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Abstract Fuzzy techniques can be applied in several domains of image processing
[10]. In this paper we will show how fuzzy techniques are used in mathematical mor-
phology, in establishing meâsures for image quality evaluation, and in constructing
filters for image noise reduction.
Keywords: image processing, morphology, filters, noise reduction, similarity mea-
SUICS.

1 MathematicalMorphology

within the domain of image processing, mathematical morphology is a theory based
on geometrical concepts and set operators, used to analyze the shape or shape related
properties of images. The theory rvas originally developed for binary images (images
with only black and white), and has been extended to gray-scale images (images
allowing shades of gray instead of onl;, black and white).

In this section, we will discuss the different ways in which a fuzzy morphology can
be constructed; fuzzy morphology is an extension of binary morphology to gray-scale
morphology, using techniques from fuzzy set theory.

1.1 Binary Morphology

Binary images are mathematically represented as subsets of iR". The basic morpho-
logical operators are dilation and erosion. A morphological operation transforms an
image ,4 by means of a structuring element B into a netv image. The structuring
element can be chosen by the user; shape and size depend upon the application [20].

Definition I Let A,B e P(R"). The binary dilation D(A,B) and the b,inary ero-
sion E(A, B) are g'iuen by:

D ( A , B ) :  { y  e  R  l " r ( B )  n A + A }  a n d ,  E ( A , B ) :  { y  €  R " l q ( B )  ç  A } ,
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withTy(B): {r € IR'|" - y e B), i,.e. the translat'ion of B ouer the uectory'

These definitions have a very natural interpretation: a point y belongs to the

dilation D(A, B) if the translate To(B) of the structuring element B hits A; it

belongs to the erosion E(A, B) if the translate Tu(B) completely fits into A.

L.2 Ftrzzy Morphology

Gray-scale images are mathematically represented as IR-[Q, 1] mappings, and can be

identified with fuzzy sets in RÆ. The class of fuzzy sets in lP is denoted by f(IP ).
Several approaches to fizzy morphology are possible. In the following, we will

discuss approaches based on the fuzzification of logical operators, and on the fiizzi-

fication of set inclusion. Regarding the latter, the fuzzified set inclusions of Zadeh,

Sinha & Dougherty, Kitainik and Bandler & Kohout will be discussed.

Lz.l Approaches based on the fuzzification of logical operators

The set notions O (intersection) and Ç (inclusion), and consequently the underlying
logical operations of conjunction and implication, play an important role in the
definition of dilation and erosion. A fuzzification of the binary logical operators will

lead to a fizzlfication of the binary dilation and erosion [6].

Definition 2 A bi,nary operator C on [0,1] is a conjunctor i'f i't is a mapping wi'th
,increasing parti,al mappings that coi,nci,des with the Boolean conjunction on {0,1}2,
i . e .  C ( 0 , 0 )  : C ( 0 , 1 ) : C ( t , 0 )  : O  a n d C ( I , l )  :  t .  A t - n o r m i s  a  c o m m u t q t i u e  a n d

associat'iue conjunctor that also satisfi 'es (Vr e [0,1])(C(1' r) : C(r,1) : r).
A binary operator I on [0,1] is an impli'cator if it i,s a mappi,ng w'ith decreas'ing

first and 'increasing second partial mapp'ings that coinci,des wi,th the Boolean r'mpli''
c a t i o n  o n  { 0 , 1 \ 2 ,  i , . e .  Z ( 0 , 0 )  : T ( 0 , 1 ) : T ( 1 , 1 )  :  t  a n d ' T ( I , 0 )  :  O .

The minimurrr Tu, the algebraic product Tp and the Lukasiewicz t-norm fia'
a re  very  popu lar  t -norms:  Tu( r ,g )  :  m in( r ,A) ,Tp( t ,A) :  r  'g  and Tw(r ,A)  :

max(0, r+y - 1); the Lukasiervicz implicator Iy,the Kleene-Dienes implicator ft-p
and the Reichenbach implicator Ipare rvell-known implicators: Iilt,A): min(1,1-
r * a ) ,  I x n ( r , g )  :  m a x ( l  -  r , y )  a n d  I p ( r , a ) : r -  r + r ' a '

The definitions of the binarv dilation and the binary erosion can then be fuzzified
as follows.

