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Abstract
The definitions of two versions of uncertain logics and variables are given. The review
ofmain concepts and results concerning the application ofthe uncertain variables to the
analysis and decision making in a class of systems with unknown parameters in their
mathernatical models is presented. The special and related problems concerning the
application to pattern recognition and operation systems, the learning processes and the
distributed knowledge representation are described.
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I Introduction

Uncertainty is one of the main features of anticipatory systems. There exists a great
variety of definitions and formal models of uncertainties and uncertain systems fe.g.25,
26, 271. The most popular approaches are based on probabilistic model, fuzzy sets
theory and related formalisms such as evidence and possibility theory. In this paper the
uncertainty is understood in a narrow sense of the word and concerns an incomplete or
imperfect knowledge of something which is necessary to solve the problem. In our
considerations it is the knowledge of the parameters in the mathematical description of a
system. The purpose ofthis paper is to present a short description ofso called uncertain
variables and a review ofmain concepts and results concerning the application ofthe
uncertain variables to the analysis and decision making in a class of systems with
unknown parameters in their mathematical models 12,4,5,8, 9, 11, 12, 17-24]. The
unknown parameters will be assumed to be uncertain variables and the systems with
uncertain parameters will be called uncertain systems.

The uncertain variables, related to random variables andfuz.zy numbers are described
by their certainty distributions which correspond to probability distributions for the
random variables and to membership functions for the fuzzy numbers. The certainty
distribution is given by an expert and evaluates his opinion on approximate values of
the uncertain variable. The definitions ofthe uncertain variables are based on definitions
of uncertain logics. Two versions of the uncertain logic and the corresponding versions
of the uncertain variable are introduced in Sec. 2 and 3. The definitions of the uncertain
variables contain not only the formal description but also their interpretation, which is
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of much importance. It is worth to note that from the formal point of view (without
taking into account the interpretation) the probabilistic measure is a special case ofthe
fuzzy measure and the probability distribution is a special case of the membership
function in the formal definition of the fuzzy number when the meaning of the
membership function is not described. The un"ertain variable in the first versioi may be
formally considered as a very special case of the fuzzy number (exactly speaking - the
possibilistic number) with a specific interpretation of the membership function.
Nevertheless for the sake of simplicity and unification it is better to introduce it
independently (as has been done in the paper) and not as a special case ofmuch more
complicated formal i sm with different semantic s.

In Sec. 4 the applications of the uncertain variables to basic analysis and decision
making (control) problems are presented for the system described by a function
(functional system) and described by a relation (relational system). In the second case
the analysis consists in finding the output property (i.e. the property concerning the
output vector or the set to which the output vector belongs) for the given input property.
The decision making is an inverse problem: for the given output property one should
find the input property which implies the required output property [1, 3]. For the system
with uncertain parameters the modified versions of these problems adequate to the
description of uncertainty are presented. In Sec. 6 the applications of the uncertain
variables for a closed-loop control system with a dynamical plant are indicated and in
Sec. 7 special problems are described. The details and examples may be found in the
papers listed in References.

2 Uncertain Logics

We shall present two versions of an uncertain logic: logic I and logic C. Consider a
universal set J?, û)e!2, a set -F cRk, afunct ion g:Q-+ .1, a cr isp property
(predicate) P(f) and the crisp property Y(a,P) generated by P and g: "For

r- = g(ar) ê r(t) assigned to ar the property P is satisfied". Let us introduce now the
property Gr(x):"f(o) = r" for xe X c .F, which means: "f is approximately
equal to x" or "x is the approximate value of t ". The properties P and G, generate the

soft property Y ça,f) in O: "the approximate value of f(o) satisfies.P', i.e.

V çat,f1="i(o)é D*u , D r = { f e X : P ( x ) \ ,

which means: ".F approximately belongs to Dr". Denote by hr(x) the logic value of
G:

(1)
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w lF(a) 

- *J = hr(x) . A
- -  \

hr(x) > 0, max hr(x) = | .

