Comments on Attractor Computation

Hava T. Siegelmann and Asa Ben-Hur
iehava@iehava.technion.ac.il
Faculty of Industrial Engineering and Management,
Technion, Haifa 32000, Israel.

| Shmuel Fishman
fishman@physics.technion.ac.il
Department of Physics, Technion, Haifa 32000, Israel.

Abstract

Dissipative flows model a large variety of physical systems. In this paper the evo-
lution of such systems is interpreted as a process of computation; the attractor
of the dynamics represents the output. A framework for an algorithmic analysis
of dissipative flows is presented, enabling the comparison of the performance of
discrete and continuous time analog computation models. A simple algorithm
for finding the maximum of n numbers is analyzed, and shown to be highly effi-
cient. The notion of tractable (polynomial) computation in the Turing model is
conjectured to correspond to computation with tractable (analytically solvable)
dynamical systems having polynomial complexity.

Keywords: Analog Computation, Dynamical Systems, Complexity Theory.

1 Introduction

The computation of a digital computer, and its mathematical abstraction, the
Turing machine is described by a map on a discrete configuration space. In recent
years scientists have developed new approaches to computation, some of them
based on continuous time analog systems. The most promising are neuromorphic
systems (Mead, 1989), models of human memory (Hopfield and Tank, 1985),
and experimentally realizable quantum computers (Williams, 1998). Although
continuous time systems are widespread in experimental realizations, no theory
exists for their algorithmic analysis. The standard theory of computation and

International Journal of Computing Anticipatory Systems, Volume 6, 2000
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-9600179-8-6

computational complexity ! deals with computation in discrete time and in a
discrete configuration space, and is inadequate for the description of such systems.
This paper describes an attempt to fill this gap. Our model of a computer is based
on dissipative dynamical systems (DDS), characterized by flow to attractors,
which are a natural choice for the output of a computation. This makes our
theory realizable by small-scale classical physical systems since there dissipation
is usually not negligible (Ott, 1993). We define a measure of computational
complexity which reflects the convergence time of a physical implementation of
the continuous flow, enabling a comparison of the efficiency of continuous time
algorithms with discrete ones. On the conceptual level, the framework introduced
| here strengthens the connection between the theory of computational complexity
| and the field of dynamical systems.

Turing universality is a fundamental issue, see (Moore, 1990) and a recent
| book (Siegelmann, 1999). A system of ODEs which simulates a Turing machine
| was constructed in (Branicky, 1994). Such constructions retain the discrete na-

ture of the simulated map, in that they follow its computation step by step by a
‘ continuous equation. In the present paper on the other hand, we consider con-
‘ tinuous systems as is, and interpret their dynamics as a process of computation.

The view of the process of computation as a flow to an attractor has been
| taken by a number of researchers. The Hopfield neural network is a dynamical
‘ system which evolves to attractors which are interpreted as memories; the network

is also used to solve optimization problems (Hopfield and Tank, 1985). Brockett
| introduced a set of ODEs that perform various tasks such as sorting and solving

linear programming problems (Brockett, 1991). Numerous other applications can
| be found in (Helmke and Moore, 1994). An analytically solvable ODE for the
| linear programming problem was proposed by Faybusovich (Faybusovich, 1991).

Our theory is, to some extent, a continuation of their work, in that it provides a
| framework for the complexity analysis of continuous time algorithms.

| 2 The Model

| We base our model on exponentially convergent autonomous dissipative ODEs

| dx
dt
where x € R",F is an n-dimensional vector field. For a given problem, F takes
the same mathematical form, and only the length of the various objects in it
(vectors, matrices etc.) depends on the size of the instance, corresponding to
“uniformity” in computer science (Papadimitriou, 1995). In this paper we dis-
cuss only dissipative systems with point attractors (equilibrium points). In fact,

=F(x), . (1)

1The term computational complezity in computer science denotes the scaling of the resources
needed to solve a problem with its size (Papadimitriou, 1995).

