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Àbstract Image restoration is a typical ill-posed problem. Regularization technic
represented by a regularized MP-Inverse fllter (RMPIF) is widely used to deal with
the ill-posedness. In order to clerive the best performance of the filter, the parameter,
which controls the regularizability, should be appropriately chosen.

In this paper, we present a new criterion for parameter choosing based on mod-
ifying the subspace information criterion which is frrst proposed for model selection
of supervised learning problems. Some numerical examples are also shown to verify
the efficacy of the proposed criterion.
Keywords: image restoration, regrrlarization parameter, subspace information cri-
terion, squared error, unbiased estimator

1 Introduction

Restoration of images degraded by some linear transforma|ions and observation
noise is one of most important issues in the field of image processirrg. So fa'r, rnany
restoration lïlters have been proposed. Bv the way, image restoration is a typical

ill-posed problem. Regularization technic (Tikhonov et a}., 1977) represented by
regularized MP-inverse filter, is widely used to deal with the ill-posedness. In order
to derive the best performance of regularization filters, the parameter, which controls
the regularizability, should be appropriately chosen. Therefore, choosing such a

parameter is one of most important topics in image restolation problems.

ln (Thompson et al., 1991), four criteria of choosing the parameter are intro-

duced:

(A) Minimization of Total Predicted Mean Squarecl Error Choice (TPMSB)

(B) Generalized Cross Validatory Choice (GCV)

(C) x" Choice (CHI)
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(D) Equivalent Degrees of Freedom Choice (EDF)

Although the validity of these criteria has been shown by the results of numerical
experiments (Thompson et al., 1991), relation between the criteria and the squared
error, which is generally adopted to evaluate the restoration performance, is not
theoretically substantiated.

Sugiyama and Ogawa proposed Subspace Information Criterion (SIC) (Sugiyama
et a1., 2001) for model selection of supervised learning problems and showed that SIC
is an unbiased estimator of the expected squared error between the unknown model
function and an estimated one. They also applied this criterion to noise reduction
of images, i.e., restoration of images only contaminated by additive noise (Sugiyama
et al., 2000). However it can not be directly applied to general restoration problems.

ln this paper, we present a modified version of SIC for general restoration prob-
lems and show that it is an unbiased estimator of the expected squared error between
a restored image and the projection of an original image onto the estimable linear
subspace. Some numerical examples are also shown to verify the efficacy of the
proposed criterion.

2 Mathematical Preliminaries

Definitions of the notations used in this paper are shown below.

R- : the rn-dimensional real metric vector space
Rrxc : the set consisting of all r x c real matrices

In : the identity matrix of degree n
A' : the transpose matrix of A
A+ : the Moore-Penrose generalized inverse of ,4 (Rao et al., 1971)

tr{A} : the trace of A

llAll : the operator norm of A

ll"ll : the Euclidean norm of a vector c
N(A) : the null space of A
R(A) : the range of A

Ps : an orthogonal projector onto a linear subspace S
Sr : the orthogonal complement of a linear subspace S
Es : the expectation over a random vector u

3 Formulation of Image Restoration Problems

Degradation and restoration are modeled as follows (Siark, 1987):

c  =  A l+n ,
f : Bg, l,î eFt^' g,tù € R',

( i )

(2)
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where R- and R' are called the space of original images and that of observed images,
respectively, and f , j , g, and n. denote an unknown original image, a restored
image, a degraded image, and zero-mean additive noise (which may be colored),
respectively. Let Q be the correlation operator of n. and defined as I - Enlnn'\.
A : R^ --+ R' and B : R" -+ R- denote a degradation operator and a restoration
filter, respectively. In this paper, we aasume that A and B are linear. Therefore,
they are elements of R"x- and R-xo, respectively.

In this paper, we adopt a regularized MP-Inverse filter (RMPIF) for a regular-
ization filter. RMPIF is defined as the operator B by which the following criterion
is minimized.

r  :  l lAî -  cl l '+ Àl l i l l ' . (3)

Here, 0 < À < 1 denotes a real parameter. Such a operator can be uniquely written
AS

Bnuprr = (A'A+ ^I-)-rA',

as *'ell known.

4 Existing Criteria for Parameter Choosing

In this section, we again enumerate the existing criteria for choosing the pa.rameter
of image restoration filters (Thompson et al., 1991) and summarize their properties.