Definition 3 Let A,B e f(R3), let C be a conjunctor and let T be an 'impl'icator.

The fuzzy di,lation Dc(A,B) and the fuzzy eros'ion Ez(A,B) are giuen by:

Ds(A,B)(v) : 
"."iÏ5nr, 

c(B(r - v)'A(r)) ' vv e D(dn'dB)

Er(A,B)(a) : 
".à1r,1,, 

T(B(r - a),A(r)), Vy e E(da,de),

with da: {r e R IA(r) > 0} and d's : {r e R'lB(r) > 0}'
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The fuzzy dilation and erosion, as well as the practical consequences ofthe choice
of the logical operators, are illustrated in Fig. 1.

Fig. 1: Fuzzy dilation and erosion. Top: original image; second row: dilatiorr Dr*
erosion E1*o and edge image Dr, - E1*o;bottom row: dilation D7r, €rosio11 Et*
and edge image Dr* - Er*. Regarding the edge images: note that in the first
case both large and fine structures are detected, while in the second case only large
structures remain. This is due to the specific choice of logical operators.
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If ,4 and B are crisp subsets of )K , then one can easily show that the fuzzy dilation
and erosion coincide with their binary counterparts. In [13, 14] also the relationship
between fuzzy morphology and classical gray-scale morphologies is investigated.

Related approaches.
(t) In [3] a similar approach to define the fizzy dilation and erosion is followed.

There are however two differences: (i) a t-norm instead of a more general conjunctor
is used; (ii) the t-norm and implicator are connected in a specific way. Consequently,
the resulting framework is less general than the one presented above.

(2) In [5] one uses a fuzzification of the Minkowski addition @ to achieve a
fuzzification of the binary dilation. This approach is based on the crisp relation
A@ B: D(A,-B), and turns out to fit in the logicalframework.

1.2.2 Approaches Based on the Fuzzification of Set Inclusion

Given a fuzzifled set inclusion Inc, we can use it to extend the binary erosion to an
operation on fuzzy sets in lR' by putting En (A, B)(a) : Inc(Tr(B), A)'

F\rzzy set inclusion of Zadeh.
For A, B e f (lR') , lhe firzzy set inclusion Ç" of Zadeh is defined as [28]: A ç" B

<+ (Vr e R')(A(c) < B(*)).The drawback of this definition is that it doesn't allow
any degree of subsetness: a fiizzy set is a subset of another fuzzy set, or it is not.
This also implies that the corresponding"fuzzt'' erosion E, will be crisp:

a e E,(A, B) o ,r+l[ou) A(r) - B(, - y) > 0.

The Zadeh-erosion can be linked to the logical framework. If we define:

r"( , ,a):  {  I  : I ;  
=,,  v(, ,y)€ [0, 1]2,

then we have that E,(A,B):  En(A,B).

Fuzzy Set Inclusion of Sinha and Dougherty.
In [21] a general indicator Incsp for fuzzified set inclusion, based on nine intuitive

acceptable axioms, is introduced:

Incs(A,t) : ,LS" min(1,,1(A(r)) + )(1 - B("))),

where À is a [0,1] - [0,1] mapping satisfying a set of properties. Some examples
of possible )-mappings are given by À,(r) - ! - r" (n ) 1), and À"(x) : #h
(" el - 1,0]). Using the indicator Incs, the hvzy erosion ,Er is obtained as follows

122):

Es(A,B)(a)  :  in f  min (1,  À(B(r  -  E))+ À(1 -  A(r ) ) ) ,  Va e E(dÆds).
xeTn@.6)

This approach can be linked to the logical framework. Indeed, if we define
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.  î^(r ,y) :  min( l ,  )(r)  + À(1 -  y)) ,  V(r,y) € [0,  1]2,

then it follows that Es(A,B) : Er^(A,B).

