
Neural Network Modeling of Learning of
Contextual Constraints on Adaptive Anticipations

Frédéric Lavigne and Sylvain Denis
Laboratoire de Psychologie Expérimentale et Quantitative

Université de Nice - Sophia Antipolis
24 Avenue des Diables bleus 06357 Nice Cedex 4, France
e-mail : lavigne@unice. fr ; web : http://www. unice. friLPEQ

Abstract
Anticipatory processes take into account of the contextual events occurring in the
environment to anticipate probable upcoming events, and to select the best behavioral
responses. The necessary knowledge for prediction ofevents adapted to context canbe
learned by classical associative conditioning, which allows associations between events
occurring close in a sequence. Context can then correspond to events perceived in the
environment as well as to the reinforcing valence of the event eliciting emotional states
in the syskm, both orienting anticipations in memory. Knowledge for anticipation of
adapted behaviors to context can be leamed by operant reinforced conditioning, which
allows associations between behaviors and reinforcing events in the environment, as a
function of the reinforcing valence of the event (positive or negative). In this case the
processing ofa contexhral event can select behavioral responses orienting the system to
positive reinforcers rather than to negative reinforcers. An attractor neural network
model is proposed to account for the different types ofanticipatory processes presented
as well as for the leaming principles of conditioning allowing adapted anticipations.
Keywords - semantic anticipation - conditioning - context - emotions - neural networks

1 Adaptive Anticipations of Events and Behaviors

lVlry anticipatory processes are based on context?
Anticipations for prediction of events are cognitive abilities allowing living systems

to adapt their behavior to their environment. Dynamic anticipations in memory of
possible future events likely to occur in the environment are based on associative
leaming of sequences of events. It leads to faster and more accurate perceptive
processes of events when previously anticipated; as well as to rapid and accurate
preprogrammed motor respomes. Behavioral adaptation then depends on anticipatory
processes linking motor responses to perceived events (Berthoz, 1996; Glenberg,1997;
Lavigne & Lavigne,2000; Sun & Giles,200l; Varela, Thompson & Rosh, 1999; Wang,
200r).

Improved perception and action performances are based on anticipatory processes
which can be activatory or inhibitory, as a function of physical properties of the
c.ontextual events perceived in the environment, and of representational properties of
the events anticipated in dynamic memory. Through perceptual constraints and
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leaming, properties of the contextual events determine semantic and attentional
anticipations allowing better adaptation to complex sequences of evenB (Laberge,
1995; Lecas, 1992; Jones, 1976; Jones &Boltz,1989; Jones & Yee, 1993; Neely, 1991;
Posner & Snyder, 1975; see Lavigne & Denis, 2001).

1.1 Adaptive Anticipations to Contextual Constraints

To achieve good adaptation of living systems to the environment, anticipatory
processes must take into account of the contextual events occurring in the environment
to select the best behavioral responses. These two types of knowledge are intricately
associated in memory to allow anticipations of various possible behavioral responses as
a function of perceived sequences of wents, as well as of the consequences of each
possible behavior. Adaptive anticipations allow speeded and more accurate perception
of predicted events as well as speeded and adapted behavioral responses when
preselected by anticipation (see Lavigne & Lavigne, 2000). Memory can then be seen
not as a static intemal representation of the structure of the environment, but as
dynamic processes ofanticipations ofbehaviors adapted to possible events as a function
of perceived contextual events. This defines adapation as based on cognitive
anticipatory processes ofperceptive and behavioral interactions between a living system
and its environment.

1.2 Neural Network Modeling

Given the mathematical description of anticipations as involving states in a system
as depending on both its current state (t) and anticipated states (t+l) (see Rosen,
Dubois), many neural networks models can account for anticipatory processes as
processes of automatic spreading of activation from a neuronal representation to
associated ones, which can be interpreted as anticipatory processes (Anderson, 1983;
Collins & Loftus, 1975; Collins & Quillian,1969, Gillund & Shiffrin, 1984; Grossberg
& Stone, 1986, Hinton & Shallice, 1991, Kintsh, 1988; Massorl 1991, 1995, 1999;
Ratcliff & McKoon, 1988, 1994, Sharkey & Sharkey, 1992; Wang, 1996,2000; see
Lavigne & Lavigne,2000). However, these models do not account for associative and
reinforced learning such as defined in artificial life models (Macintosh, 1983).