Definition l. The uncertain loEgc L is defined by A. X , X. crisp predicates P (î) ,
properties Gr(x) and corresponding functions ftr(x) for a,l e {2.In this logic

consider soft properties (l) generated by P and Gr. The logic value of P is

(2)

the
we

(3)

()

^  _  l m a x h r ( x )
u' lY (a.P) l  = t ' lY (ra.  P) l  = 

t ' .  
r .0

for

for

D**O

D t = O

and is called a certqinty index. The operations are defined as follows:

vy -Y(a1P) l  =  t  - v1V1a4P) ) ,

vlYl@t, Pt) v V2kt, Pù) = max{v[P1(a;,4), u [Y2@t, Pz)] ],

| 0 if for each x w (P1 nPr) = g
v[\(a4\)  nY2@t'P)]  = 

ln-, ,nt . t r , ,  ro.p1\.  t , [y2(a,p2)) l  orherwise

(s)
where !21 is !z or -Y- , and Y2 is Y or -Y El

It is easy to note that Ga) is a special case of 
- 

lor D* = {x} (a singleton) and

v [ r (a )  i  r ]  =  h r (x ) ,  ! [ î (a t )7  r ]  =  1 -  h r (x ) .

For the logic L one can prove the following statements I I I, 20] :

v1Y (at,  \  v P) l  = v1Y (a1P; v Y (a. P)1,

vlY (at, P1 n P)l < min{ vlY (a;,4 )1, u lV (ar, P)ll ,

v[Y (c, t , -  P)]  > vS-V ça4 P)1

(6)

(7\

26r

(8)



The interpretation (semantics) of the uncertain logic I is the following: The uncertain
logic operates with crisp predicates P, but for the given ar it is not possible to state if P
is true or false because the function g and consequently the value x is unknown. The
function h.(*) is given by an expert, who "looking at" ar obtains some information

concerning 7 and uses it to evaluate his opinion that 7 = x . For the same (Q, \ we
may have the different logics (the different hr) determined by different experts.

Definition 2 (the uncertain logic Q. The first part is the same as in Def.l. The certainty
index of Y andthe operations are defined as follows:

vr lY(a ,4  =  
+{v tV(a ,P) l+ l  

-v lV@,-P) l }  =  
} t rn1  

h , (x )+r -
'  xeD,

-Vfu4 P) = V@.- P).

V 6 , f  1 1 u  Y 1 a , P ù  = Y ( a t . P 1 v  P ) ,

V 6, f; n V 1a. Pz) = Y (ro. P1 n P2)

One can note that G, is a special case of Y and

max hr(x)),
x eD,

(e)

(10)

( l  l )

tr

(r2)vç lr@t) Z xf = 
lT*o* t - 

,.Tî, la)G)l

For the logic C one can prove the following statements Il l, 20]:

vçlY (a, \ v P)l > max{va-[Y/ (ar.4)], vrlY (a.Pz)l],

vr.fY (at P1 n P)l < min{vr-fY (a44)l,vc[Y@.P)]1.

vç l -Y(a,P) l  =  t  -vr1V1a4P)1

( t3 )

(14)

(15 )

The definition of implication is not introduced here because it is not used in the further
considerations concerning uncertain variables and the decision making problem.
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3 Uncertain Variables

The variable f for a fixed ar will be called an uncertain variable. Two versions of
uncertain variables will be defined by h(x) given by an expert and the definitions of
c e r t a i n t y  i n d e x e s  w ( r è D r ) ,  w ( r è D ) ,  w ( i ë  D l v i =  r r ) ,
w ( r è D 1 n 7 è O r )

Definition 3. L-uncertain variable x is defined by X, the function h(x) =v(f = x)
given by an expert and the following definitions:

fmin{v (r- è Dl), v (7 ë D)l for D1 r-t D2 + Q
v ( r è  D l n I ë D ù = ]  ( 1 e )

|  0  f o r  D l o D r = O .