(A) Total Predicted Mean Squared Error (TPMSE)

The TPMSE criterion is defined as follows:

crpusp(À) = l l(1" - AB(\)Afl1, +tr1ta1\QB'(^)A'|,  (5)

and let Àrpuss be the minimizer of C7p1,asB(À).
TPMSE indirectly evaluates the fidelity of a restored image in the space of de-

graded images. Howrver, as pointed out in (Ogawa, 1988), indirect evaluation does
not always correspond to direct evaluation, especially in view of noise suppression.

(B) Generalized Cross Validatory Choice (GCV)

The GCV criterion is defined as follows:

C6çy( ) )  = l l(I" - A,B(À))sll '?
(6)

however
sharp or

[ t r {1,  -  AB(^)}] 'z '

(4)

and let Àccv be the minimizer of. Cccv(À).
GCV has the advantage of not requiring variance of observation noisel

restored images with the parameter based on this criterion may be too
noisy.
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(C) x 'Choice (CHI)

The CHI critetion is defined as follows:

Ccn{\ :  I  l l (1"  -  aB(.1))gl l ' -  t . {8 i  l ,
and let Àçs1 be the minimizer of Cçsr()).

CHI also eraluates the fidelity in the space of observed images indirectly.

(D) Equivalent Degrees of Fbeedom Choice (EDF)

The EDF criterion is defined as follows:

cnor( \= |  l l (1"  -  aB() ) )s l l '  - t t {Q} t t { l "  
-  AB(^)}  

l ,  (8)
n

and let )spp is the minimizer of CEpp(À).
EDF is a modified version of CHI and has the same problem of indirect evaluation

as do TPI\ISE and CHI.

5 Subspace Information Criterion for Choosing the Param-
eter of Image Restoration Filters

Subspace Information Criterion(SlC) rvas first proposed for model selection of su-
pervised learning problems by Sugiyama and Ogawa (Sugiyama et al., 2001). SIC
is an unbiased estimator of the expected squared error between the unknoll'n model
function and the estimated one. The-v also applied it to noise reduction of images,
i.e., restoration of images only contaminated by additive noise (Sugiyama et al.,
2000). This citerion is written as

s/c(À) = l l (B(À) -  I^)c l l '+ 2tr{B())Q} -  t . {8} , (e)

as shown in (Sugiyama et a1., 2000). However, eq.9 can not be applied to general
restoration problems, that is, the case of A I I-. In this section we present a
modified version of SIC that can be applied to general cases.

The expected squared error can be decomposed into two terms:

nnl l f  -  f l l '  = Enl l î  -  nnî l l ,  + l lEnî -  f l | " (10)

as shown in (Sugiyama et al., 2000) . The first term of eq.10 is the variance compo-
nent and the second term is that of the bias. It is easy to show that

nol l r  -  noî l l '=  Enl lBnl l2  =f t {BQB'} ,  (1 i )

as described in (Sugiyama et a1., 2000).
Let A-p be a minimum norm generalized inverse (Rao et al., 1971) of A, i.e.,

(ANA) is an orthogonal projector onto 7?(A'). The bias component can be written

( 7 )
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as follows with the assumption of.R(A') : R(B), which is an ordinary condition in
image restoration problems:

l lnnî -  f l f
= ilr - e,ocll '- l l i - At,sll, + llEnlf - f - EnArnllz

ll(B - Aru)sll '
-l lnnÛ - Auc) - EnG - ANc)+ (i - Aiuc)ll '
+ l lÛnf -En( l+A,yn) l l ' ?

:  l l (B -  Arùcl l ' - l lnn!  -  Auc) l l "
-lln*ff - Aic) - $ - Awc)ll'
+2(En$ - Ais))'(EnÛ - ers) - ff - t ic))
+l lÛn( l  -  1-  A"o) l l '

:  l l (B -  Aru)gl l '  - l lnn} -  Ats\ l l '
- l lsn}, - Ausl - Û -Ar,rg)l l '

+z(En$ - Arus))'(EnÛ -,ttcl - G - A,vs))
lllEnÛP - ANAr - Q^ - ANA)Î - Ain)ll'

:  l l (B -  At , )s l l t  - l lEnÛ - Arog) l l '
- l lnnG - Aryg) - (f - A,ns)ll '
+2(Enff - ANc))' (En(i - a"st - $ -A,vg))

+llEn(l - Ais) - U^ - .4NA) fl l '
= l l(B - Aw)cll,

+z@n(î - At,sD'@nÛ - .trsl- (i - ens))
- l lan} -  A^rs) -  f f  -Aroc) l l '  + l l ( / -  -  ANA)t l l ' .