A way to achieve good modeling of both classical and reinforced learning, as well
as of non trivial cognitive anticipatory processes (see Lavigne & Lavigne, 2000;
Lavigne & Denis, 2001) is to use atfractor neural networks (Amit, 1989; Hopfield,
1982; Hopfield & Tank, 1986), some being able to attribute different attractors to
different perceived events by autonomous perceptive learning (Hopfield & Brody,2000,
2001). Furtherlnore, particular types of biologically plausible recurrent networks have
the ability to associate events presented in temporal sequences (Amit, Brunel &
Tsodyks, 1994; Brunel, 1996 for a mathematical description; Lavigrre &Lavigne,2000;
Lavigne & Denis, 2001 for computer implementation and simulations of semantic
anticipatory processes).
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The proposed neural network rnodel is an elaboration of Lavigne & Denis model
QaÛl; see Lavigne & Lavigne, 2000; Brunel, 1996), in which transduction (transfer)
function parameters and leaming parameters can be varied to fit the process to modelize
(see Lavigne & Denis, 2001 for prevous simulations);

The network is a fully connected network of excitatory,p., and inhibitory 6y neuronS,
with equal probability of having a synapse on any other neuron (connectivity parameter
c = 0.3). The network has then Spp excitatory to excitatory synapses, Sp1 and S1e
excitatory to inhibitory and inhibitory to excitarory synapses, and Sn inhibitory to
inhibitory synapses. Excitatory neurons code for events perceived by the network and
inhibitory neurons prevent runaway propagation of activation throughout all the
excitatory neurons and maintain stable states in the network.

Neurons are connected through four types of pre-synaptic () to post-synaptic (i)
synapses. Synaptic efficacies correspond to post-synaptic potentials (mV) provoked by a
spike, and are initially randomly defined as Jijee (excitatory to excitatory), Jijr-r mv
(excitatory to inhibitory), and JrJrE=JrJn (respectively inhibitory to excitatory and
inhibitory to inhibitory), with a synapric variability taken to tre Â=J.

All neurons in the network are leaky integrate-and-fire neurons converting input
currents I (mV) in firing rates vi (spikes.s-1), according to the transduction (transfer)
function

vi : dl) =O ff 1o.rtr + [0 a1@] + ilJ ff rrt rr + [3] 4 ff trz.*.r

approximating Brunel's (1996) values for Ricciardi's (1977) transduction function, with
llrt,.t ,r -- 1 for the corresponding intervals of I" O if not.

A neuron receives a total input intensity

Ii162i =lirc,tt + tpDviæJiioi* qE\atJiyt* t,,,li,u,+t5pEv1rsrJy,5p, * T5rEvi,51-r146\.t (2)

1i,",,, is the external input current received by 50% of the newons from the other
cortical areas outside the netrvork. csh.,6Jy6, is the intemal input current received by
the neurons from excitatory neurons; and r1Evi,rJii,r, is the internal input current
received by the neurons from inhibitory neurons; with 15 and 4 the time constants for
excitatory and inhibitory neurons respectively, v; the spike rates of neuron i and s and Jii
the synaptic efficacies from neuron j to neuron i. r,,,li,u, is the external input current
when an event p is perceived, applied to excitatory neurons coding for the
corresponding event 1t r,,, is the time variable slowly increasing with perception
duration (t) of the event, which guarantees slow spike rate dynamics during event
perception.

Two types of sensory neurons (positive or negative excitatory neurons on attractor
neurons, 5p ônd 55 respectively) code for the affective valence ofperceived events (see $
2. and 3.), transmitting 4pE vj6pJij6p) or rs-rJ vi6iliiqst;t (internal input currents from
excitatory sensory neurons coding positive or negative events, respectively).

Synapses connecting excitatory neurons (Jrs) coding for perceived events are plastic
and sensitive to hebbian learning. Synaptic dynamics incorporates both associative long

( l )
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term potentiation (LTP) and depression (LTD) defining modifications of the synaptic
efficacies Jr.;between neurons j and i (Amit & Brunel, 1995; see Lavigne & Denis,2001
for an implementation ):

r47lo dt : -Jij *C.ij *Jo t

calculated in the network as in Lavigne & Denis (2001)

Ji11u1 : (t" I)Jçu, t, 4 (-1i11, T, *Jç 1 Tç

(3 .1 )

(3 2)

J4vary according to the time constant r". Jo t takes the minimum or maximum values
when Ju crosses (getting respectively lower or upper) a threshold w;i, which
stochastically vary between Jo + 0 and J' - 0,with steps of (.