Fuzzy set inclusion of Kitainik.
Another axiom-based approach towards htzzified set inclusion is given in [11].

The general form of the indicator Inc, for the fuzzified set inclusion is:

Incr(A,")  =,LS, e @ax(A(r) ,  1 -  B(r)) ,min(A(r) ,  1 * B(r))) ,

with p belonging to a certain class of f - [0,1] functions, T : {(r,y)l(r,y) e
[0, t ]2 and r > a].

Tlre corresponding fuzzy erosion.E, is given by, for y € E(d,n,d,s):

Er(.1.  B)(a) = - inf ,  e (max(B(r -  a),r  -  A(r)) ,min(B(r -  y),L -  A(r))) .
t e  t  u \ d B  )

AIso in this case the rp-erosion coincides rvith a specific choice of an implicator
I in lhe logical framework. If rve define T, as:

I r ( r ,y ) :  rp  (max( r , !  -  A) ,min(2 ,  1  -  g ) )  ,  Y( r ,g )  e  [0 ,  t ]2 ,

then E (4, B): Er,(A,B).The relationship rvith the logical framework is much
stronger than the above formula suggests. This is explored in great detail in [14].

F\tzzy set inclusion of Bandler and Kohout.
The inclusion-based approach in [1] is a logical one, and is based on the fizz\fr-

cation of the binary expression,4 C B e (Vr e R")(r ç. A + r e B), using the
notion of an implicator T:

IncT(A,")  : ,1{" T(A(r) ,  B(r)) .

It inrmediately follows that the correspondingfuzzy erosion equals Ex(A,B).

1.3 Conclusion

We have discussed several "htzz;, ways" to extend binary morphology to morphology
for gray-scale images. All these different approaches fit into one general logical
framework; we refer to [13, 14] for a complete study of their interdependencies.
This observation suggests that further research should concentrate on the logical
framework.
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2 Similarity Measures for fmages

An important problem in image processing is the comparison of images: if different
algorithms are applied to an image, we need an objective measure to compare the
different output images. It is well-known that classical measures, such as the MSE
(mean square error), do not always give convincing results. Since gray-scale irnages
can be identified with fuzzy sets, it is interesting to investigate whether similar-
ity measures, i.e. measures that are developed to express the degree of similarity
between fuzzy sets, can also be applied in image processing.

In this section, we will discuss some properties w.r.t. which similarity measures
can be evaluated in the coniext of image processing. We will give examples of
satisfactory measures, and illustrate their behaviour with some examples.

Notational remark: in this section A,B e î(X), with X : {(r,a) 0 < r <
M,0 < y < N) a d,isuete set of image points.

2.1 Definition

In the literature a lot of measures that express the similarity between two fuzzy sets
can be found. In most cases, â similarit.v measure is formally defined as a fuzzy
binary relation in F(X), i.e. a f(X) x .F(X) -+ [0,1] mapping that is reflexive,
symmetric and min-transitive. Horvever. not ever)'measure in the literature satisfies
this definition. Therefore, we give a larger interpretation to the notion of a similarity
measure: a similarity measure is an1' measure to compare tlvo fuzzy sets.

2.2 Relevant Properties for Image Processing

For our investigation 124, l5), we have considered the following properties:
Reflexivity: for two identical images one may expect that the similarity measure

has output 1.
Symmetry: the output of the similarity measure is expected to be independent

of the order in which the two input images are considered.
Reaction to noise (e.g. salt & pepper noise or gaussian noise): a good similarity

measure should not be affected too much due to noise (a noisy image is coming from,
and is consequently similar to, ân origina,l image), and should be decreasing with
respect to an increasing noise-percentage.

Reaction to enlightening and darkening: if one enlightens or darkens an
image with a constant value, the siuriia,rity ll leasule should return a high valrrn
(indeed, one considers almost identical images). One also expects a decreasing
behaviour with respect to an increasing enlightening- or darkeningpercentage.

