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Abstract

Because a scalar potential of a gravitational field has a unit of a specific energy (J/kg),
the problem of unification of potential fields has been transformed into the problem of
unification of specific potential energies of a particle in a multi-potential field.
Consequently, the parameters cr and a' of GLT model become the functions of a
unified specific potential energy in a multi-potential field. Since all items like field
tensors and Klein, Gordon and Fock equation are functions of parameters ct and o.' ,
these items can be applied to multi-potential fields. Thus, a field tensor of a unified
specific potential energy of a particle in central symmetric electromagnetic and
gravitational fields in vacuum is derived. Finally, it has been shown that a momentum
equation of photons will remain unchanged even if the photons may have the mass.

Keywords: Scalar and Vector Potentials of Gravitational Field, Unification of Specific
Potential Energies, General Covariant Energy Equation, General Klein, Gordon and
Fock Equation.

I Introduction

There have been many attempts to create a unified theory of all fundamental laws of
physics I1,2,3 ..]. The main problem is to put together General Relativity and Quantum
Mechanics into one self consistent theory. The most popular candidate for the unified
theory is Superstring Theory, in which all particles are just different vibration modes of
very small loops of string. It is expected that a unified theory exists at the Planck scale,
where all forces of nature are unified and quantum gravity is significant. If a unified
theory can be constructed at all, then the first step should be a unification of specific
potential energies of a particle in multi-potential fields. This paper presents one of the
possible ways to create it. Starting with the new General Lorentz Transformation model
(GlT-model in [4,5] ) a general covariant energy equation and general momentum and
Klein, Gordon and Fock (KGF) equations have been derived as a functions of two
parameters s and a'. If the particle is in a multi-potential field, then parameters a and
a' are functions of unified specific potential energies of that field. Thus, the point is to
find out these functions. It has been done firstly for gravitational and electromagnetic
fields and than has been generalized to a multi-potential field. In that case the
generalized covariant energy equation and momentum and KGF equations are valid for
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a multi-potential field. Thus, the covariant energy equation of a panicle in a
gravitational field is obtained from the generalized one, after substitution of the
identified parameters o and cl' from the well-known Einstein equation of a gravitational
freld [5]. Comparing the covariant energy equation of a particle in a gravitational field
with a related one of an electromagnetic field, we derived, on the natural way, scalar
and vector potentials (i.e. a four-potential vector) ofa gravitational field. Since a scalar
potential of a gravitational field has a unit of a specific energy (J/kg), the problem of
unification of potential fields has been transformed into the problem of unification of
specific potential energies of a particle in a multi-potential field. This was very
important step of our investigation, because it makes an ability to unification of specific
potential energies of a multi-potential field, and gives more symmetry between
gravitational and electromagnetic fields. This symmetry makes the possibility to create a
new form of tensor of a gravitational field, Maxwell like equations of a gravitational
field and, what is very important, an application of usual quantisation methods to a
gravitational field (let say a canonical quantisation ofan electromagnetic field [6]). In
the case of the Newton limitation (v << c) , this model is reduced to the well-known
Newton model of a gravitational field, what we expected that should be.

The second aim of our investigation was to create procedures of unification of
specific potential energies of a particle in a multi-potential field. This paper approach is
based on the fact that parameters cr and cr' are fi,rnctions of a state of a specific potential
energy of a particle in each space-time point. Generally, a particle can be in a multi-
potential field with n-different potentials. Here we have the problem of unification of
all specific potential energies of a particle in that multi-potential field. This problem has
been solved by an introduction of so called a specific potential energy four-vector of a
certain multi-potential field. These specific potential energies have been defined in the
form that enables to add all specific potential energies of a particle in a multipotential
field. The next step was to connect these specific potential energies with parameters q,
and cr' through the corresponding mathematical relation. Since the all items like field
tensors, field equations, €nergy equations and so on, can be described as functions of
parameters o and o', these items become the functions of unified specific potential
energies of a particle in multi-potential field. As an example, the field tensor of unified
specific potential energy of a particle in central symmetric gravitational and
electromagnetic fields has been derived.