The function à (x) will be called L-certainty distribution tr
The definition of l-uncertain variable is based on logic Z. Then for (l) the properties

(6), (7), (8) are satisfied. In particular, (8) becomes

v(x è D,).  v(x 7 D*) = |  -  v( i  è D*)

Definition 4. C-uncertain variable is defined by X, h (x) = v (1 = x) given by an
expert and the following definitions:

v (' è D*) = maë à(r) for D, + A and- -  
x e D -

0 fo r  D,  =  Q,  (16)

(17)

(  l8 )

(20)

(2r)

(22)

v ( i 7D ' )=1 -v ( f r r r ) ,

v ( r ëD1v7= r t )  =max {v ( i ëDù ,  v (1  È  Dù } ,

vç(I è D,) = 
Tt #T.h 

(x'1 +t - 
#Ë, 

h (x)),

v ç ( I è D * ) = l - v ç ( r ë D r ) ,

vç (x  ë  D1v I  è  Dr )  =  vç (x  ë  D1w D2\ ,
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vC(î é D1 nî = Or) = vc(i ë D1 a D2) Q3)

E
The definition of C-uncertain variable is based on logic C. Then for (t) the properties
(13), (14), (15) are satisfied. According to (9) and (15) , . The function

^
vç(7 = x) = hc@) may be called a C-certainty distribution. To determine hç and

vç(Î ë D) it is necessary to know à(x) and to use (12) and (20), respectively. The

uncertain logics Z and C are chosen as the bases for the uncertain variables because of
the advantages of these approaches. In both cases w (î è D) = l-w (x è Dr), in

the first case it is easy to determine the certainty indexes for v and n, in the second

case in the definitio n of M @7 = f x,hqx,7(inQ,1;-l the values of h(x) for D,
i = l  i = l

are also taken into account. In the discrete case, i.e. for X = {xl, x2, ...,x41

tft m
M (i) = lx,h(r)( I/,(rr))-r

i = l  , = l
Q4)

is called a mean value of Z-uncertain variable -f . In the continuous case (ft is a
continuous function) the sums in (2a) should be replaced by integrals. The mean value
of C-uncertain variable is defined in the same way, with h6 in the place of h. To
compare the uncertain variables with probabilistic and fuzzy approaches, let us take into
account the following definitions for the discrete case (x, € Àl), using Q at and g
introduced in Sec.2.

The random variable i is defined by X and probability distribution

P(i = x)4 p@). The function p(x) does not depend on the subjective opinion of an
expert, may be determined in erirpirical way and describes the whole set {2 (hr(x)

describes the fixed, particular a).
Inthefuzzy approach there exist three basic definitions ofthe fuzzy set based on the

number set X (a) The fuzzy number î(d'S for the given fixed value d e X is defined
by X and the membership function p(x, d) which may be considered as a logic value of
thesoftproperty" i f  f  =x then î=d".  (b)Thel inguist icfuz4variable î  isdef ined
by X and a set of membership functions pt (x) corresponding to different description of

the size of î (small, medium, large etc.). E.g. pr(x) may be considered as a logic value

of the soft property "if î = x then f is small". (c) The fuzzy number î(at) is defined
by Xand pr(x) which is a logic value of the soft property "it is possible that P(a, x)"

for the given P(ot, r). In the cases (a) and (b) pr does not depend on ar and the
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difference between f(d) or î and the uncertain variable x-(ar) is evident. In the case
(c) the function g may not exist, i(a) may be considered as a special case of î(o)
(where relation P(a,x) is reduced to the function g), with a special interpretation of

ur@) = h.(x) = certainty index that I(at) = x. The further difference is connected
wi th thedef in i t ions  o f  thecer ta in ty ind ices  fo r  îë  D,  Iè  D,  IèDrv IèD2

and r-èD1 n x è D2. The function w(F è D)Am@r) may be considered as a
measure defined for the family of sets D, Two measures have been defined here:

v (x è Dr) 4 m1(Dr) and r7' (r È Dr) 4 mç(Dr). Taking into accounr the measures
known in our area (e.g. [25]) it is easy to show, that mç is neither belief nor plausibility
measure and m1 is a possibility measure with very specific semantics: mç(D*\ is a
certainty index that x è D" .

