing networks relies on
the implementation of recursive state equations of the Lindley type (Baccelli, 1989).
Since the recursive equations associated with the fork-join networks can be ex-
pressed only in terms of the operations of maximum and addition, there is a pos-
sibility to represent the dynamics of the networks in terms of the (max, *)-algebra
which is actually an algebraic system just supplied with the same two operations
(Cuninghame-Green, 1979; Baccell i, 1992; Maslov, 1994).

In this paper, a new approach to get bounds on the service cycle time for acyclic fork-
join queueing networks (AFJQN's) is developed. We exploit the (max, *)-algebra
representation of network dynamics derived in (Krivulin, 1996), which allows one to
describe the evolution of a netrvork by a stochastic vector difference equation. We
consider a (max, *)-algebra product of random matrices involvecl in the equation,
and give algebraic bounds on the product. Furthermore, the limiting behaviour of
the product is exa,mined, and appropriate bouncls on its associated limit matrix are
obtained. Finally, we apply the above results to get bounds on the service cycle
time, including a new upper bound which takes into account the network topology.

The rest of the paper is organized as follows. Section 2 serves as an introduction
to the problem under consideration, including a brief debcripticn of AFJQN's and
their related performance measures. Section 3 starts with an overview of basic facts
about (max, *)-algebra. Furthermore, we investigate alternating (max, *)-algebra
products of matrices of particular types, and give some useful ineclualities.

In Section 4, we present a dynamic equation which represents the network dynamics,
and give an example. We also shorv that the service cycle time of a network is
determined by the limiting behaviour of a product of raudom matrices. We examine
properties of the matrix product and offer algebraic bounds in Sections 5 and 6.

In Section 7, the above results are applied to establish existence conditions for a
limiting matrix and obtain appropriate bounds on the matrix. Finally, in Section 8,
we present bounds on the service c1'cle time, and give related examples.

2 Acyclic Fork-Join Queueing Networks

Consider a network with n single-server nodes and customers of a single class. The
topology of the network is described by an oriented acyclic graph Ç : (N, A), where
t h e s e t  N : { 1 , . . . , n }  r e p r e s e n t s t h e n o d e s , a n d  A : { ( t , j ) }  C N  x N  d o e s  t h e
arcs determining the transition routes of customers.

For every node i € N, we denote the sets of its immediate predecessors and succes-
sors respectively as P(i) : { j l( j , i) € A} and S(i) : { j l( i , j) € Ai. In specific
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cases, theremaybeoneof theconditions P(i) :0 and s(i) :0 encountered. Each

node i with P(i) : 0 is assumed to represent an infinite external arrival stream of

customersl provided that S(i) - 0, it is considered as an output node intended to

release customers from the network.

Each node i e N includes a server and its buffer with infinite capacity, which

together present a single-server queue operating under the first-come, first-served

discipline. At the initial time, the servers are assumed to be free of customers; the

buffers in all nodes i with P(i) + 0 are empty, whereas the buffer at each node

with no predecessors is assumed to contain an infinite number of customers.

Furthermore, we suppose that, in addition to the usual service procedure, special

join and fork operations are performed in its nodes, respectively before and after

service. The join operation is actually thought to cause each customer which comes

into node i, not to enter the buffer at the server but to wait until at least one

customer from every node j € P(t) arrives. As soon as these customers arrive,

they, taken one from each preceding node, are united into one customer which then

enters the buffer to become a nerv member of the queue.

The fork operation at node i is initiated every time the service of a customer is

completed; it consists in giving rise to several new customers instead of the original

one. As many new customers appear in node i as there are succeeding nodes

included in the set S(i). These customers simultaneously depart the node, each

being passed to separate node j e S(i). We assume that the execution of fork-join

operations when appropriate customers are available, as rvell as the transition of

customers within and between nodes require no time.

For the queue at node i, we denote the,kth arrival and cleparture epochs respectivell'

as u;(È) and r;(À). Furthermore, the service time of the &th customel at server

i is indicated by 46. We assume that r;r are given nonnegative random variabies
(r.v's). With the condition that the network starts operating at t ime zero, it is

c o n v e n i e n t t o s e t  r r ( 0 ) : 0 , a n d  r ; ( À )  : - o o  f o r a l l  k < 0 ,  i : 1 , . . . , D .