In order to connect this approach with the Quantum Mechanics it has been derived a
general energy-momentum equation, a general frequency - wave lenglh relation and a
general quantum Klein, Gordon and Fock (KGF) relativistic equation [7,8], as
functions of parameters c and cr'. These items have been derived by employing the
general non-diagonal line element of GLT model given in [5]. Thus, the mentioned
items are valid for a particle in a multi-potential field, after including the parameters a
and cr' as functions of a unified specific potential enerry of that field. Since the general
non-diagonal line element can be the starting point for derivation of a related wave
function of a particle in a multi-potental field ( including gravity), it seams that a
general line element could be the candidate for the basic element of superstring theory.
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A special attention has been devoted to the momenûrn equation and energy-
momentum equation for particles with velocity equal to the light velocity in vacuum
(i.e. v : c). It has been shown that momentum and energy-momentum equations of
photons and gravitons will remain unchanged, even if the photons and the gravitons
may have the mass (m. * 0). It opens the possibility that photons and gravitons may
really have the mass.

2 Derivation of General Covariant Energy Equation

The parameters a and cr' in Gl.T-model [4,5] define observation signal velocities in
systems O and O', where the system O' is moving relatively to the system O with an
arbitrary velocity v, along an arbitrary radius vector r. Thus, one can define that an
observation signal (which is a bearer of information) has the velocity cc in system O,
and cr'c in system O', where c is a constant reference sigrral velociry (et say c is a speed
of light in vacuum). Generally, the parameters cr and c' are functions of the space-time
coordinates:

a= f(d,x,y,z),  a '-  f ' (cf  ,x ' ,1 ' ,2 ')  ( l )

In the GlT-model, it has been employed (for the convenience) the parameter ô, where
ô = l, if an observer signal is emitted from the origin of the system O, and ô: -l if an
observation signal is emitted from the origin of the system O'.
Thus, the covariant energy equation can be derived from a general covariant metric
tensor of the full form of the Gl,T-model [4, 5]:

where the elements b*, b, and b, are given by the equations:

where mo is a particle rest mass, v is a
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Now, the general form of the covariant energy equation E. , can be derived by the
procedures:

Po =  go t  P j ,  j  =0 '1 ,2 ,3 ,  Po =-P0 +brPt  +brPz +brP3,

Po =  H  moJod  , ,  P i  =  H  mov i  , ,3 .  E"=-P .J ;Ac ,  @)

l
J
velocity, Pi , i = 0, l, 2, 3, ate

E"=Hmoloo ' r ' *6 ( o  -
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t-
c6ntravariannt momentum components, Ps is a zero-component of a covariant
momentum and parameter H is given by the equation:

H =1 [ t  -- f- :  * a (o - o'  - \" '  u l ' ' '
I aa'c" dd'c' J

It is easy to see, that in the case c[ = ct' = 1 (there is no existence of any extemal
potential field), the covariant energy equation (4) is transformed into the well-known
Einstein's energy equation E:

E " = E = H m o c 2 ,

3 Derivation of Four-Potential Vector of Gravitational Field

The observation signal velocity depends on the state ofthe specific potential energy in
the field in which it is propagated. Thus, the pammeters cr and a' satisff the Einstein's
field equations of a gravitational field if they have the form [5]:

6=1,  d= l+4= t -OY,  d '=1 ,  ô=-1 ,  d=1 ,  o '=1*4=1-GY,  ( j )'  
cz rct c' rc'

where / = -GM lr is a scalar potential of a central symmetric gravitational field. On
the other hand, the parameter o and cr' satisff the covariant energy equation (4) if they
have the form:

/  )  \ l l 2

H=T =rr l  r -Ç |
\  c - )

(s)

(6)

ô=1, cr=1- j5,  a. '=1,  ô=-1,
DoL

d.=1 ,  0 . '= l - -9Y- ,14 ;
hoc-

where I/ - qrlr is a scalar potential of a central symmetric electromagnetic field and q

and q, are a particle and a potential source charges, respectively. Applying the
parameters cl and c' from (7) to the E. equation in (4) we obtain the covariant energy
equation of a particle in a central symmetric gravitational field:

In tlte case of a free
u = D . f = - G M l r c ,

E" = Hl *0", - moGM - *rY'u 
l.  (e)

I  r  z r c  I

fall motiÀ in a central symmetric gravititional field we have
and (9) is transformed into the form:

E" = Hl *or, - moGM . Y:(W\'l-  
L  

-  r  z \ rc ) )
(10)

From (10) one can recognize a particle rest mass energy ( mo"2 ), a gravitational
potential energy (- moGM / r ), and a gravitational kinetic energy (m"(GM I r c)z I Z 1.
On the other hand, applying parameters cr and q,' from (8) to the E" equation in (4) we
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E"=Hl*or'- qlt - #l
ln the case of a free fall motion in a central symmetric electromagnetic field we have a
free fall velocity u=uî =-qV lmsc, and(11) istransformedintotheequation:

E" = Hl*r", - qv + mokv lmoc)'zf.