162

our considerations will be valid for systems with exponentially stable equilibrium
which are not necessarily dissipative. We study only autonomous systems since
for these the time parameter is not arbitrary (contrary to non-autonmous ones):
under any nonlinear transformation of the time parameter the system is no longer
autonomous, as will be explained in the next section. The restricted class of ex-
ponentially convergent vector fields describes the “typical” convergence scenario
for dynamical systems (Hunt et al., 1992). Structural stability of exponentially
convergent flows is an important property for analog computers. As a further
justification we argue that exponential convergence is a prerequisite for efficient
computation, provided the computation requires reaching the asymptotic regime,
as is usually the case. Asymptotically, [x(t) — x*| ~ e~/ (see eqn. (6)). When
a trajectory is close to its attractor, in a time 7., 1n2 a digit of the attractor is
computed. Thus the computation of L digits requires a time which is propor-
tional to 7., L. This is in contrast with polynomially convergent vector fields:
Suppose that [x(t) — x*| ~ t~° for some 3 > 0, then in order to compute x*
with L significant digits, we need to have |x(t) — x*| < 2%, or t > 2L/# for an
exponential time complexity.

Last, we concentrate on ODEs with a formal solution, since for these, complex-
ity is readily analyzed, and it is easy to provide criteria for halting a computation.
Dynamical systems with an analytical solution are an exception. But despite their
scarcity, we argue later that a subclass of analytically solvable DDS’s which con-
verge exponentially stable equilibrium points are a counterpart for the classical
complexity class P. This then suggests a correspondence between tractability in
the realm of dynamical systems and tractability in the Turing model. :

The input of a DDS can be modeled in various ways. One possible choice is the
initial condition. This is appropriate when the aim of the computation is to decide
to which attractor out of many possible ones the system flows. This approach
was pursued in (Siegelmann and Fishman, 1998). The main problem within this
approach is related to initial conditions in the vicinity of basin boundaries. The
flow in the vicinity of the boundary is slow, resulting in very long computation
times. In the present paper, on the other hand, the parameters on which the
vector field depends are the input, and the initial condition is a function of the
input, chosen in the correct basin, and far from basin boundaries to obtain an
efficient computation. For the gradient vector field equation (10), designed to find
the maximum of n numbers, the n numbers ¢; constitute the input, and the initial
condition is a constant vector. More generally, when dealing with the problem
of optimizing some cost function F(x), e.g. by a gradient flow x = grad E(x),
an instance of the problem is specified by the parameters of E(x), i.e. by the
parameters of the vector field.

163

3 Computational Complexity for Continuous Time Sys-

tems?

We are interested in ODEs as models of physical systems. The vector x(¢) then
represents the state of the corresponding physical system at time ¢. The time
parameter is thus time as measured in the laboratory, and has a well defined
meaning. Therefore we suggest it as a measure of the time complexity of a com-
putation. However, for non-autonomous ODEs that are not directly associated
with physical systems, the time parameter seems to be arbitrary: if the time vari-
able t of a non-autonomous vector field is replaced by another variable s, where
t = g(s), and g(s) is strictly monotonic, we obtain another non-autonomous
system

B Flx,g())g () 2
The above system will be called the time transformed version of F. If we take
for example, ¢t = €°, then the transformed system computes exponentially faster.
This way arbitrary speed-up can be achieved in principle. However, the time
transformed system is a new system. Only once it is constructed does its time
parameter take on the role of physical time, and is no longer arbitrary. Therefore
speed-up is a relevant concept only within the bounds of physical realizability.
We stress the distinction between linear and non-linear transformations of the
time parameter: a linear transformation is merely a change of the time unit;
a nonlinear transformation effectively changes the system itself. Therefore we
suggest autonomous systems as representing the intrinsic complexity of the class
of systems that can be obtained from them by changing the time parameter.

4 Halting a Computation

The evolution of a DDS reaches an attractor only in the infinite time limit.
Therefore for any finite time it can be computed to some finite precision. This is
sufficient since for combinatorial problems with integer or rational inputs, the set
of equilibrium points (the possible solutions) will be distributed on a grid of some
finite precision. A computation will be halted when the attractor is computed
with enough precision to infer a solution to the associated problem by rounding
to the nearest grid point.