4 tlncertain Systems

Systems whose description contains uncertain parameters may be called uncertain
systems. For such systems one may formulate analysis and decision making problems
analogous to those for deterministic functional and relational systems [], 3]. Consider a
static system described by a function y - eD(u,x) where rr c (1, y e Y, x e X are
input, output and unknown parameter vector, respectively (U. Y, x are number vector
spaces). The parameter x is assumed to be a value of an uncertain variable x with
h ,(x) given by an expert.

Anafysis problem for a functional system: For the given @ , h *(r) and z determine

h,.(!.u') and M,,(!). Using (16) one obtains

hr(l;u) = v (I = y) = 
*.l l(r,u1hr(*\

(2s)

where Dr(-l;u) = lxeX : Q(u,x) = -y). Having hr(l;u) one can determine My(r\

according to Q\. The analysis problem may be extended for a system described by a
relation R (u, y, x) c II x Y x X in the following way:
Analysis problem for a relational system: For the given R, h r(*), u and D,

determine vlD, ë Dr(u;r)l where

Dr(u;x) = {-y € Y . (u, y, x) e R(u, y, x)l
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is the set of all possible outputs for the fixed u. To solve the problem one should
determineD, (Dy,u) = {x e X '. D, ç Dr(u; r)}. Then

vlD, éD.r(u;x-) l  = v [ r  è Dx(Dy,u)]= 
, . f i6u.u1h,(r)

(26)

The value (26) denotes the certainty index ofthe property: the set ofall possible outputs
approximately contains the set D, given by a user. In the above formulations i has

been considered as Z-uncertain variable.
The analogous problems may be formulated for C-uncertain variables: for the same

data as in the above formulations one should determine C-certainty distribution
hc,t9;u) and Mc,y0) in the case of the functional system and

vc [Dy ë Dr(u; r)] for the second case. For the solution one should use (25) and (26),

find 

v [x- È D ,(D ,. u11 = rnax h *(*)
x  e  D x ( D  v . u )

where D, * X - D' and determine hr-.r,U,u). ,c.IDy é D,,,(u,I)) using the

relationships (12) and (20). i.e.

vçlD, e Dr@.ùJ= vclr ë Dx(D.v,r)l = 
*{v[r è DlDy,r)] + I - vIx è Dx(Dv.u)l .

Decision making problem for a functional system may be formulated as follows:

Version I: to find the decision rr* maximizing v(y- = y*; where y* is a desirable
output variable.

Version II: to find r* such that M r(I.u) = y'

ln both versions hr(l,u) should be determined according to (25). Then, in version I

a* is the value of z maximizing h.r(!*:u) and in version II z* is obtained from the

equation M v(t.tr) = ,'. If x is considered as C-uncertain variable then iç._r, . Mc,t,

and vç(! = y*; should be determined.

Decision making problem for a relational system: For the given Â, h *(*) and Du

find the decision u* maximizing the certainty index of the property: the set of all
possible outputs approximately belongs to D, given by a user. Then
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(27)

where

Dr(Dy,u) = {x e X : Dr(u;x) ç Drl

Dr(Dy,u) = {x e X : u e Dr(x)l

where Du(x) c U is the largest set such that the implication u e Dr(x) -+ y e D_, is

satisfied, i.e. Do@) = {u e U : Dr(u,x) = Dr\. Let î = ar9max/rr(x), i.e.