It is easy to set up equations which relates e;(fr) and u;(,4). Specifically. the dy-

namics of the queue at any node i is described as

r ; (k)  :  max(4s *  u; (k) ,  r ib  + t i (k  -  r ) ) .

As it immediately follows from the above description of the fork-join operations, the
Àth arrival epoch into the queue at node i is represented as

( m_axr;(fr).  i f  P(i) + 0,
u ; ( l c \ :  {  r € P ( t )  "

[  -oo, i f  P( i)  :  0.
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We consider the evolution of the network as sequences of service cycles performed

in the network nodes. In each node, the lst cycle starts at the initial time, and it is

terminated as soon as the server in the node completes its lst service, the 2nd cycle

is terminated as soon as the selver completes its 2nd service, and so on. Clearly,

the completion time of the ,tth cycle in node i can be represented as r;(Ë).

In many applications, one is interested in evaluating the limits

7i = Àl$ I*o&), 7=Èl !3 lmaxcr(k)

for all i , = I,...1n) provided that they exist. The limit 1 is normally referred to

as the service cycle time of the network. The system throughput presents another

performance measure of interest' which is calculated as the inverse of 7'

I t hasbeenshown in (K r i vu l i n ,  1998 ) tha t i f f o reach  i : L , . . . , n , t hese rv i ce t imes

rir,ri2,. . ., present independent and identically distributed (i.i.d.) r.v.'s with finite

mean and variance, then it holds

mp,xE[41] S r S E[max ra1].

Note that both the lower and upper bound do not depend on the topology of the

underlying network. Below a new upper bound will be given based on the (max, f )-
algebra approach. The bound allorvs one to take into account the network topology.

3 The (Max,*)-Algebra

The (max, *)-algebra presents an idempotent commutative semiring (idempotent

semifield) which is defined as the triple (1R.",0,8) with R, : IR' u {e}, 6 : -oo'

and binary operations O and I defined as

x  @ A  : m a x ( c , g ) ,  æ 8 U  =  0  * y ,

for all r,y € IR..

As it is easy to see, the operations O and I retain most of the properties of the

ordinary addition and multiplication, including associativity, commutativity, and

distributivity of I over @. This allows algebraic manipulations to be performed

under the usual conventions regarding brackets and precedence of I over S. Note

that the operation S is idempotent. In other words, for any r € IR', one has

x $ x = x ,

There are the null and identity elements in the algebra, namely e and 0, to satisfy

the condi t ions cO€ = €O î  :  î tand r80 = 08 æ = ï t for  any c € lR" .  The nul l

element e and the operation I are related by the usual absorption rule involving

û & e : € 8 a : e .
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3.1 Matrix Algebra

The (max, *)-algebra of matrices is readily introduced in the regular way. specifi-

cally, for any (n x n)-matrices A : (o;i) and B : (bu),we have

{A@ B}ij = aii 0 b;i, and {A A B};i = $ ou,, A bx1.
/c=1

As in the conventional algebra, both the matrix operations 0 and S are associative,

whereas only the operation @ is commutative. The distributivity property of I

over 0 is also valid in the matrix algebra.

The matrices

present the null and identity elements, respectively.

The matrix operations O and I possess monotonicity properties; that is, the

component-wise matrix inequalities A < C and B S D result in

A0BSCoD,  A&B<CAD

for any matrices of an appropriate size.

Let A I € be a square matrix. In the same way as in the conventional algebra, one

c a n d e f i n e  A o : E , a n d ,  A ^ : A 8  A * - 7  = A * - t & A  f o r a n y i n t e g e r  r n l I .

Note that idempotency of S leads, in particular, to the identity

(AOB) -=OAto ,B - - i .
i-o

for any square matrices A and B of the same size.

Consider an (n x n)-matrix A. It can be treated as an adjacency matrix of an

oriented graph with n nodes, provided each entry dij # e implies the existence of

the arc (i, j) in the graph, while c;; : e does the lack of the arc.

It is easy to verify that for any integer m ) l, the matrix A^ has its the entry

oli' + e if and only if there exists a path from node i to node j in the graph,

which consists of rn arcs. Furthermore, if the graph associated with the matrix A

is acyclic, we have A^ : t for all rn > p, where p is the length of the longest path

in the graph. Otherwise, provided that the graph is not acyclic, one can construct

a path of any length, and then it holds that A- * € lor all rn 2 0.