The phase space evolution of a trajectory may be rather complicated, and a
major problem is to decide when a point approached by the trajectory is indeed
the attractor of the dynamics, and not a saddle point. An attractor is certified
by its attracting region which is a subset of the trapping set of the attractor
in which the distance from the attractor is monotonically decreasing in time.
The convergence time to an attracting region U, t.(U) is the time it takes for a
trajectory starting from the initial condition xg to enter U.

164

When the computation has reached the attracting region of an equilibrium
point, and is also within the precision required for solving the problem, ¢,, the
computation can be halted. We thus define the halting region of a DDS with
attracting region U and required precision ¢, as H = U N B(x*,¢,) , where
B(x*,€,) is a ball of radius €, around the attractor x*. The computation time is
the convergence time to the halting region, ¢.(H), given by:

te(H) = max(t(¢p), te(U)) 5 ®3)

where #.(¢,) is the convergence time to B(x*, ¢p).

The attracting region of a DDS algorithm is some vicinity of the attractor,
which is associated with the solution to the problem and is not easier to compute
than solving the problem. Thus it is not feasible to specify halting by convergence
to the halting region of a specific instance, but rather to specify halting by a
bound on the computation time of all instances of size L:

Rl = qae t(H(II)) (4)

where II denotes the input, and |II| is its size in bits. On input II of size L, the
computation will be halted after a time T'(L).

5 Time Complexity

Time complexity is a dimensionless number, whereas T(L) depends on the time
units of the system at hand. To make it dimensionless we express it in terms
of the time scale for convergence to the equilibrium point. Let x*(II) be the
attracting equilibrium point of x = F(x) on input II. In the vicinity of x* the
linear approximation dx = DF|s+ éx holds, where éx = x — x*. Let A; be the
real part of the ith eigenvalue of DF|x.. We define:

A= In'lIliAiI (5)

A determines the rate of convergence to an attractor, since in its vicinity |x(¢) —
x*| ~ e~ leading to the definition of the characteristic time

1
Teh =y - (6)
We finally define the time complerity of a DDS algorithm:
(L)
T(L) = , 7
it (o) (7)

where Il is a fixed instance of the problem. This is a valid definition of com-
plexity since it is invariant under linear transformations of the time parameter or
equivalently multiplying the vector field by a constant:

165

Claim 5.1 Let F,F’ be two vector fields related by F/ = %F for some constant
a > 0, then they have the same time complexity.

Proof. We denote by primes properties of the the vector field F’. Multiplying the
vector field by % is equivalent to multiplying the time parameter by a. Therefore
the computation times in the two systems are related by: ¢.(II) = at.(II), for every
input II. Let M, M’ be the stability operators of F,F’ on input II, respectively.
Clearly M’ = 1M so that 7/,(II) = aru(Il), and in particular for . We

conclude:
L(H() _ 4(H(m)
7exn(Ilo) 7en (o)
This holds when taking the maximum as well. |

6 Solving the MAX Problem

We demonstrate our approach with a simple DDS algorithm for the MAX prob-
lem, which is the problem of finding the maximum of » numbers. Let the numbers
be ci,...,cn, and define the linear cost function

f(x) = "x. (8)

The MAX problem can be formulated as a constrained optimization problem:
find the maximum of f subject to the constraints

inzl, :ciZO,i:l,...,n. (9)

i=1
This is recognized as the linear programming problem on the n — 1 dimensional
simplex A,_; = {x € R": z; >0, 3", z; = 1}. We use the vector field

Fi= (e =3 zi¢) i, (10)
i=1

which is the gradient of the function E on A,_; relative to a Riemannian metric
which enforces the positivity constraints (Helmke and Moore, 1994).
We denote by e, ...,e, the standard basis of R”. The equilibrium points

of F in A,_; are the vertices of the simplex e;,...,e,. We assume a unique
maximum. See (Ben-Hur et al., 1999) for the general case. Also suppose that
€1 > ¢z and ¢2 > ¢j, j = 3,...,n. Under this assumption the flow converges
exponentially to e; as witnessed by the analytical solution
e“tz;(0)
zi(t) = ——————— 11
) i=1€%'z;(0) , Sl

where z;(0) are the components of the initial condition. We note that the ana-
lytical solution does not help in determining which of the equilibrium points is