h ( î )=  l .  Then the  se t  o f  a l l  dec is ions  u*  i s  Du=\ue( l : ieDr (u) l  and
v[Dr(u;f) É Dy] = l. The considerations using v6 for C--uncertain variables are

analogous to those for the analysis problem.
The formulations of the analysis and decision problems may be extended for the

system (the plant) described by a function y = (P(u,z,x\ or by a relation R(u,y,z,x)
where z e Z is a vector of external disturbances ï19, 231. In particular, the decision
problem for the functional plant in version I may be formulated as follows: For the
givenzand y* find z* maximizing v(, =y*1. Then

u* = argmaxi|(u,ùlve'l

where (f(u,r) = hr(y*;u,z) and fr, is determined according to (25) wrth @(u,z.x)

in the place of Q(u,x).lf un is a unique value maximizing @ for the given z then we

obtain the function u* = Y(z) i.e. the decision algorithm in an open-loop decision
system. Assume that the equation (D (u,z,x) = y has a unique solution with respect to

ut uo!Oo1z,x). This relationship together with hr(x) may be considered as a
knowledge of the decision making and may be called an uncertain decision algorithm.
Using it one can obtain the deterministic algorithm

= arg max vfDr(u;r) ë Dyl = argmï 
,.f;frr,urhr(*)

u) = argmax hr(u;4!YaQ)

hu(u;z) = pry .hr(r)xeD x \u ;z  )

where

and D*(u;z) = {x e X : u = @4(z,x)}. Thealgorithms Y and Y4 arebased onthe

knowledge of the plant KP =< (D,h, > and on the knowledge of the decision making
KD =< (D1,hy >, respectively. The results of these tv/o approaches may be different,
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i.e. in general Y6Q) * Y(z).

Example 1: Consider a plant without the disturbances z, with u, y,x e ,Rl . The relation

R is  g iven  by  inequa l i t y  xusys2x t r ,  Dr=Ut , !21 ,  h>O,  y2  >2y1.  Then

Du@)=l+,fi1, or{")=t+,ft\. ot""^e that x is a value of an uncertain

variable I with triangular distribution hr(x): r e [0,1], î = 
+.It 

is easy to note that

u* mintmizing v in Q7\ is any value from [2y1, hl and' v (u*1 = I . For C-uncertain

variable we obtain

when u s l t+0.5yg

w h e n  ! 1 S u 4 y 1 + Q . 5 y 2

when u 3 !1 .

It is easy to see that uL = yt + 0.5y2 where uf is the value maximizing vç(u), and

,cQti) = y2(2!t + yù-t. E.g. for yr = 2, lz = 12 the results are the following:

a*  e l4 , l2 l  and v  = l ;  uL  =8  and vC =0.75 .

5 Closed-Loop Control System. Uncertain Controller

The approach based on uncertain variables may be applied to closed-loop control
systems containing continuous dynamic plant with unknown parameters which are
assumed to be values of uncertain variables. The plant may be described by a classical
model or by a relational knowledge representation. Now let us consider two control
algorithms for the classical model of the plant, analogous to the algorithms Y and Y4

presented in Sec. 4: the control algorithm based on KP and the control algorithm based
on KD which may be obtained from KP or may be given direotly by an expert. The
plant is described by the equations

s(t'1 = 7 | s(t\, u(t); xl,
y(t) = ry[s(t)]

where s is a state vector, or by the transfer function Kp(f;x) in the linear case. The

controller with the input y (or the control error 6 ) is described by the analogous model
with a vector of parameters à which is to be determined. Consequently, the performance
index 

T
Q = Iç0,x1at2oçb,x)

0

ltz{2")avc(u\=l,_T,_,
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for the given I and p is a function of à and x. In particular, for onedimensional plant

ç =i  e2t t lar  = cD(b,x).
0

The closed-loop control system is then considered as a static plant with the input à, the
output Q and the unknown parameter x, for which we can formulate and solve the
decision problem described in Sec. 4. The control problem consisting in the
determination of à in the known form of the control algorithm may be formulated as
follows.

Control problem: For the given models of the plant and the controller find the value 6
minimizing M(0), i.e. the mean value of the performance index.

The procedure of the problem solving is then the following:
l. To determine the function Q = <D(b, x) .
2. To determine the certainty distribution ho(l:b) for @ using the function @ and the

distribution hr(x) in the same way as in the formula (25) for y .
3. To determine the mean value M (0 . bl .