':(j,:)":(::)

(3)
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Let A: (a;) be an arbitrary matrix. The matrix G obtained from A by replacing

each entry a;i ) e by 0 is referred to as the support matrix associated rvith A.

For any matrix A, we denote its maximal element as

l l r ' l l  :  4 " t , .r r ' - r r  
j

Suppose that G is the support matrix of A. Then rrl'e can write the obvious in-

equality
A < l lA l lo  G.  (4)

Finally, we introduce the ordinary matrix addition * as an external operation.

We consider both the operations E and @ as taking precedence over f in any

algebraic expressions below. Clearly, the operation * is distributive over O.

3.2 Distributivity Properties

Le t  A i i  be  (n  x  n ) -ma t r i ces  f o r  a l l  i :  1 , . . . , k  and  j  :  I , . . . 1n 'ù .  D i s t r i bu t i v i t y

of the operation E over O immediately gives the equality

(5 )

which leads, in particular, to the inequality

k m m Ë

I t m

8O on ,  :  O  Ar j ,  E  . . .&  A* io ,
i -L j -7 13h, . . . , jx3m

(6 )

(7 )
k

t
and then the inequality

k m m À

tOAn;2 OLAt. ( 8 )
i=7  j - l  J=1  ?= l

Consider the matrix operations I and *. Although there is no way to formulate any

general distributivity property associated with these operations, in particular cases

involving support and diagonal matrices, some useful inequalities can be established.
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Specifically, it is not difficult to verify that for any matrices A and B, and support
matrices Gr and Gz, it holds

& & ( A + B ) o  G r l G t  a A a  G z * G r &  B 8 G z .  ( 9 )

Consider a (max,*)-algebra diagonal matrix D : diag(dr,...,dn) with all off-
diagonal elements equal to e. As it is easy to see both matrix operations I and

* being applied to diagonal matrices produce the same result. In other words, we
have D1 I Dz: Dr * Dz.

Let Dr and D2 be diagonal matrices. Then for any matrices A and B, it holds

ù&(A+B)aD2
:  D r&  A@ Dz*  B :  D t  aA+  B  g  Dz -  A+  D r&  B  &  Dz . (  10)

3.3 Products of Diagonal and Support Matrices

In this section, we consider E-products of alternating diagonal and support matrices,

which take the form

Do a  (Go Dr )  a . . '  s  (G  6  D- )  :  Do  E  I  t c  I  D ; ) , ( 1 1 )
J = l

where De, Dt,....D^ are diagonal matrices, G is a support matrix. Some useful
inequalities will be given which offer bounds on the product in terms of both the
ordinary matrix addition * and @-multiplication.

First suppose that the diagonal matrices in eq. 11 can have both positive and neg-
ative elements on the main cliaeonal.

Lemma I
ces. Then

Let G
it holds

be a support matrix, and, Di, j = 0,Ir. . . ,ff i , be diagonal ntatri-

, . uÔ  GDDj )  <Ë  G jcD ;eG^ - j .
j=r j=0

(  1 2 )

The above inequality can easily be proved with eq. 9 by using induction on m. Note
that for n'L : I, rve have from the obvious identity DoSG = DoSG +G, and eq. 10

Do 8 GSDr = (Do g G + G) O Dr = Dog G+ G I  Dr .
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Lemma 2 Let G be a supportmatrir, n\ol t" d,iagonal matrices for all i : 1,...,k

a n d ,  j  -  0 ,  1 , . . . , 1 r r ; ,  a t u d  r n : m r + " ' +  m 6 .  T h e n i t h o l d s

k m ; h M ;

9 
r[" s 8(c B lr{;r, = 

l,à, 
G' I D:!M,-, I c--i, (13)

w h e r e  M s = 0 ,  a n d ,  M ; - m t + " ' + m ;  f o r a l l  i : 1 , . ' . , k '

The proof of the lemma can be given using eqs. 12 and 9.

Let us now suppose that the diagonal matrices in the products under consideration

have only nonnegative elements on the main diagonal.