Let T; (i: t,2,3,4) be the i-th term of eq.12. Therefore,

llBoî - fll' : Tr t Tz t Tt * T*

The expectation over n of T2 (EnTz) disappears and that of Ts becomes

EnTs : -EnllÛn(f - Aic)- ( i  - A"g)l l '
:  -En l lÛn@ -  A roXAt *n ) -  (B -  A ;XAf  + t  i 11 '
: -Enll@ - Ai)ol l '
: -tr{(B - Ai')Q@ A,.,')'}
: -tt{BQB',} i 2ft{BQA;t} - ft{AÙQAN'lt.

Replacins llEnf - ll l '? with

T *  E n ( T z * T ù + T o
= l l (B -  Aùsl l '  - f t {BQB'} aztu{BQA11'}

-tr{AiQ,AN'} + |l(1- - ANA)rll'z

( 1 2 )
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in eq.10 and substituting the result of eq.1l to eq.10 yield a modified version of SIC,

MSIC(^)
:  l l (B(À) -  A*)sl l ,  + 2tr{B(À)Q AN'} - f t lANQAN'}

+ll(1- - AN\ril'.

Here we show a theorem about unbiasedness of MSIC.

Theorem 1

EV(MSIC(^ ) ) :  En l l l  -  f l l " .  (14)

Proof

En(MSrc(^))
= Errl l(B()) - Aru)sl l '+ 2tr{B(.\)QA;'} - rr{A;gA;'}

+ l l ( / -  -  A*z4f f
: t ' r l l (B(À) - AÀ@f + r) l l '+ 2tr{B(À)QAl, '}

-ft{ANQ AN'} + ll(r- - AiA) |ll 'z
: l l (B(À) - AN)Afl l '+ E xl l(8()) - A*)nl l '

+2En((B(^) - AN) Ar)'((B(À) - Aro)r)
+2tr{a(À)QAN'\ -&{ANQAN'\ + l l(1- - A"A)l l l ,

:  l l (B(À) - Ai lAfl l" + l l( I- - ANûff
+tr{(B(À) - Aù8@ - AN)'} + 2rr{B(À)QA;'}
-ft{A;QA;r'}

= l lB(^)Aî - f l l ,  + tr{B(À)QB(.\),}
:  l lpnl - f l l ,  + Enll f  - Enîl l ,  :  Enll î  - f l l ' .  Q.E.D.

From this theorem, it is shown that MSIC(À) is an unbiased estimator of the
expected squared error between the unknown original image and a restored image.
Therefore the parameter of a restoration filter B that minimizes MSICQ,) is a
candidate for a good one. However, MSIC(^) includes an unknown component

f, so we define an omitted version oL MSIC(\) which does not include unknown
components as follows:

oMSrc(^)
:  l l (B(À) - A")sl l '+ 2tr{B(.\)Q AN'} - f t{A, ' 'QAN'}. (15)

The minimizet of OMSIC(À) also minimizes MSIC(^), since the omitted term
ll(I - ANA)fllz is constant, and it is obvious that OMSIC is an unbiased estimator
of Enllf - PoV'\fll', when 7?.(B) : R(A'). Hereafter, we write the minimizer of
OMSIC(^) as ÀsMs1s.
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6 Numerical Examples

In this section, some numerical examples are shown to verify the efficacy of OMSIC
choice. We evaluate the squared error of restored images by RMPIF based on
\rpuse, Àcv, \cut, \spp, and. \oustc. The original image f is used for the first
term in TPMSE to derive the best performance of TPMSE choice and A+ for ,4'f,1
in OMSIC.

6.1 Colored Noise Case

\&'e inr.'estigated the performance of OMSIC with colored additive noise whose cor-
relation operator is known. As an original image and a degradation operator,
LENA(128 x 128 pixels, 256 gray levels) and the vertically averaging operator
over 32 pixels were used. A vertically colored random vector - N(0, ozQ) with
o = 1.0,  2.0,  3.0,  4.0,  and

0 . 5  0 . 2 5  0  . . .
0.25 0.5 0.25 0

0 0.25
0

a-
0

0.5 0.25
0.25 0.5

were used for n,.