Potentiation or depression of the synapse is given by the values of (-.,,,, defined by the
Hebb leaming rule according to Brunel (1996):

('.,11ti : A+virt, lj1r, - lJ vi,,, * l'1ntl (4)

viltt and, uiltt îrE the spike rates of neurons i and j respectively, and À*and ),-are the
potentiation and depression parameters respectively.

Each cycle in the networli consists in a random updating of the spike rates of the
neurons as a function of the intensities the1" receive. In order to simulate slow variations
of attentional activation of the attractors in the network, slow network dynamics are
guaranteedby avariable increase ofinput intensity li,r.

Before learning, the network has no structured attractor corresponding to events
stored in memory. After learning of sequences of events, learned attractors coding for
each event correspond to neurons activated by the event, which are strongly associated.
When perceiving the corresponding event, neurons in a same attractor transmit
activation within the attractor, the activation being sustained and progressively
decreasing through time after removal of the perceived event.

This recurrent model codes in memory internal representations of dynamic
sequences of events. The model can then perform a spatial associative coding in
memory of temporal sequences in the environment. In this anticipatory attractor neural
networks, event's meanings are coded as patterns of activation across a subset of
excitatory neurons of the entire network, inhibitory neurons preventing from runaway
excitation in the network.

2 Anticipations Based on Learning by Classical Associative
Conditioning

How classicul conditioned learning allows prediction ol'events adapted to context'/
To allow anticipatory processes in dynamic memory, associative learning of

temporal sequences is a key properfy to associate anticipated events to perceived
contextual events. Associations between representations of events in memory code the
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temporal co-occulrence between the events perceived in the environment (Sun & Giles,
2001; Wang, 2001; Hopfield & Brody, 2004, 2001; citations Wang;). The more
frequently two events are encountered as co-occurrent in the environment, the more
their representations are associated in memory (Conrad, 1972; Freedman & Loftus,
1971; Landauer, Foltz, & Laham, 1998; Perlmutter, Sorce, & Myers, 1976; Spence and
Kimberly, 1990 for studies on word meaning associations; see Lavigne & Lavigrre, 2000
for a review). This is closely related to classical conditioning, in which two events
frequently co-occurrent in the environment of a living system are associated in memory
(see Macintosh; 1983). Indeed, Since Hebb's first proposal, numerous researches in
neurosciences have demonstrated that co-activated neurons increase their associative
strength (Long Term Potentiation), whilst neurons associated but not co-activated
decrease their associative strength (Long Term Depression; Brunel, 1996). The basic
principles of Hebbian like rules of neuronal leaming can account for associative
conditioning as well as forgetting, and are extensively used in neural network modeling

lVithin the recurrent network presented (Lavigne & Lavigne, 2000; Lavigne & Denis,
2001), classical conditioning can be accounted for by associative learning of co-
occurrent events: Given an Unconditioned Stimulus (US = 'a rattle sound in the bush')
and an Unconditioned Response to this US (tlR = 'to walk back away from the snake'),
learning by classical conditioning consists in presenting a Conditioned Stimulus (CS =
'a shout') preceding the US in a sequence. The CS is then leamed as warning signal of
the US, until the association between CS and US in memory is strong enough to allow
the CS alone to trigger the UR (which then become a CR). Then Learning by classical
conditioning allow every learned event (CS) to become a contextual cue to run
anticipations of probable upcoming events (US) to trigger adapted behaviors.

2.1 Anticipations from Polysemic Events

To accomplish behaviors adapted to complex contexts in the environment, a
cognitive system must be able to adapt its anticipations to several contextual events.