From (12) one can recognize a particle rest mass energy ( moc' ), an electric potential
energy ( - qV ), and an electric kinetic energy ( mo(qV/m"c)' / 2 ).Further, from the
equation (11) one canrecogmze a scalar potential, Au. , and a vector potential, d ofa
central symmetric electromagnetic field:

A!=v, o"=ry=+, A:=+, n:=+, n:=?,(13)
e" =[,1,d],,e!l z, =lt!,.e),.q?,,411

where l, is a four-vector of elechomagnetic potentials.
An analogous approach can be employed in a central symmetric gravitational field.

Thus, from the equation (9) we can recognize a scalar potential, AOu , and a vector
potential, Ag , of a central symmetric gravitational field:

A2=ô- -GM,  A-=Q' '  =u2 'u .  A t -=Ô,u , .  A?=ûru ,  .  f i=Le-z - .- S  '  
f  

'  - - 8  
C  C  

'  " g  
C  

'  
C  

,  " S -  
C  

t ( 1 4 )

,n, =la'r,,e|,,et"l 4, =lll,at*eZ,4I
where A, is a four-vector of a gravitational potentials. So, an unknown vector potential
of a central symmetric gravitational field has been derived on the natural way.

4 Derivation of a unified specific Potential Energy of particte in a
Multi-Potential Field
Now, the covariant energy equation of a particle in an electromagnetic field can be

described as a function of the scalar and vector potentials:

I  qd|  
" fE, = H 

lmoc 
+ oe| +lf 

),
E" = Hl*'" * ru: .+f (r5)

obtain the covariant energy equation of a particle in a cental symmetric electromagnetic
field:

where both q and A'. can have a positive or negative sign. on the same way, the
covariant energy equation of a particle in a gravitational field can also be the function of
the corresponding scalar and vector potentials:

( l  l )

(r2)
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E, = Hl*rr' +mrAor-ry1, E" =  Hl^ r r '  +moAor .O* ]  , t "

Meanwhile, the problem is in the unification of electric and gravitational potentials,
when a particle is in electromagnetic and gravitational fields at the same time. We know
that two potentials can be added, but they must have the same dimension. Therefore,
direct unification of electric and gravitational potentials can not be done, because of
different dimensions. Since the scalar potential of a gravitational field has a unit of
specific energy (J/kg), the problem of unification of potential fields has been
transformed into the problem of unification of specific potential energies of a particle in
a multi-potential field. Accordingly, one .can unify specific potential energies of a
particle in electromagnetic and gravitational fields. Generally, a particle can be in a
multi-potential field with n-potentials. Here we have the problem of unification of all
specific potential energies of a particle in a multi-potential field. This problem can be
solved by introducing a constant parameter qi , i = 1,2,. , n, in the form that satisfies
the following dimensional relation:

dim (ry, A! )= J lks, i  =1,2,.. . ,n, (17)

where J means the energetic unit joule. The term q,A! we called a specific potential

energy of a particle in an i-th potential source. Since, all pafus 4,A! have the same
dimension (17), they can be added in order to derive a unified scalar specific potential
energy A':

1o  = ln ,A ! ,  i  =1 ,2 , . . . , n ,

where both e, ffid Al can be positive or negative terms. Consequently, a unified three-
vector of a specific potential energy, A, has the form:

(1 8)

A=+=[? r,u:) =I(q,Ai.T).  (re)

The corresponding unified four-vector ofthe specific potential energy, A, is described
by the relation:

A=fAo,At ,A ' ,A t f  =  fn ' ,a ' ,Ar ,A"  f . (20)

This approach ofunification ofscalar and vector specific potential energies ofa particle
in a multi-potential field, can be applied to the unification of scalar and vector specific
potential energies of a particle in electromagnetic and gravitational fields. It is easy to
see that the term qrA0* of a central symmetric gravitation field satisfies the dimensional
relation (17) if the parameter Tl, = 1, and Ao, : - GM / r, . On the other hand, the

term q.A0" of a central symmetric electromagnetic field satisfies the dimensional
relat ion(17)i f  theparameter 1'1" = T (q/mo) = T G" = coûSt. ,andA0r=Qs/re,
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where the sign of 11" is negative or positive if q is negative or positive charge of a
particle with rest ûl€rss rn6, -d q, is positive or negative charge a potential source. Here
both q *d q, are in units (kgm)tnmls. Thus, the specific potential energies nrA! and,

r7"A! arc given by the forms:

GMtlrA! =

Ao = n*A! + I,A: = -ry + G'9' .
te re

- -  r o  :G .Q .
,  T l "A ;  =  + -  ,

re

D f f " = ç G t Q '  ,
f.c

(2r)

(22)

(24)

lo

The unified specific potential energy of a particle in central symmetric electromagnetic
and central symmetric gravitational fields is given by the relations (18) and (21):

where G. is a constant ratio of a particle charge and mass, r* is a radius of a particle
position in central symmetric gravitational source and r" is a radius of a particle position
in central synmetric electric source. The related unified three-vector of the specific
potential energy of a particle in central symmetric gravitational and central symmetric
electromagnetic fields can be obtained by using (19) and (21):

.  cM G.q" f  -cvr c^ \
d=_v - . ^ . u+  

-eas .u= |  - ^ ' ^ I : _ f l 1  
l . u .  ( 23 )

f g c  f r c  \  r e c  f . c  )
Since the velocities of the free fall motions in central symmetric gravitational and in
central symmetric electromagnetic fields are given by the relations:

GM
Df fe  =  - -  

,- fo0

one can conclude from (23) that the magnitude of the three-vector of the unified specific
potential energy is, in fact, a scalar product ofa unified free fall velocity and a particle
velocity in a certain multi-potential field. Following the previous considerations one
can, generally, define the content of the parameters û, and cr' for a particle in a multi-
potential freld :

1 0

ô =1,  d  =  1+! ;  =  t+ \  q , , .1 !  l cz  ,  d . '  =1 ,  6  =  -1 ,  d=1,  a ,  = l+ l r . l , , l !  t c2  ,c t  ,  i , ,  
, ç t zs1

where both e, ffid A! , i = 1,2, ..., n, can be positive or negative terms. It is ease to see

that all terms (q, A: / cl are non-dimensional terms. Applying a and cr' from (25) to the
E" equation in (4) we obtain (in both cases ô = 1, and ô: -l), the general covariant
energy equation of a particle in multi-potential field:
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n" = n*ol(.*{1"' *n'=''1,
L \  c - )  zc  I

," = r^,1('.#)u .+f, E" = Hl*'"' * moAo +ry1
(26)

On the other hand, if we know a potential energy of a particle in the i-th potential field,
U; , then parameters o and cl' in a multi-potential field have the form:

6 =1 ,  d  = l+ r ,3 r ,  d ,  = l  ,
i  l f ly C-

ô = -1,  d  = l  ,  d '  = l+. I4  ,  i  =1,2, . . .n .  
Q7)

7  *o r "
In that case unified scalar and vector specific potential energies of a particle in a multi-
potential field can be calculate by the relations:

n'=4*,,

E"

^=(4u^)ï , (28)

where U;/ mo means a specific potential energy of the particle in the i-th potential field.
If a particle is in elechomagnetic and gravitational central symmetric potential fields
then parameters ct and cr,' are calculated by employing the relations (22):

Thus, for a particle with negative or positive charge q, v/ith rest mass m6, moving in a
two-potential elecfiomagnetic and gravitational central symmetric field with a velocity
v, the covariant enerry can be calculated by the equations (4) and (29), or (22) and (26):

E,=Hl^or ' -moGM + qq"  -  \ :cu . ,  +  3 !o .u1,  (30)-  
L  r e  r e  2  r r c  Z r " c  ) '

where parameter H has to be calculated by employing A0 and A from (22) and (23),
respectively, and the equation :

ô=1, q=t-ry+G.1,-, cr '=1,
fgc- f"c-

ô = -1, cr, = l ,  s. '  =l-ry+ G'1'.
,r"' t"c2

H='/l'-;3.#n]

(?e)
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Renarks. One can choose parameter l. = T G. = T (qq, / m"mr) = const., and
AI = t^o, / r", where m, is a mass with charge ç. In thar ôase aim(G1 = dim(ô.1 =
m3lkgs2. If m, : M, and re = rs = r, then a trnified specific potential energy of a particle
in electromagnetic and gravitational fields can be calculated by the relation:

(32\

where Gu is a unified constant for related electromagnetic and gravitational fields.
The second remark comes from the covariant energy equation of a particle in multi-

potential field (26). Compare this equation with the E" equation in (4), one can derive
the following relations:

dd'=t+\ lr t , ,a!,  6 (a -a')=IZr,n! ,

Ao= nrA! +q"A: =(-c+ o.)T-c"T,

d d , '  = l * { ,

d a '  = l * {  ,

d (o -o)=$,

6(a  -a ' )c 'u  =  A

(33)

Since the elements scr' and ô( a - a' ) are constituents of the iterns like a general line
element, the Einstein field equations, the Maxwell equations, the general momentum
equations, the general quantum relativist Klein, Gordon and Fock equation (KGF-eq.)
and so on, it seams that the relations (33) can be employed for a unification of the
Einstein Special and General Theory of Relativity and Quantum Mechanics. Thus, this
approach maybe opens the possibility to create the so cold unified (final) theory in
physics.

5 Derivation of a Field rensor of Unified Specific potential Energy of
Particle in a Multi-Potential Field
In order to derive a field tensor ofunified specific potential energy ofa particle in a

multi-potential field one can start with the unified scalar and vector specific potential
energies given by (18) to (20). Following the procedures for derivation ofa tensor ofan
electromagnetic field, the components of the field tensor of a unified specific potential
energy of a particle in a multi-potential field can be calculate by using the equations:

,0, = -(+..' +], Fio = -Foi , i =r,2,3,
\ cDr ox- )

,u  _ôAr AA', - -I-î- l-7, i ,  j  =1,2,3, Foo = 0 ,
ox ax'

(34)

x = f*0,*',*',*tl = Ll.,tn, x, y, zf .
As the result of that calculation we obtain the field tensor of a unified specific potential
energy of a particle in a multi-potential field in the form :
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F u =
0 Ft2

-F t2  0

Ft, _ F2t

It is easy to see that the dimension of Fu is given by the relation:

FO'.F0lIo
I

l - "0 '
I  n02

l - f
I n03
L-.r

r*l
-r.' l
""10J

(3s)

a im [ r ' u ]=  
J  - \ = * .-'^'^r t kg, kg .i"

(36)

where N means Newton (i.e. the basic unit of a force). Thus, the field tensor of a unified
specific potential energy of a particle ii a multi-potential field is the tensor of
accelerations. As we expected, this tensor is anti-symmetric, and has the trace equal to
zero. The corresponding unified acceleration field is described by the relations:

Fo = ho,, Fo, , Frtf , Ft =LFrt , Ftr, Frrl, (37)

where F0 is a three-vector related to the time-space coordinates, while Fl is a three-
vector related to the space-space coordinates. Generally, following the analogy with an
electromagnetic field, the three-vectors Fu and Ft of a unified acceleration field in a
vacuum, can be calculated by the equations:

-Fo = - grad Ao - F t  = ro t  A  , (38)

where F0 and Fr are given by (37), and A0 and A are presented by (18) and (19),
respectively. Since the field tensor of a unified specific potential energy of a particle in
multi-potential field is given by (3a) and (35), one can derive the Maxwell's like
equations of a that field in a vacuum in the tensor form, following the related relations
for an electromagnetic field in a vacuum:

FP' ,v =0 , Fr, = googrpFoq ,

Fpr;r  *  Fr)" :o * Frp:r=O, l t ,v, l  =0,1,2,3, 
(39)

where Fpu and Ftsn are covariant and contravariant components ofa field tensor given
by (3a) and (35), and gpu is a metric tensor obtained by substitution parameters cr and
c' from (25) into the equations (2) and (3).

Now, one can use the previous procedure for derivation of the field tensor of unified
specific potential energy of a particle in central symmetric electromagnetic and
gravitational fields in vacuum. For this purpose we shall start with the calculation of the
elements of that tensor, employing (22), (23) and (34). Thus, the three-vector F0 related
to the time-space coordinates is given by the relations:

ôJaa'ct '
AA
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The components ofthe three-vector F' related to the space-space coordinates are given
by the equations:

__af,-crr,r=G"e,) _ a [ [-o*=G"q.)
e ( t re ,/ aJaatt l[ t re )_

__ô[__ga=G"q, ')  _ a [ [-or=G.q,)
tu[ t re .1 afiAtt[l. t re ),

F03 : - a ( - cv* g,g"l - --a--[[- ot = Eq)
ar I t re J AJacr'ct l[ t re ).