Lemma 3 Let G be a support matria, p\r), p(2) be d,iagonal matrices with non-

negat iue e lements on the main d, iagonal  for  a l l  j  =  0, I , . . . , f f i .  Then for  o,na s,

1 ( s ( m , i t h o l d , s

r[') o ô,"s rj')) + Df)e $tc s D:4)
j=l 

" 

t;'

j--7 j=s+r

Proof: Let us first introduce the matrices

Di = D\1) I D\2) - D:" + D\2)

f o r a l l j : 0 ,  1 , . . . , f f i .

By applying induction on rn with eqs. 10,9, it is easy to verify the inequality

m n n

,[') o @fc s D,(')) + Df) s 8(cs Dj')) ) Do I @tc o Di).
j=r  j= l  i= l

Since the diagonal elements of the matric"t Djr) and, D\2) are nonnegative, it holcls

that D; > Dlt) anô. Di > D:" for all j :0,1,..',ffi. Therefore, for any s,
1 ( s ( r n , w e g e t

n s n

Do o 8(c oDi) à t[') o Slcs rj')) 6 I G e D:'z\).
j=l j=l j=s{1

l 0 l



4 Algebraic Representation of Network Dynamics

In this section, we briefly show how the dynamics of AFJQN's can be described based

on the (max, {)-algebra approach. Further details can be found in (Krivulin, 1996;

Krivulin, 1998).

Let us consider eq. I and eq. 2. Clearly, with the (max, *)-algebra operations, they

can be rewritten in their equivalent forms as

, / h )  =  r i k  8u i ( k )O  z ; *  I  r ; ( k  -  I ) ,

, , \  f  O"; t r l '  i f  P( i )+0,
u; \ tc)  :  

1  ;ep( ; )
I  e ,  i f  P ( i )  : 0 .

In order to get eqs. 15 and 16 in a matrix-vector form let us introduce

(15)

(16)

u(k,:( 
;:i_] )

As it easy to see, eq. 15 leads us to the equation

æ(k) : Tr a u1te1 o'4 s æ(k - r).

Furthermore, eq. 16 can be rewritten in a vector form as

u(À)  :  Gr  & æ(k) ,  (18)

where G? denotes the transpose of the support matrix G with elements

-  f  o ,  i r i e  P( j ) ,
g , ; ; = t e . o t h e r w i s e .

Note that G can be considered as an adjacency matrix of the network graph.

By combining eqs. 17 and 18, we arrive at the equation

a(k)  :  T*  A Gr I  c(Ë)  @n I  c( , t  -  1) .

By iterating the above implicit equatiou, with the condition that Gq : t for all

I ) p, we immediately obtain the explicit dynamic equation

æ( /c )  :A (Ë )eæ(k - I ) ,

(  17)

toz
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":(lllli )

/ rtp 5 J L- e 
\I

l € rz r , i t € l- l  r r l Q r s r  €  r 3 1 ,  €  . :  l .

| "r*@t 
o rz*&tu, € r4k e I

\  r r rS(rarOrar)Ers l  126@rapSrsp retOrsr  rqkprs*  rsk /

Consider the service cycle time 1 of the network. It is clear that now we can

rePresent it as 

7 : ,lim lil"t*1il,
r+æ ^;

A(fr) : Otn & Grli 8Tr,: @ A a (c' en)j. (20)
j=0 i=0

An example of AFJQN having n = 5 nodes together with its associated support

matrix G arc shown in Fig. 1.

Taking into account that for the graph Ç, the length of its longest path P : 2, we

arrive at eq. 19 with the state transition matrix calculated from eq. 20 as

A(k) -- (E @ TrE G? O (n s Cr)'z) s rn

where llc(fr)ll denotes the maximalelement of æ(À').

Let us represent the vector c(,t) in the form

æ ( k )  = A ( f t )  s  o ( , b -  1 )  =  " '  :  A ( e )  s  " ' A ( 1 )  I  æ ( 0 ) '

and denote 
k p

AT:Ar( r )o . . .a  Ar&) :8OTe(GeT) i .  (21)
i= l  j=0

Clearly, in order to get information about the growth rate of c(À), one can examine

the limiting behaviour of the matrix Afl. Below we investigate the limit A" =

limr-- ATlk, and give related existence conditions'
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5 SubadditivityProperty

Let us consider the product of matrices Ar defined by 
"q. 