In absence of strongly predictive context, models of context-independent processing
propose that an event's associated meanings are all activated in memory (see Onifer &
swinney, l98l; Swinney, 1979).Indeed, most events are polysemic and can activate
several different anticipations in cases when classical (pavlovian) conditioned leaming
previously led to associate the event (e. g., 'a brushing sound in the bush') with several
and different co-occurrent events (e. 9.,'snake' and 'lizard' respectively). The
advantage of activating all meanings associated to the perceived event would be to
reprcsent its whole meaning (e. g., both a 'snake' and a 'lizard' can make 'brushing

sounds'), and prepare behavior to every possibility. However, anticipated behavioral
responses, adapted to the different meanings of the event, can be incompatible with
each other if impossible to be made at the same time (e. g., 'to walk back away from the
snake', or 'to take a photo shot of the lizard'). Given that the polysemy of a single
contextual event can lead to ambiguous anticipations of incompatible behavioral

257



responses, the most adapted response must be selected on the basis of further contextual
cues (e. g., 'a rattle sound' specific ofa rattlesnake).

Given that several contextual events (e. g.,'a rattle sound' and'a brushing sound')
can be associated to a same one (e. g., 'a snake') by classical conditioning, a cont€xt
dependent view of semantic anticipations would posit that several contexhral events can
be strongly predictive and allow the cognitive system to anticipate only the behavioral
response appropriate to the set of events (e. g., 'to walk back away from the snake'; see
Lavigte & Dubois, 1999; Lavigne, Vitu & d'Ydewalle,2000; Tabossi, 198Ea,b; Tabossi
& Zardon, 1993). Cases of strongly predicting context would allow the system to
anticipate only the part of the event's meaning adequate to the multiple contextual
events in order to run anticipations, without the need to select the appropriate one
among the whole set of anticipated responses (see Lavigne & Lavtgne,2000 for a
review).

To account for context effects on anticipations from ambiguous events, the model a
neuron receives a total input intensity

Iipl; =lipxri + rsXvi1ry'ij1ry- QEvigy'rg,+ r1,y'iça+cspEvirspy'Ursn + 4yEvi1suy'11su) Q)

with rso = rsr =O,which means that excitatory neurons cording for events do not
receive any activation from sensory neurons.

Network Cydes

Figure l: Activatory anticipation of event I associated to both the perceived ambiguous
event and the context; at the expense ofevent 2 associated only to the ambiguous event.
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2.2 Anticipations from Positive and Negative Event

Some events perceived in the environment are unlearned reinforcers (e. g., 'food' or
'pain') which lead to affective states genetically programmed to trigger automatic taxes.
The event's affective valence trigger behavioral responses orienting the system toward
positive-appetitive events (approaching behavior) and away ofnegative-aversive events
(avoiding behavior; see Rolls, 1999). The positive or negative valence of unlearned
reinforcers (e. g., 'food' or 'pain') can be associated to learned secondary reinforcers (e.
g., 'places where there is food' or 'dangers which cause pain') by classical conditioning
rvhen the two events are frequently temporally correlated.

With regard to their affective valence, some events (e. g., 'going to the mountain')
are ambivalent and can lead to qualitatively different anticipations of positive or
negative associated events (e. g., respectively, 'enjoying a picnic with friends' or
'risking a fall from a cliff ). Semantic anticipations (i. e., priming, that is the facilitatory
effect of a prime 'mountain' on the processing of an associated target 'summit', see
Neely, l99l; Lavigne & Lavigne, 20001 are stronger when prime and target events share
the same affective valence (Bargh, Chaiken, Govender & Pratto, 1992- De Houwer,
Hermans & Spruyt,2001; Fazio, Sanbonmatsu, Powel & Kardes, 1986; Hermans, De
Houwer & Eeleq 1994; see Fazio, 2001 for a review). Then the affective valence of a
contextual event (e. g., 'enthusiastic and hungry friends' or 'a vertigo at looking over a
clifl) can automatically, involuntarily and rapidl-v elicit different emotions in an
anticipatory rvay (Bargh et al.,1992. Draine & Greenwald, 1998; Hermans et al., 1994;
Fazio et al., 1986; Klauer, Rossnagel & Mush, 1997). Such induced positive or negative
mood qualitatively modulate the type of anticipations toward the corresponding event
(respectively 'enjoying a picnic with friends' or 'risking a fall from a cliff ). These
semantic and emotional anticipations rvould allow the system to get ready for either
positive or negative events (see Fazio, 1995, 2000, 2001; and Rolls, 1999, for reviews).