F2, =g[[-SU * g,g") ,'l_ u [f - or = G"q.)
aylt t re ). cJ a'[ l. t re ),

F3, = +[f-s * %],.1 - g[[-sy * Es]
ot l \ .  t  re )*  cJ *Ll .  re re ) ,

F,, = +[[-sv * kl ql - g[t'-su * e-s)
*L\  t  re  )y  " l  

cYL\  t  re  ) *

Fot ,r. I;-J,
u''.l, ,oo,
"J

,r" I- t .
c l

, t l-b

"J
u'l-  l ,  ( 41 )
cl

,r- I
_ l

I 'cJ

In order to calculate the tensor components Fuu by employing (40) and (41) one has to
know for the each concrete case the relations:

r" = .f"(*,y,t) , rs = f, (x, !, z) , (42)

related to an electromagnetic potential source, and to a gravitational potential source,
respectively. Now, one can calculate the related Maxwell like equations in vacuum by
using (39), (a0) and (al).
Remarks. In the case where a gravitational potential source does not exist, one can put
the parameter M = 0 in the equations (a0) and (41). For that case one can cut down the
parameter G. in the equations (a0) and (41); and the equations (39) are transformed into
the well-known Maxwell equations of a central symmetric electromagnetic field in
vacuum. On the other hand, in the case where an electric potential source does not exist,
\/e can put the parameter q, = 0 in the equations (40) and (41). For that c,ase the
equations (39) are transformed into the Maxwell like equations for a central symmetric
gravitational field in vacuum. The four - force vector on a particle in a multi-potential
field and the corresponding differential equations of a particle motion in that freld will
be presented in the next paper.
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6 Derivation of General Momentum Equation and Klein, Gordon and
Fock Equation

In order to derive the general momentum and Klein, Gordon and Fock (KGF) equations,

one cÉul start with the general form of the line element, described in [5] by the relation:

- d s z  = a d , c 2 (  , -  
u '  

,  * d  
( a  - g ' ) u ) o r z  

.
\ aa'c" dd'c )

(43)

Applying the multiplication of the equation (a3) by H2 m:, where mo is a particle rest
màis, an-d dividing by df, the equation (43) canbe transformed into the form:

-n '* ' r (4\ t  =u'^tod'c2 -H'-3t f  +Hzmf;6(a-a')cu .  (44)
" \ d t  )

On the other hand, general forms of the contravariant energy E" and the momentums
P', P0, P and Ps can be described by the following relations:

(! l \ '  =(r,ï  = 
-aa'-c2 

,
\ d t )  

\  /  H '
("") '= (n^ou'l , E" = Hmoaa'c2,

Ps = Hmo6 (a -a')" ,

(45)

("')Ê = (r*,^t*"Y =#, (rf = (H*ou)',

where P is a tlree-momentum vector. Substituting (45) into the equation (44) we obtain
the general momentum equation and the general energy-momentum equation as follows:

(".)l -ef + pps = mîdat2, !4-el2 + pps = mSaa'c2. (46)
dd'c '

After introducing a new composed momentum Pk = P - Ps the previous equations can
be transformed into the form:

FtF- PPk - mf;aa'c2, ffi-rrr 
=mtaa'c2. (47)

In the case cr = o' = 1, the equations (47) are transformed into the well-known relations
in the Special Relativity:

btf  -  p2 = mî c2, ) - r '=mtc2 ,  (48)

where E" = E = llmoc2, ild H should be calculated by employing û, = û,' = l. On the
other hand the covariant energy equation E. is given by (a) and (5). Since the covariant

momentum of zero components of a four-momentum vector Po = - E" I Jaa'c, from
(4) and (45) one can derive the following relation:

22  
nnp  ,  n2 t ^2  ,  

- 6 (a -a ' \
Pî =+== (PoI + PPs + P2b2, 6 =1-

q,qc- " 2J;7
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Taking into account (49) and (46) it has been derived the general momentum equation
and the general energy-momentum equation in the form:

(50)

In the weak potential fields the parameter b' x 0, and the equations (50) are
transformed into the forms:

(P) ' -P '=mîaa 'c2 , (st)

In order to derive a general relation between frequency and wave length, one can start
with the equàtion (50). Following the well-known de Broglie relations between
frequency and energy as well as between momentum and wave length, one can derive a
general de Broglie relations in the form:

E "  = h v ,  P ( 1 + b 2 ) r t 2  = h  1 1 . , (s2)

where E. is a covariant particle energy (4), P is a contravariant particle three-
momentum (45), b is parameter given by (49), h is Planck constant, while v and l. are a
frequency and a wave lenglh. ln the case d = d' = 1, we have b = 0, and the equation
(52) is transformed into the well-known de Broglie relations in Quantum Mechanics:
E=hv, P=hl),. Substituting (52) into the second equation in (50) we obtain a
general frequency-wave length relation in the form:

| _ m2oaa'cz

f h 2

Now, one can define a general rest mass frequency:

(a)' - P'ft+n')= mzoaa'c2. 
# 

r'(t+Ê)= m|,aa'cz.

v2

Es tnnaT'c2, r=T

_ m|(aa ' ) 'co

h2

=s 
^ -pz =fftoota,c2.

d,d'c-

.  h=L.'  
2n '

qd 'c2
(53)

(55)

(s4)

Applying (5a) to the equation (53) we obtain a general relation between frequency and
wave length inthe form:

v2  _ l  =  r 3
;;F 

- 
7 -;æ

where l. and vo are given by the equations (52) and (54), respectively. In the case
d = d' = 1, (there is no any potential field), the equation (55) is transformed into the
well-known relation between frequency and wave length in Quantum Mechanics.

In order to derive the general quantum relativist Klein, Gordon and Fock equatiorL
one can start with the general relation between frequency and wave length (55).
Applying the substitutions :

vl
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to the equation (55) and using the four-vectors concept :

x -+ 0Q ad ct, x, !, r) = {*tl 
"' 

- 0'Q aal ct', x', ),', z')= {x'il i = 0,1,2,3, (57)

where X has the component in the frame 0, while X'has the components in the frame 0',
we obtain the general relativistic Klein, Gordon and Fock equation, following the usual
procedures:

- ô'Vu, ô'V(,, ô'V(,, ô'Vut mf,aa'c'
---?--------.---T ---------- T ------:- T 

--.-----_- _ -----.----7- 
v l -\,

A|adtt f  Ax'  AY" ô2" h'  
' \^ ' (s8)

Now, one can define a new space-time Laplacian Y', = L, (or the Dalembertian

operator fl):

(se)

By application of the operator (59), the equation (58) is transformed into the operator
form of the general quantum relativist Klein, Gordon and Fock equation:

-j mîaa'cz 1 ïtnJooi,
ury =v iVq,)=--hz Vç\  = I -VG),  I  =-  

h  
,

-1 a2 |  -a '  a2 ô2 a'1
u  =  v  -  = a ^  = _ = t _ _ _ _ i _ _ _ _ _ _ _ _ _ _ _  T _ _ _ _ - - T _ - _ T - - _  t .6 Ë axz lal,l""'rtf ax' ay' ô"' )

(60)

where the parameters cr and cl' include a unified specific potential energy of a particle
in multi-potential field tbrough the relations (25) and (27).lnthe case a = d'= I (i.e. if
any extemal potential field does not present), the equation (60) is transformed into the
well known quantum relativist Klein, Gordon and Fock equation in Quantum
Mechanics:

(61)

what we expected that should be. If a particle is in electromagnetic and gravitational
central symmetric potential fields, then the parameters cr and cr' include a unified
specific potential energy of a particle in that two-potential field, given by (29\.In that
case the general quantum relativist Klein, Gordon and Fock equation (60), with
parameters cr and cr' from (29), is valid for central symmetric electromagnetic and
gravitational potential fi elds.

7 About the Possibility that Photons may Hâve a Mass

Let start with the combination of the equations (44) and (45) from where we obtain
the relation :

mf,aa'c2 - *\ut + mlala - a'ft .u = mîau'ct I H' . (62)
This relation can be transformed into a new momentum equation:
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@"1 - Z' + PPs =mâaa'c2 | H2,
where the presented moments do not contain parameter H:

Po =moJâc,  P=wou, Ps =mo6(q-a ' ) " .