Table 1 shows parameters chosen by five criteria and SNR of restored images
based on these parameters. The field MSE is based on the squared error between
the actual original image and restored ones. Therefore À in an MSE field is the
parameter which derive the best performance of RMPIF.

:  ' .

0  . . .  0  0 . 2 5
0 . 2 5  0  . . .  0
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Table 1: Chosen parameters and SNR(dB) of restored images to the original image
(colored noise case).

o

1.0 2.0 3 .0 4.0
MSE À 0.00150.0043 0.0074 0.0108

SNR 14.56 13.84 13.36 I J .UU

TPMSE À 0.008r0.0141 0.0194 0.4243
SNR 13.88 13.32 12.95 12.67

GCV À 0.0008 0.0015 0.0021 0.0025
SNR 14.48 13.37 11.43 1I.52

CHI À 0.00270.0059 0.0091 0.0124
SNR t4.47 13.80 13.34 r2.99

EDF ^ 0.00160.0039 0.0064 0.0089
SNR 14.56 13.84 13.35 72.98

OMSIC ^ 0.00I5 0.0043 0.0074 0.0108
SNR 14.56 13.84 13.36 I J .UU

Figure 1 shows the original image, and Figs.2 and 3 show a degraded image and
a restored image based on À : 0.0074 by which MSE and OMSIC are minimized in
the case of o = 3.0.

Figure I : An original image (LENA).
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Figure 2 : A degraded image (o = 3.0).

Figure 3 : A restored image by RMPIF with À :0.0074 by which MSE and
OMSIC are minimized (o = 3.0).

6.2 White Noise Case

Next, we investigated the performance of OMSIC with known white additive noise.

As an original image and a degradation operator, HOUSE(128 x 128 pixels, 256
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gray levels) and the vertically averaging operator over 7 pixels were used, and a
normal random vector - N(0, o2In) with o: 1.0, 2.0, 3.0, 4.0 were used for rù.

Table 2 shows the same result with the colored noise case.

Table 2: Chosen parameters and SNR(dB) of restored images to the original image
(known white noise case).

o
1 .0 2.0 3.0 4.0

MSE ,\ 0.0050 0.0141 4.0233 0.0316
SNR 2i,.67 23.06 21.60 20.57

l P M S E À o.o2t7 0.0398 0.0558 0.0708
5 l \K 23.78 2t .6 r 20.24 19.18

GCV 0.0011 0.0026 0.0042 0.0058
SNR 24.28 zu .  t z 18.67 17.22

CHI ) 0.0056 0.0 i  11 0.0164 0.0216
S N R 25.66 22.99 21.41 20.30

TDF 0.0016 0.0041 0.0068 0.0096
SNR 2.1.83 21.63 19.81 18.57

OMSIC 0.0048 0.0137 o.0226 0.0309
S N R 2i,.67 23.06 21.60 20.56

Figure 4 shons the original image, and Figs.5, 6, and 7 show a degraded image,
a restored image based on À = 0.0233 by which IUSE are minimized, and one based
on ) : 0.0226 by which ON,ISIC are minimized in the case of o : 3.0.

Figure 4 : An original image (HOttSE).
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Figure 5 : A degraded image (o = 3.0).

Figure 6 : A restored image by RNIPIF with À : 0.0233 by which MSE and are

m in im ized  (o :3 .0 ) .
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Figure 7 : A restored image by RMPIF with À :0.0226 by which OMSIC are
minimized (o = 3.0).

The two numerical examples shown above confirm that OMSIC yields better
parameters compared with existing criteria.

Conclusions

In this paper, as a criterion for choosing a parameter of image restoration filters,
we presented a modified version of SIC (OMSIC) that can be applied to general
restoration problems. We showed that OMSIC is an unbiased estimator of the
expected squared error between a restored image and the projection of an original
image onto the estimable linear subspace R(A'). Numerical examples confi.rmed
that the parameter chosen by the proposed criterion is better than those chosen
using existing criteria.

Variance analysis of OMSIC and applying to cases of noises with unknown prop-
erties are topics for future works.
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