Furthermore, with regard to a given event (e. g., 'going to the mountain'), the
affective valence ofa context (e. g., 'enthusiastic and hungry friends'or'a vertigo at
looking over a clifP) elicit different affects influencing the quantitative amount of
anticipations, which are stronger in positive than in negative emotions. Indeed, semantic
priming is observed in positive context but not always in negative context (Htinze &
Hesse, 1993;Hârue & Meyer, 1998; see Fazio,200l} This would lead the system to
anticipate more in positive emotional states, allowrng automatic intuitive and creative
processes (Fiedler, 1988) in safe grnd unproblematic situations which doesn't need
changes in cognitive anticipations (Clore, Schrvarz & Conway, 1994; Schwarz,1990).
However negative emotional states would lead to more controlled and effortful
attentional processes allowing detail-oriented representations of perceived events
without anticipations in dangerous situations (Frijda, 1988; Schwarz & Bless, l99l;
Schwarz, 1990; see Hànze & Meyer, 1998).

To account for stronger anticipations from positive than negative events, a neuron
receives a total input intensity
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Ii6ot1 :Iis'r) + rpEvi1ry'41zt - qEygy'11,11 + Q{i1p1+rsrEvigprlurspt + rsuEvjrsuy'ijyut Q)

with r51" ; trsÀ. È 0, which guarantee that positive events are more activated than
negative events and lead to strong associative leaming and anticipations, since negative
events lead only to weaker associative learning and anticipations.

Activation of Positive and Negative Evenls Associated to Ambivalent Event
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Figure 2: Activatory anticipations of positive and negative events from perception of an
ambivalent event as a function of a positive or negative context.

3 Anticipations Based on Learning by Operant Instrumcntal
Reinforced Conditioning

How operant rei4forced corulittumed learning allows adaptetl untrciputions ol
behqviors?

Classical conditioned leaming allows to anticipate events as a function of the
emotional state induced by the perception of an event (see Rolls, 1999). This allow the
system to get ready for either positive or negative events (e. g., 'enjoying a picnic with
friends'or'risking a fall from a clifF: see Fazio,200l). However this does not
automatically orient behavior toward positive events or away of negative ones (e. g.,
'how to enjoy a picnic with friends' or 'how to avoid a fall from a clifl-1. 

-l'o 
tngger

adapted behaviors from both positive and negative events, the cognitive system must be
able to associate adapted actions with perceived events. This can be accomplished by
natural selection of neural networks as well as by instrumental reinforced learning (see
Rolls, 1999) allowing emotional decisions (Bames & Thagard, 1996; see Damasio,
1998).
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3.1 Anticipations of Actions Adapted to Positive and Negative Events

A first case of learning consists in natural selection behaviors adapted to the
system's environment (Darwin, 1859). This would be achieved by selection of
genetically coded neural networks (see Rolls, 1999). These elementary networks allow
living systems to anticipate (approaching or avoiding) behaviors adapted to primary
reinforcers (e. g., respectively 'food' or 'pain'). This can be accomplished by
genetically coded associations between sensory representations ofprimary events and
simple reflexlike behavioral responses. Sensory representations (e. g., 'smell of food'
or 'pain') induced by the perception of events (e. g., respectively 'food' or 'a bite')
activate representations of approaching or avoiding behaviors (e. g., respectively
'tasting the food' or 'moving in the opposite direction of the bite').

To account for automatic behaviors to perceived events, neurons triggering
approaching (eà or avoiding fuy) behaviors are directly and automatically activated by
(respectively positive and negative) sensory neurons by strong and non-plastic synapses
Jy1sp1 {td J41sut, according to

I i 6otAp) = rspE vi6ry' 47se1 - tsyE virswy' uan
Ii oouv) = - tspZ vi6ry' ii1sr1 * rsyE viqxy' Uqlrt

This allow the model to automatically trigger behaviors to primary reinforcers that
does not need to be learned.

Positive Evt. pres. Positive Evt. remov.
Negative Evt. pres.