4.  To f ind à minimizine M(0:ù.

In the second approach corresponding to the determination of Y4 for the static
plant, it is necessary to find the value ô(r) minimizing O = @(b, x) for the fixed x. The
control algorithm with the uncertain parameter â(x) may be considered as a knowledge
of the control in our case, and the controller with this parameter may be called an
uncertain controller. The deterministic control algorithm may be obtained in two ways,
giving the different results. The first way consists in substituting M6) in the place of
à(x) in the deterministic control algorithm, where M(b) should be determined using the
function à(x) and the certainty distribution h*(*). The second way consists in
determination of the relationship between u4 = ly[(V1 and the input of the controller,
using the form ofthe uncertain control algorithm and the certainty distribution hr(x).It
may be very diffrcult for the dynamic controller.

The problem may be easier if the state of the plant s(t) is put at the input of the
controller. Then the uncertain controller has the form

u = Y(s,x)

which may be obtained as a result of nonparametric optimization, i.e. P' is the optimal
control algorithm for the given model of the plant with the fixed x and for the given
form of a performance index. Then

ua = M(û;s)AYua(s)

where M(11;s) is determined using the distribution
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hu@;s.1= v[x è Dr(u;")] = 
,.fftr:"yrr(x;

and 
Dr(u;s)-  {x e x ' .  u =r(s,  x)}  .

Example 2: Let us consider the time-optimal control of the plant with

Kp@;x) = xp-2, subject to constraint I z(t) t< M .lt is well known that the optimal

control algorithm is the following

u(t) = M sgn(e + lelè(zxM)-t)

where a - -y . For the given ftr(x) we can determine hr(u;e ,i) which is reduced to

three values vt = v(u = M), v2 = v(u = 'M\, v3 = v(f = 0). Then

It is easy to see that

where

u4(t) = M(r) = M(ttt - v2Xrr1 + v2 + v',)-'

vl = mlx h*(x), r'2 = max àt(r)
xeutl  xeux2

Dxt  = { r :xsgn e > - lè l l (2Mle l ) - t } ,

D,2 = {x : rsgn e < -lele(2Mltl)-l}

and u, = h,(-lele(2Ms)-t).

The certainty distribution of f has triangular form: h, = d-l?-o+d\ for

a - d < x 1 a ,  h * = - d - l ( x - a - d )  f o r  q < x < a + d .  h x = 0  o t h e r w i s e ,

0 < d  < a . F o r  e  > 0 ,  É  <  0  a n d  , s . d  i t  i s e a s y t o o b t a i n t h e  f o l l o w i n g  c o n t r o l

algorithm

I  M  f o r  d < a - x ,

ua =M( t )=1r=ro=r * r  
= ,  fo r  d>a_xr

l"' 3rJ - 2(a - xr)

w h e r e x "  = - l è l è ( z M e ) - l . g . g . f o r M  = 0 . 5 ,  è = - 3 .  t = 1 ,  a =  1 6 a n d  d = 1 0

we obtain ud = 0.2.

6 Special and Related Problems

A. Logical knowledge representation



The relation R(u, y, x) considered in Sec. 4 may be described by a set of facts, i.e.

logical formulas concerning u, y and x, which desôribe a logical knowledge

representation.lf theproperties u e Du and y e D, are described by logical formulas

using the simple formulas from the knowledge representation then the analysis and
decision problems analogous to those in Sec. 4 may be solved by applying so called
togic-algebraic method. The main idea of this method consists in replacing individual
reasoning concepts based on inference rules by unified algebraic procedures based on
the rules in two-value logic algebra [1, 3, 4].
B. Pattem recognition

The uncertain variables may be applied to a knowledge-based pattern recognition
problem. Let an object described by a vector of features n belong to a class
j e J = {1,2,...,M}. The knowledge representation in the form of a relation