Reaction to binary images: similarity measures should also yield good results
when applied to binary images. In particular, one may expect that the similarity
measure produces a value between 0 and 1, and not only ths crisp values 0 or 1.
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This list should not be considered as complete: depending on the application or
the type of images that have to be compared, some properties will be less relevant
and sometimes completely different properties will have to be investigated.

2.3 Similarity Measures Applicable in Image Processing

From a total of 30 different measures [24], only the following six satisfied the above
mentioned properties. The first similarity measure is based on the fuzzy Minkowski
distance, and is given by 14,271:

(  1  _  \ i
s lA,B)  =  t -  

(# ,Æ" lA(" ,v ) -31" ,ù l ' )  
w i thr€ \ .

The measures 52 [16, 26] and Sa [7] are based on the sigma count; this is an
extension of the notion of cardinality. The sigma count of a fitzzy set ,4 (with finite
support) in a universe U is given by:

lA l :  I  A(u) .
UEU

D min(A(r ,  a) ,8( r ,A))
(a,s)ex

t  max(A(c,  A) ,B(r ,V))
{x,s)eX

t  min(1 -  A(r ,y) , I  -  B(r ,y) )
ô /  /  D \  l coAf \coBl  f r , îex, r 3 ( . 4 ' D l  :  

@ î U _ q :  
.

(x,v)ex

Note that the intersection is modelled by the minimum, the union by the maxi-
mum and the complement by the 1- operator.

For the similarity measures 54 [4, 16, 25,26], Ss [25] and 56 [2] it is less obvious
to give an intuitive interpretation:

S 4 ( A , B )  =  1 -
D lA(* ,u)  -  B(" ,a) l

(a,s)eX

!  (A(r ,y)  + B(r ,y))
(x'u)ex

sz(A,B) : m:

s5(4, B) :

s6(A, B) :

1 \- f  min(.A(r, y), B(r,ADl
ffi rk*LffiGG,uIBG'vDJ
r- MfriË, ,R.[ror", ù - B(r,v)) 'rn (##3)

+ (B(r,y) - A(r,y)).r, (=#3)]



2.4 Some Examples

In Fig. 2 we have added salt & pepper noise to the cameraman (L% and 5%), and
we have enlightened the image twice (+0.1 and +0.2). These images are compared
to the original image, and the numerical results are displayed in Table 1. One can
verify that the returned values are relatively high, and that the similarity values
slightly decrease w.r.t. an increasing noise or enlightening level. For comparison,
also the classical MSE measure is displayed; for,4, B e F(X) the MSE is defined
as: MSE(A,B) :  #nDO,ulrr lA(r,y) 

-  B(r,A) l ' .

Fig. 2: Disturbed "câmerâman". Top row: salt & pepper
5%); bottom row: enlightening (left: *0.1, right: +0.2).

(left: 1%, right:

2.5 Conclusion

Several similarity measures that are used to compare fuzzy sets can also be success-
fully applied in image processing. Based on a list of relevant properties, we obtained
6 measures that show a very good behaviour.

nolse
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*0.1 enlishteni
s1(4, B)
sz(A, B)
&(A,B)
s4(4, B)
s5(4, B)
s6(A,B)

MSE(A,B)

0.98980
0.99110
0.99488
0.99280
0.99699
193.02

0.94849
0.95478
0.97356
0.96236
0.98480
981.73

0.90207
0.82627
0.81683
0.90487
0.74136
0.99051
613.90

0.80450
0.70453
0.63463
0.82666
0.62594
0.96277
2446.40

Table 1: Values of the similaritv measureswhen the "cameraman" image is dis-
turbed noise (column 2 and 3 or by enli column 4 and 5

3 A Fuzzy Filter for Image Noise Reduction

In this section we wil focus on fuzzy techniques for image filtering. Already several
finzy frlters for noise reduction have been developed, e.g. the well-known FlRE-filter
from Russo [17, 18, 19], the weighted fuzzy mean filter from Lee [12], and the iterative
fuzzy control based filter from Farbiz and Menhaj [8]. However, most techniques are
not specifically designed for gaussian(-like) noise or do not give convincing results
when applied to this type of noise.