(63)

(64)

(67)

Since the parameter H is given by the relation (5), the momentum equation (63) can be
kansformed into the form:

@'T - ,-' + LP, = û,'(oo' -5.u@ -ï'b ') (6s)

In the region without any potential field, parameters cr and cr' satisfied the equation
c[: c[' : l, and P0 =tnoc, P=mou, and Ps =0. Thus, for that case, we have the
momentum equation and the energy-momenturn equation as follows:

(66)

where E is Einstein's restmass energy, E : moc', and P = P = tnou .
Now, generally, for the particle with a velocity v : c in the region without any

potential field, or in the potential field that do not interact with the particle (a photon in
an electromagnetic field and a graviton in a gravitational field), the momentum equation
and the energy-momentum equation have the form:

b'l -z'=*â,'(r-5),

@.of -p '=0,

4-t'=û"'(r-5),

This result is a consequence of putting v : c in (66). of course, the same result we can
obtain if we put mo : 0 on the right side of the same equations. But in that case, the left
side ofthe equations (66) is also equal to zero, because of P0: P: 0, for mo:0, and
we have a trivial solution. It seams that for particles with a velocity v = c we have
illusion that mo : 0, but it probably does not happen. In spite of the possibility that
photons and gravitons may have a mass, the equations (67) will remain unchanged.

Remarks. It has to be noticed that the equations (67) are obtained from (66) under
assumption that v = c. We did not use the assumption mo : 0. This result can be
interpreted in t}te sense that even the photons and the gravitons, may have the mass
(mo + 0), the equations (67) are remaining unchanged. This gives to us the idea that
photons and gravitons may really have a mass (no + 0). The second interpretation

could be: a) one can define the particle rest mass moment p,, : moc(l - u, t ,r)t,, , b)
when a particle has a velocity V : 0, then it has an accumulated rest mass moment
Pr': moc, and c) when aparticle has avelocity v: c the restmass moment vanishes.
Pr. : 0, but a particle rest mass remains unchanged ( mo * 0 ).
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8 Conclusion
Scalar and vector potentials (i.e. a four-potential vector) of a gravitational field have

been derived on the natural way from a general covariant energy equation. Since a
scalar potential ofa gravitational field has a unit ofa specific energy (J/kg), the problem
of unification of potential fields has been transformed into the problem of unification of
specific potential energies of a particle in a multi-potential field. This problem has been
solved by an introduction of so called a four-vector of specific potential energy of a
particle in multi-potential field. As the result of this approach the parameters cr and cr'
of GLT model become the functions of a unified specific potential energy of a particle
in a multi-potential field. Since all general items like field tensors, Maxwell like
equations, energy-momentum equation and Klein, Gordon and Fock equation are
functions of parameters cr and d' , the mentioned items can be applied to multi-
potential field. As an example, a field tensor of a unified specific potential energy of a
particle in central symmetric electromagnetic and gravitational fields in vacuum has
been derived. Finally, it has been shown that a momentum equation of photons and
gravitons will remain unchanged, even if the photons and the gravitons may have the
mass (mo*0).

Acknowledgments

This work was supported by grants from the National Scientific Foundation of
Republic of Croatia. The authors wish to thank the anonymous reviewers for a variety
of helpful comments and suggestions.

References

[] Einstein Albert (1950). Scicntific American, Vol. 182, No. 4, 1950.
[2] Weinberg Steven (1992). Dreams of A Final Theory: The Search for The Fundamental Laws

of Nature. Pantheon Books, 1992,334 p.
[3] Gross D. J. (1990). The Status and Future Prospects of String Theory. Nuclear Physics B

(Proceedings Supplement) I 5 (1990):43.
[4] Novakovic Branko, Novakovic Dario and Novakovic Alen (2000). A New General Lorentz

Transformation model. Computing Anticipatory Systems: CASYS'gg-Third International
Conference. Ed. by D. M. Dubois. Publ. by The American Institute of Physics, AIP-
CPs17, pp. 437-450.

[5] Novakovic Branko, Novakovic Dario and Novakovic Alen (2001). A Metric Tensor of the
New General Lorentz Transformation model. Computing Anticipatory Systems:
CASYS'2O0O-Fourth International Conference. Ed. by D.M. Dubois, Publ. by CHAOS,
Liège, Belgium, International Journal of Computing Anticipatory Systems (IJCAS), vol.
10,2001, pp.199-217.

[6] Supek Ivan (1992).Thcoretical physics and structure of matter. Zagreb: Skolska knjiga,l992.
[7] Klein O., Gordon W., and Fock V. (1926). Z. Physic 3'1, 895 ; 40,ll7 ;38,242;39, 226.
[8] Dubois Daniel (2000). Computational Derivation of Quantum Relativist Electromagnetic

Systems with Forward-Backward Space-Time Shifts. CASYS'99-Third International
Conference. Ed. by D. M. Dubois. Published by The American Institute of Physics, AIP-
CPs17, pp. 417-429.

2t1


	Casus_v11_pp196-211_Novakovic