166

L s n
0 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1
X3 axis e

Figure 1: Phase space behavior of the flow generated by (10) on the two dimen-
sional simplex with ¢; > ¢2 > ¢3. A projection onto the plane of the z5 and z3
coordinates is shown. A number of trajectories which start near the minimum
vertex es are plotted. Such trajectories reach a vicinity of the saddle point e,
before flowing in the direction of the maximum which is projected onto the ori-
gin. The trajectory of the interior initial condition e = }(1,1,1) is denoted by
diamonds.

the attractor of the system: one needs the solution to the specific instance of the
problem for that. Thus the analytical solution is only formal, and one has to
follow the dynamics of the vector field (10) to find the maximum. However, the
formal solution is useful in obtaining tight bounds on T'(L).

From the asymptotic behavior of the analytic solution (11) it is seen that the
time scale for convergence to the attractor e, is

1

C1 —C \

Teh = (12)
By solving for ¢ in the equation ||x(¢) — e1]|| < €, an upper bound on the time to
reach an € vicinity of the vertex e; is found (Helmke and Moore, 1994):

te(€) < 7en| In(z1(0)€%)] - (13)

The divergence as z;(0) tends to zero is due to initial conditions close to the
basin boundary (see Figure 1). To minimize the contribution of flow near basin
boundaries we choose as initial condition the symmetric vector e = 1(1,...,1)T.

The coordinates of the possible solutions (vertices of the simplex) are integer,
and therefore ¢, = 1/2. Using equation (13) we obtain that the convergence time
to the ¢,-vicinity of e; is bounded by

t.(€p) < TenIndn (14)

167

Next we show a bound on the convergence time to the attracting region. The
attracting region of the problem is the region in which #; < 0 for < > 1. By the
positivity of the z;’s, this is satisfied if 37, ¢;z; > ¢i, ¢ = 2,...,n . Inserting
the analytical solution yields a bound on t.(U):

t(U) < 7en(lntepez +Inn) , (15)
The maximum of (15) and (14) gives the bound
t.(H(c)) € ren(In7eney + Indn) . (16)

If integer inputs are considered then 7., < 1. The size of the input in bits is
L =3%",(1+log,(c; +1)). Expressing the bound on t.(H(c)) in terms of L:

to(H(c)) = O(InL) . (17)

A sub-linear (logarithmic) complexity arises because the model is inherently par-
allel: the variables of a DDS algorithm can be considered as processing units,
and their number in this algorithm increases with the size of the input. When
the inputs are bounded integers the complexity becomes O(log n), similar to the
complexity obtained in models of parallel computation in the Turing framework.

7 Complexity Classes

In this section we compare complexity in our model with the classical theory. The
complexity class P in classical computational complexity is the class of problems
for which there exists an algorithm which runs in polynomial time on a Turing
machine. Its counterpart in our framework is called CP (continuous P), and con-
tains the set of problems which have a DDS algorithm with a polynomial number
of variables and polynomial time complexity. Note that since the variables play
the role of processing units, their number needs to be limited as well. In (Ben-Hur
et al., 1999) we show a DDS algorithm for the maximum network flow problem
which has polynomial time complexity. In addition we define the class CLOG
(continuous log) of problems that have a DDS algorithm with a polynomial num-
ber of variables and logarithmic time complexity. We have shown that MAX is
in CLOG. We note that for a comparison with the classical theory to be mean-
ingful it is necessary to impose constraints on the time required to compute the
vector field, even though it is unclear what complexity should be ascribed to the
equations of motion of physical systems. Otherwise, the computational power of
the model can be attributed to the complexity of the vector field. We assume
in the following that the vector field is in the parallel complexity class NC (Pa-
padimitriou, 1995), of computations in poly-logarithmic (polynomial of log) time

with a polynomial number of processors; NC is the complexity class just below
P.