21, and introduce the
family of matrices {A\oll,/c : 0, 1,. . .i I < lc} with

AT* :  Ar ( l  +  1 )  I  " 'e  Ar (k ) .
Note that Aî: ATo.

The next lemma states that the family {AToll < ,b} possesses subadditivity property.

Lemma 4 For all I <r < k, it holds

eTr<eT,+ATo.

Proof: With eqs. 5 and 7, we can write

r p k p

ef, + aln : A Orts (G,eTùi + A O Tts (G eTt)i
i - l {1 j=0 i=r+r j -o

@zs(csT,)^ '+
k

@ z a(GeTi)* '

:  O (gre(cET),+ôns(csu)- ' )  .
o<mr+ l ,  .  mr<p \ i= l+1  i= r { l  /
0<mr+1 , . . . ,mÀ <p

By imposing more restrictive conditions on the indices rrTt+r,rrtrt+2,...,rnk in the
last term, we get

/ '  
I c  

\e,[+elo>@ O ( 8zs(cGT)^,  + @ z@(GGn^.1.
n=O mr+r+ "+m'=- \ i=t+f  i=r* l  /^*::,::,\;^

Consider the sum in parenthesis. Lemma 3 allows us to take any integer s such
that rn - fii, I s I rnrp1, so as to write

r l c

@ro(coT)*,+ Sza(G8T),

Olm41, . . . ,m11p i= l l l

r= l*r i= r {1

r - l

i=117 

k

8 fr+r s (G s T,s\^'+'-" s I Tt e (G eT;)^'
i=r !2

k

:  @ r,I (G o l)",,
i=l*1

I M



where
rn i )  i Î  I  3 i  <  r ,
s - m l m , ,  i f  i : r ,
T T 7 7 1 1  - s ,  i f  i : r * 1 ,

T n i ,  i f  r * 1  < i < k

with s111 + " '  +  th:  n 'ù.

Finally, with the condition that Gq : t for all q > p' we have

p k

eI + .qT*
O sr+r * . . . *ct  =m i= l+1

k k p

= @ @zs(cat)" ,  :  AOrt@(GsT)r
0(s111, . . . ,41 jp  i= l * l  i= l * l  j=0

: ATo.

6 Algebraic Bounds on A6

The next lemma offers algebraic bounds on the matrix Afl.

Lemma 5 It holds that

LplkJ k , ,  k , ,  p k

g g rt e (G err sAf < ll $nll 
* 9"' 

* 
L.p*o"" 

u r; e G', çzz7

where lr) is the greatest i,nteger equal to or less than r.

Proof: With eq. 6, and considering that Gq : t if I : kr ) P, we immediately

obtain the lower bound

p k WIKJ È

Af > OSze Gvr;) ' :  O @zu (GeT)' .

Note that as /c becomes greater than p, the lower bound degenerates into

À À
AT > 8 T:DT,.

" ' - 1  i - l

In order to derive the upper bound, we first apply eq. 5 to represent the matrix Afl
in the form

k p f r

Al=8@ zs(Gs r i ) i  :  O 8z* (GaTi)^ ' .
i= l  j=0 O!m1' . . . ,my1p i= l

t r :  

{
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Application of eq. 13 to the inner @-product, with Mo : 0, Mi = mr I "' I mt
fo r  a l l  i  -  1 , . . . ,& ,  and rn  =  rmr+. . .  +  rù lc ,  g ives

h k M ;

8r * (G ar;)^,
i=l j=M;-t

k M ; k

= f  t  c i  gTiSG^- i  * lcu, ,87;eG^-M;- ' .
i=l j=lt i[;-111

With eq. 8, we further obtain

AT

,9r

O1n1,...,ng1p

+@

O
O3m1,...,ma!p

O

k

DG*,u eT;g G*-Mi-t : Sr * ,Sz.

lcr'- O l8 G*-M;-,.