Network Cycles

Figure 3: Automatic anticipatory activation of (approaching or avoiding) behavioral
responses to (positive or negative) perceived events.
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3.2. Anticipations for Adapted Behavioral Responses to Positive or Negative Events

Instrumental reinforced learning allow the system to associate not only events
together (classical learning), but behaviors of the system and events perceived as
responses in the environment (secondary reinforcers). For a given event (e. g., 'going to
the mountain'), semantic anticipations (respectively 'enjoyrng a picnic with friends' or
'risking a fall from a cliff) can lead the system to anticipate approaching or avoiding
(the edge of the cliff) behaviors. They are not automatic and must be learned as a
function of secondary reinforcers. Behaviors modify the environment in which new
events are perceived as positive or negative secondary reinforcers, according to their
affective value (e. g., avoiding the cliffand 'enjoy the pic-nic' or approaching the cliff
and 'experiencing vertigo'). Positive reinforcers, or "rewards", as well as negative
reinforcers or "punishers", can elicit emotional states influencing learning and behavior
(Millenson, 1967; Weiskrantz, 1968; Gray, 1975, 1987; Rolls, 1986, 1990, 1999).
Neuronal learning allows the system to vary the frequency of a behavior in order to
obtain a "reward" and avoid a "punisher". To this aim associations between a given
behavior and a reinforcing event are strengthened in positive emotional states and stable
or weakened in negative emotional states; by the way of increased neuronal activations
in positive emotional states compared to negative ones (see Rolls, 1999 about the neural
basis of learning in positive and negative states).

To account for behavioral responses of the network that are not automatic reflexlike
responses to primary reinforcers, but are learned behavioral responses to secondary
reinforcers (i. e., activation of the atffictor neurons 3r: coding for a behavior), neurons
triggering behaviors are directly activated by sensory neurons according to

IixotBE) = Iip*t* rpEviqy'tirr) - QEvt6y'rO,+ tny'i1p+ tspEvi1sr;Iiilsrt+ tsnEvi$ry'ç6Nt Q)

with r5p :'' rs,\ Ê 0, which guarantee that positive events are more activated than
negative events, and with positive sensory neurons presenting a sustained activity
(vlsrt > 0 positive even ifno event is presented) since negative sensory neurons do not
(vi1ss,4 ifno event is perceived). This lead to stronger activation and then to stronger
associative learning when a positive reinforcer ('reward') is presented to the network
than when a 'punisher' is presented. When no reinforcement is given to the network, the
spontaneous activity of positive sensory neurons leads to stronger associative leaming
when the perceived event leading to behavior is positive than when it is negative.

This guarantee that when an event is presented, the network can activate more
strongly neurons coding for behaviors leading to positive than to negative secondary
reinforcers.
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Activation of positively & negatively reinforced behaviors by ambiguous Evt

--+- Pos. r€inforced beh.
-- Neg. reinforced beh.

Ambiguous Evt pres

Network Cycles

Figure 4: Activatory anticipations of (either avoiding or approaching) behaviors from
the perception of an ambiguous event, as a function of the learned reinforcement of the
behaviors by positive or secondary reinforcers.

4 Anticipations Learned by Mimetic Learning

Emotional states, elicited by the affective value of perceived events, can influence
the strength of associative learning as well as the type of dynamic anticipatory
processes. Associative learning and anticipations are qualitatively modulated by both
the type of contextual events and the type of emotional states elicited by the affective
value of contextlnl events. They are also quantitatively modulated, being stronger in
positive emotional states than in negative ones. In addition, reinforced leaming allow
the system to anticipate adapted behaviors, approaching positive events and avoiding
negative ones, as a function ofthe emotional states elicited by the perceived events.

Furthermore, mimetic leaming (Billard, 2001; Billard & Hayes, 1999) can involve
both types of associative and reinforcement learning. This would consists in considering
as events in sequences for a given system (i) events perceived by another systan, (ii)
behavioral responses of the other system, and (iii) the reinforcing events to this other
system. These sequences can be learned by associating in memory events and behaviors
that are not directly behaved by the system, which lead to reproduce the same behaviors
as the ones of the observed system when the same context is perceived, without the
need for the system to experiment by itselfthe behaviors in response to the perceived
event. Even if mimetic leaming allows learning without the need of direct experiment,
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it does not guarantee adapted behaviors in cases when the reinforcing events cannot be
observed but have to be directly experienced.

In order to both improve performances of the model and to modelize alarger variety
of learning such as mimetic learning, further modifications of the network are necessary
such as adding neuron coding behaviors to actually perform that are different from
neurons coding for possible and incompatible behaviors.
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