168

We argue that CP=P. For the inclusion PCCP we rely on the claim that the
P-complete 2 problem of maximum network flow is in CP (Ben-Hur et al., 1999).
If we use the Turing reductions from a P problem to maximum network flow
we have in fact shown that all efficient Turing computations can be performed
polynomially in our framework. However, relying on Turing reductions which are
external to our model might be considered unsatisfactory. As of yet we have no
argument that CPCP. But we believe that a polynomial time simulation of the
ODE with some numerical integration scheme should be possible because of the
convergence to equilibrium points.

8 Discussion

In this paper we concentrated on analytically tractable dynamical systems, a
property which helped us in computing bounds on the convergence time to the
attracting region, and find initial conditions far from basin boundaries. For a
large class of systems without an analytical solution one can resort to probabilistic
verification of an attractor: when it is suspected that an attracting equilibrium
point is approached, a number of trajectories are initiated in an € ball around the
trajectory. If this ball shrinks then with high probability the equilibrium point
is attracting. If the ball has expanded in some direction, then the equilibrium
point is a saddle. This yields a Co-RP type of complexity class (Papadimitriou,
1995) which is applicable to gradient flows for example (Siegelmann and Fishman,
1998).

In this paper only point attractors were considered. In another paper (Siegel-
mann and Fishman, 1998) computation of chaotic attractors is discussed. Such
attractors are found to be computable efficiently by means of nondeterminism (in
a different sense then the one mentioned above). The inherent difference between
point attractors and chaotic attractors may shed light on the P vs. NP question
which is a main open problem in computer science.

Acknowledgments

The authors would like to thank E. Sontag, K. Ko, C. Moore and J. Crutchfield for
helpful discussions. This work was supported in part by the U.S.-Israel Binational
Science Foundation (BSF), by the Israeli ministry of arts and sciences, by the
Fund for Promotion of Research at the Technion and by the Minerva Center for
Nonlinear Physics of Complex Systems.

2 A problem in P is called P-complete if any problem in P can be reduced to it (Papadimitriou,
1995).)

169

References

Ben-Hur, A., Siegelmann, H., and Fishman, S. (1999). A theory of complexity
for continuous time dynamics.

Branicky, M. (1994). Analog computation with continuous ODEs. In Proc. IEEE
Workshop Physics and Computation, pages 265-274, Dallas, TX.

Brockett, R. W. (1991). Dynamical systems that sort lists, diagonalize matrices
and solve linear programming problems. Linear Algebra and Its Applications,
146:79-91.

Faybusovich, L. (1991). Dynamical systems which solve optimization problems
with linear constraints. IMA Journal of Mathematical Control and Informa-
tion, 8:135-149.

Helmke, U. and Moore, J. (1994). Optimization and Dynamical Systems. Springer
Verlag, London.

Hopfield, J. and Tank, D. (1985). Neural computation of decisions in optimization
problems. Biological Cybernetics, 52:141-152.

Hunt, B., Sauer, T., and Yorke, J. (1992). Prevalence: A translational-invariant
“almost every” on infinite dimensional spaces. Bulletin Of the American
Mathematical Society, 27(2):217-238.

Mead, C. (1989). Analog VLSI and Neural Systems. Addison-Wesley.

Moore, C. (1990). Unpredictability and undecidability in dynamical systems.
Phys. Rev. Lett., 64:2354-2357.

Ott, E. (1993). Chaos in Dynamical Systems. Cambridge University Press, Cam-
bridge.

Papadimitriou, C. (1995). Computational Complezity. Addison-Wesley, Reading,
Mass.

Siegelmann, H. (1999). Neural Networks and Analog Computation: Beyond the
Turing Limit. Birkhauser, Boston.

Siegelmann, H. T. and Fishman, S. (1998). Computation by dynamical systems.
Physica D, 120:214-235.

Williams, C. P., editor (1998). volume 1509 of Lecture Notes in Computer Science,
Palm Springs. Springer.

170