In this section, we will present a new technique for filtering gaussian noise by a
fuzzy ûlter [23]. Two important features are presented: first, the filter estimates a
'fuzzy gradient'in order to be less sensitive to local variations due to noise; second,
the membership functions are adapted accordingly to the noise level to perform
'fuzzy smoothing'.

3.1 Construction of the Filter

The general idea behind the filter is to average a pixel using other pixels from its
neighbourhood, but simultaneously to take care of important image structures such
as edges. The main concern of the proposed filter is to distinguish between local
variations due to noise and due to image structure.

In order to accomplish this, for each pixel we derive a value that expresses the
degree in which the gradient in a certain direction is small. Such a value is derived
for each direction corresponding to the neighbouring pixels of the processed pixel,
by means of ahnzy rule (subsection 3.1.1).

The further construction of the filter is then based on the observation that a small
fuzzy gradient most likely is caused by noise, while a large fuzzy gradient most likely
is caused by an edge in the image. Consequently, for each direction we will apply
two fuzzy rules that take this observation into account, and that determine the
contribution ofthe neighbouring pixel values. The result ofthese rules is defuzzified
and a correction term is obtained for the processed pixel (subsection 3.1.2).
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3.1.1 Fuzzy Gradient Estimation

Consider the neighbourhood of a pixel (",y) * displayed in Fig. 3. The gradient

V o(r,y) is defined as the difference between the central pixel (r, y) and its neighbour
in the direction D; D e di,r : {NW,W, SW, S, SE, E, NE,tr/}. For example:

v  N@,v)  :  I ( r ,Y  -  1 )  -  I ( r ,Y) ,

v s e @ , Y )  =  I ( r ' r L , Y + 1 )  - I ( r , Y ) .

Fig. 3: Left: the neighbourhood of a central pixel (r,y); right: pixels involved to
calculate the gradient values in the NtrZ-direction.

The gradient information should be consistent perpendicular to the direction in
which the gradient is calculated. Therefore, for each direction we consider 3 pixels
perpendicular to that direction. For example, in the l/trZ-direction we calculate
the values Vww(r,A),  Vxw(r -  l ,y *  1) and Vww(r * l ,U - 1);  see Fig. 3.  In
Table 2 we give an overview of the pixels that are involved in the calculations for
every direction.

Table 2: Pixels involved to calculate the fuzzy gradients: each direction (column 1)
corresponds to a fixed position (column 2), and the sets in column 3 specify which
pixels are considered he calculations.w.r.t. that fixed posttton in t

direction position set
NW
w
SW
S

SE
E

NE
N

( r - I , y - l )
( ,  -  l , y )

( r - l , y+L )
( r , y  +  I )

( r *L , y+ I )
( r  +  I , y )

( r * I ,A -L )
(*,y - r)

t  ( -1 ,1) ,  (0 ,0) ,  (1 , -1)  l
{ (0 ,1) , (0 ,0) , (0 , -1) }
{(1,1),(o,o),c1,-1)}
{(1,0),(o,o),c1,0)}
{(1,-1),(o,o),c1,1)}
{(0,-1),(o,o),(0,1)}
{ ( -1 , -1) ,  (o ,o) ,  (1 ,1)}
{ ( -1 ,0) , (o ,o) , (1 ,0)}

To derive the value V\@,y) that expresses the degree in which the gradient in
direction D is small, we make use of the hnzy set snall The membership function
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my for the property snall is the following; see Fig. 4:

(  t  
H ,o lu<K** (u ) :  {  :  

-

L  U '  u >  K

where K is an adaptive parameter 1.

( 1 )

Fig. 4: The membership function small

For example, the value of the fuzzl'gradient Vfiru(r, y) is calculated by the following
rule:

if (Vww(r,y) is srna11 and Vr,'u' (r - l,y + l) is snall) or
(Vnw(r,y) is smal1 and V,r=p' (r + 1, a - I) is snal1) or
(V,.,'r'(, - l,y * 1) is srna11 and y1,,11, (r * 1, A - t) is snall)
then yiru @,y) \s srnall. (2)

Eight rules are applied, computing the fizzTr gradients Vï@,A), D e dir. These
rules are implemented using the minimum to represent the AND operator, and the
maximum for the OR-operator.