R(u, j,x) is reduoed to the sets Dr(j) c U for i = I,2,...,M .Then

Dr(u,x\  = U e J ' .  u e Dr(. i ) l

is the set of all possibleT for the given value u. The recognition problem may consists in
finding the certainty index

, j  = vU ë Dj(u.t) l  = 
r . l î  . rh,(x)

where Dr(l) = {r e X'. i e D,(u,x)}, or the certainty index v(/7) for the given

A ,  c J

v (ai) = vfD i(u,i) e Ai) = 
,.lffo,rh*(*)

where Dr(/y) = {r e X '. Di(u,r) g /i}. In the first case v, is the certainty index

thatj for the object to be classified belongs to the set ofall possiblej, and in the second

case v (/r)is the certainty index that the set ofall possiblei belongs to \ l9).

C. Task distribution in the complex of operations
Let us consider a complex of parallel operations executed by a group of executors

(operators in production system or computers for computational operations). The

operations are described by relations T, < x,u, where { = y; is the execution time and

a, is the size of a task (e.g the amount of a raw material) in Èth operation, I € ç fne

requirement is .y < a where / = T = max { is the execution time of the whole

complex. The decision problem is as follows: for the given hr1(xl), ..., hxn(xp) and

a , frnd the task distribution u* - (u\,...,u|) maximizing v (y ë [0, a]) = v(7 Z a) ,

subject to constraints /l + ...* uk = U where Uis the size of the task to be distributed.

It is easv to see that
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vO Z d\ = vOi Z a\ 4. . .^v (h 7 o) = min vi(zt)

where
v , (u )  =  v ( ! ;7  a )  =  max .h r i (x i )

xieD*i@i)

and Dr;(x,) is described by x; < auir U5,16,21,22f.
D. Descriptive and prescriptive concepts. Generalization

The knowledge of the decision making described in Sec. 4 may be obtained from the
knowledge of the plant or may be given directly by an expert. It is possible to compare
these two approaches by comparing the deterministic decision algorithm Ya(z)
obtained by the determinization of the uncertain decision algorithm based on the
knowledge of the plant or the uncertain decision algorithm arbitrary formulated by an
expert. Under some assumptions so called principle of equivalency may be given. The
same problem concerns the descriptive and prescriptive approach for the fuzzy
description and the fuzzy decision algorithm @r fuz.zy controller). The considerations
using uncertain variables, random variables and frnzy numbers are similar from the
formal point of view and may be generalised by introducing toft variables and
evahntingfunctions. Then uncertain variables, random variables and fuz.zy descriptions
are considered as special cases ofthe description based on the soft variables î23, l8l.
E. Learning processes

For the knowledge-based system with unknown parameters x in the knowledge
representation, the learning process consisting in step by step knowledge validation and
updating has been described. The validation and updating may concern the knowledge
of the plant, i.e. R(u, y, x) or directly the knowledge of the decision making, i.e.

Dr(x) where Dr(x) cU is the largest set of the decisions such that the implication

u e D,r(x) + y e D, is satisfied. In the process of the current estimation of x it is

possible to use a priori knowledge in the form of the certainty distributio n h*(x) f6, 7 ,
8,9, 10, 13, 15, 16]. The analysis ofthe convergence ofthe learning process may be
based on the stability conditions for uncertain discrete systems [14].

7 Conclusion

The uncertain variables are proved to be a convenient tool solving the decision
making problems in a class of uncertain systems, including specific problems for
uncertain anticipatory systems. The analysis and decision problems based on the
uncertain variables may be extended for some classes of complex uncertain systems
with the distributed knowledge representation. In some cases it is possible to apply a
decomposition, and to compare the results with a direct approach to the system as a
whole. In particular, such an approach is possible for a complex production system with
a cascade or a multilevel structure fl2, 221. The problems concerned with the
applications of the uncertain variables and certainty distributions in learning
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knowledge-based systems and in systems with the distributed knowledge representation
(including anticipatory systems, decision making in complex manufacturing systems
and in computer operating systems) form the main new directions in the considered
alea.
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