K M ;

t  t  c isTisG*l
i=r j=M;-t*r

Q!m1'...,m11.P i=l

Let us now def ine D* =TiO.. .  O/1. Since Dx > Ti  for each i  :  L, . . . , /c,  we get
with eo. 4

K M ;

t  I  GrsD*&G*- i
t=l i=Mi-l+1

mt+..;+n,.

t  Gr@Dx&G - i
0Sm1f . . . fms_(p j=L

p  r  / k  \  f r  .  p: 9I""* (9 r)ac'-"
Let us represent Sz in its equivalent form as

,Sr=O
m=OO1m1, . . . ,m j !m i= l

By applying eq. 7 and then eq. 8, we finally have

p k n

sz :  OI(Ec, &r;&G*-i
m=O i=l j=0

k p n k

i=l m=O j=O i-l 0(r{sSp
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7 Limiting Behaviour of Ap

Now we give simple existence conditions for limt-- Aplk to exist, and present

bounds on the limiting matrix A. We start with the following theorem which can

be proved based on the subadditive Ergodic Theorem (Kingman, 1973) as well as

on the result of Lemma 4.

Theorem 6 I f  for  each i  -  1 , . .  . ,n ,  the seru ice t imes r ;1, r i2 , ' . . ,  present  i . i .d .

r.u.'s with Eltnt] < æ, then there erists a fiæd matris A such that

-1. l imr-* ATlk: Ar with probabil ity 1,

,9. limp** WlATlk: Ar.

Theorem 7 If in addition to the condition of Theorem 6, D[z;1] < æ for eaclt

i  :  I , . . . , n ,  t h e n  i t  h o l d ' s

r 1
Et7,l < a' < nl e G" 8T;O G'. l .  (23)

l \ | /L o<, i "<p I

Proof: First note that Theorem 6 allorvs us to conclude that the limiting matrix

A exists with probability one. Moreover, we can write

A": t im ElATl lk.
' t+æ

Clearly, eq. 23 can be obtained from eq. 22 after taking e-xpectation and dividing by

,b. To prove the right inequality, one has to shorv that

1  , ,  Æ  , ,

lnll A Tll - -+ o as Â' -+ co.
k  i l v ' t l

r = 1

The last assertion follows from the bounds for the mean value of maximum of i.i.d.

r.v. 's and related asymptotic results established in (Gumbel, 1954; Hartly, 1954). In

fact, these results allow us to write the relation

k

'll I rll= otril

as ,b tends to oo (see also (Krivulin, 1998)).
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8 Evaluation of Bounds on Service Cycle Time

In this section we show how the above bounds on the limiting matrix A can be
applied to calculating bounds on the service cycle time 7. The next result is a
consequence of Theorem 7.

Lemma 8 Under the conditions of Theorem 7, for any f,nite f,red aector æ(0), it
ho ld ' s  

r |  -  t r
l lnt?llll < r s llnl O G" sr, * 

"" ll l 
e4)

l l  L o < ; ' " < p  J r l

As it is easy to see, eq. 23 can also be exploited to derive bounds on the service
cycle times of particular nodes in a network. Let us introduce the matrix

a(È)  =  O (c "a lhBG") t ,
0( r ls (p

and denote its (i, j)-entry by ô;;(È). It is not difficult to verify that the service cycle
time of node i, i = 1,.. . , n, satisfies the double inequality

IE[' i ,] < t,= 
9E[ôrj(1)].

Consider the network depicted in Fig. 1. To get bounds on 7, let us first calculate
the matrix

B(1)  :  (T re  C  s?1  o  T isC oc2 I  T re  C  8u  s  G @T;EGz\ r .

Furthermore, application of eq. 24 gives

ts[r1] 0.. '  O E[251] < 7 S E(rrr O rer gl ar gl rsr) OE(rzr 0 er e r.rr).

Nowsuppose tha t fo ra l l  i : 1 , . . . , 5 ,and  à :  L ,2 , . . . , t he r . v . ' s  r i k  a re independen t
and they have exponential probability distribution of mean 1. Then we have

/ 1 . 0000  €  e  €  €  \
f r 1 .0000€e r l

E [B ( l ) ]  : 11 .5000  e  1 .0000  €  €  |
I  1.5000 1.5000 e 1.0000 e I
\  z.osæ 1.8333 1.b000 1.b000 1.0000 /

Evaluation of bounds on the cycle time of the network leads us to the inequality

1 .0000 ( r (2 .0833 .
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Finally, one can easily obtain bounds on the cycle times of the network nodes 71,
i  =  1 . . . . . 5 :

'h  = '12 :  1 '0000 '
1.0000 1ls, ' t+ < 1.5000,

1 . 0 0 0 0 ( ? u < 2 . 0 8 3 3 .
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