3.1.2 Fuzzy Smoothing

To compute the correction term Ac for the processed pixel 1rye use a pair of fizzy
rules for each direction, Consider for example the direction NW. Using the values
Vfrw@,gr) and Vpw(r, g) we fire the following rules, and compute their truthvalue
)fr.r and À"r:

)iw , if yfir(r, y) is small and y7,,,yr(2, y) is positive then Ac is positive,
À",u , if yflr(r,y) is smal1 and yTyyy(z,y) is negative then Ac is negative.

For the properties positive and negative we also use linear membership functions,
as illustrated in Fig. 5.

rlnstead of making use of larger windows to obtain better results for heavier noise, the filter
is applied iteratively. The shape of the membership function snall is adapted each iteration
according to an estimate of the (remaining) amount of noise. We refer to [23) for technical details.
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p o s i t i v e neqat l_ve

Fig. 5: The membership functions positive and negative.

If we have calculated these values for all directions, we can compute the correction
term Ac as follows:

Ac:255 .  I
Dedir

This correction term

(À; - À;) (3)

is added to the pixel r,alue of the considered pixel (2, g).

3.2 Some Examples

To illustrate the performance of the presented filter, lve have applied it to two noisy
"cameraman" images; see Fig. 6. For comparison. rve have also applied the classical
Wiener filter, and the WeightedFuzzy trfean (\\'Ftr,I) filter [12].

The numerical results are displayed in Table 3. Besides the MSE-values, we have
also calculated the values of the similaritv measure ^91 (r:1).

Table

The results not only confirm the good performance of our filter, but also illustrate
that similarity measures (in particular the used measure,Sl) are a better tool for
image comparison:

(1) In the case of low noise (o : 5.7) our nèrv filter performs best rv.r.t. both the
MSE and 51 meâsure. Regarding the IVFNI filter: performs worst (MSE much
higher, similarity measure lower). Regarding the Wiener filter: performs bad
w.r.t. MSE, but shows an improvement w.r.t. ,91. The latter is in accordance
with the visual result, and illustrates that the similarity measure 51 better
reflects the visual observations than the MSE measure.

3: Numerical results ine to the imases in
a  :  18 .0

IVISE MSE S1
Noisy image
New filter

Wiener filter
WFM filter

32.10
21,.97
43.34

232.56

0.98217
0.98611
0.9831i
0.95792

300.22
95.53
93.21
434.98

0.94546
0.97292
0.97L73
0.92750

Fig. 6.
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Fig. 6: Disturbed and filtered "cameraman". Top row: gaussian noise (left: o :5.7,
right: o : i8.0); second row: results of the proposed filter (left: a : 1.0 and 1
iteration; right: a:2.0 and 2 iterations); third row: results of the classical Wiener
filter; bottom row: results of the WFM filter.
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(2) In the case of heavier noise (o : 18.0) both our new filter and the Wiener filter
perform best (the new filter is best w.r.t. the similarity measure '9r, Wiener
is best w.r.t. MSE). Regarding the WFM filter: performs worst.

3.3 Conclusion

We presented a new fuzzy filter for additive noise reduction. Its main feature is that
it distinguishes between local variations due to noise and due to image structures,
using a fuzzy gradient estimation. Fuzzy rules are fired to consider every direction
around the processed pixel. Although its relatire simplicity, the fuzzy filter is able
to compete with state-oflthe-art filter techniques for noise reduction

4 General Conclusion

In this paper we have illustrated that fuzzy techniques can be used for both the
extension of existing theories in image processing and the development of new tech-
niques. In this way, fuzzy techniques are applied to extend binary morphology to
morphology for gray-scale images. Futhermore, notions of. htzzy set theory were
used to develop a measure of comparison for images. And finally, we proposed a
new filter using fuzzy rules for the reduction of additive gaussian noise.
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