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Abstract
The context of this problem is the System Engineering of Constructed Complex

Systems, which are artificially constructed systems that a,re managed or mediated
by computing systems. In particular, we a^re concerned with autonomous intelligent
behavior in such systems, which means that the system takes a major role in se
lecting its own goals. When Constructed Complex Systems operate autonomously,
whether out in the real world or in cyberspace, they need a great deal of flexibility
and adaptability in their architecture and implementation. This paper shows how
to organize and implement a Constructed Complex System to have the requisite
qualities needed for autonomy while avoiding the most common difficulties found
in computing systems: rigidity and brittleness.

Our architecture includes both our Wrapping infrastructure to provide a Com-
putationally Reflective base for all component integration, and our conceptual cate.
gories to provide a flexible representation mechanism that separates model structures
from the roles they play.

To make things even more interesting, we are currently developing approaches
whereby the system also decides for itself when it needs to be re-organized, because
its fundamental symbol systems are not expressive enough, and carries out the re-
organization automatically, by defining new symbol systems and re-expressing itself
in the new terms. This behavior is hard to implement, but we have identified many
of the important issues.

There are several fundamental mathematical questions involved in this study: (1)
how self-reference ca,n be made not only possible but sensibly computable, (2) how
formal mathematical structures can be extended to incorporate more information
about context and situation, (3) how to move formal structures into new contexts
and assess the resulting validity, (4) how to define mathematical structures before
their basic elements are defined, (5) how to capture more of the modeling processes in
mathematical structures, (6) how to decide when a notational system is inadequate,
and (7) how to fix it.
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1 Introduction

It is our opinion that in order to develop computing systems that have any useful
properties of intelligence, system designers are going to have to devise much more
flexible architectures and much more robust infrastructures than are presently being
proposed and developed.

In this paper, we describe two a.spects of such systems: the computational in-
frastructure and the explicit treatment of symbol systems.

'We 
have defined Constructed Compler Systems [18] to be large, distributed,

heterogeneous, and otherwise complex systems that are mediated or managed by
computing systems. They tend to be softwa,re and hardware systems that have
heterogeneous processing requirements or that have to function in complex environ-
ments. We believe that desigqing, building, and managing such a system requires
explicit attention to the infra.structure, including explicit models of the system, its
architecture, and the enyironment in which it is expected to operate [4], and suitably
flexible computer-based design support [7] [34].

We have developed a particular approach to coordination among Constructed
Complex System components called "Wrapping" [16] [1ï [20] [26], which uses e:(-
plicit meta-knowledge about every computational resource in the system, and pro-
cesses that use that knowledge to organize and monitor system behavior. In our
view, sufficiently complex systems cannot be modeled with just one model II2l [4],
so we need to consider model integration as one specific technical area [37].

We use these methods to construct systems that can have a high degree of
autonomy, with its need for flexibility in choices of action, and its need for flexible
representation systems. We believe that these properties are important for intelligent
systems, and are conducting an a.ssortment of experiments in that area.

1.1 Infrastructure

We believe that most of the crippling rigidity in complex software systems is in the
interfaces; the messy hierarchies of variable scopes and the use of global variables
to circumvent those hierarchies has led to many errors in systems. We note here
that because we calr separate resource implementations from posed problems, a^s we
describe below, and because most of the language design of problem posing notations
is defined by what resources are available in the system, we can avoid many of these
problems.

In our approach to what we have cùled Integration Science [9], we have developed
some powerful techniques for manaeins c.omplex software s-vstems [201. ttris research
in Constructed Complex Systems [5] [ï [34] [19] [20] has shown the importance of
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infrostnrcture, that, is, explicit components and activities of the system whose main
function is to help organize other parts of the system (either by performing actions
on othe.r resources, as script generators, activity monitors, and planners do, or by
reasoning about other resourc€s' capabilities and behavior, before, during, and after
applying the other resources), to identify and address problems, and to monitor
their behavior.

A:r infrastructure should ma^ke tools more helpful about what they do and when it
is appropriate to use them. It should ajso provide what we have called the Intelligent
User Suppor-t (IUS) functions [5]:

o Selætion (which resources can be applied to a particular problem),

o Assernbly (how to let them work together),

o Integrati,on (when and why they should work together),

o Adoptotion (how to adjust them to work on certain kinds ofproblems), and

o Etplonation (why certain resources were or will be used).

This infrastructure should make communication less a matter of knowing how to
combine which resources than of knowing what to a.sk for (the problem specification),
and letting the system work out what resources can be adapted and applied. Our
Wrapprng approach provides the necessary infra^structure by making the system
itself provide help to the user based on explicit information.

2 \ilrappings

In this section, we briefly describe our research results about Wrappinç. Much
more information can be found in the references.

Our Wrapping approach to constructing heterogeneous software and hardware
environme,nts is based on two key complonentary pa,rts: (1) explicit, machine-
processable descriptions of all sof[ware, ha,rdwa,re, and other computational resources
in a system, and (2) active integration process€s that select, adapt, and combine
theee resources for particular problerns.

The Wrapping approach not only emphasizes meta-limowledge about the uses of
computational resources, together with brokering and mediation of all component
interactions (all critical concepts, as seen increasingly in other approaches), but also
rega,rds as equally important the special resources for organizing and processing this
information in a flexible and evolvable fa^shion.

The Wiapping approach, because it Wraps all of its resources, even the active
integration processes) results in systems that are Computationally Reflective [35] [36]
[14] l2gl- That is, a system organized in this way ha.s a machine-processable model of
itself; the Wrapping resources and their interactions allow, in essetrce, a simulation
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of the entire system to be contained within the system. This allows sophisticated
instrumentation and adaptive processing. It is this ability of the system to ana)yze
and modify its own behavior that provides the power and flexibility of resource
use. These ideas have proven to be useful, even when implemented and applied in
informal and ad hoc ways.

2.L lVrapping Overview

The \ilrapping theory ha.s four fundamental properties that we rega,rd a^s essential:

1. EVERY part of a system a,rchitecture is a wsauren that provides an infor-
mation seli,ce, including prograrns and data, user interfaces, architecture and
interconnection models, scripts and analysis tools that refer to other resources,
and everything else.

2. EVERY activity in a system is problem stutly in a particular pmblern con-
tert, (i.e., all activities occur a.s opplging a resoluce t'o a posed problem \n a
particular prcblem contert), including user interactions, information requests
and announcements within the system, ærvice or processing requests, and all
other processing behavior. We therefore specifically sepa,rate the problem to
be studied from the resources that might study it.

3. Wrapping Knowledge Bases (WKBs)contain Wrappi'ngs, which are explicit
machine-processable descriptions of all of the resources in a system and how
they can be applied to problems to support the five IUS functions above.
Wrappings contain much more than "hod' to use a resouJce. They also in-
clude both qualitative and quantitative information to help decide "when" it
is appropriate to use it, "why" you might want to, and '\rhethet'' it can be
used in this current problem and context.

4. Problern Managers (PMs), including the Study Managers(SMs) and the Co-
ordination Manager (CM), a,re the active integration processes. They a^re
algorithms that use the Wrapping descriptions to collect and select resources
to apply to problems. They use implicit invocation, both context and problem
dependent, to choose and organize r€sourc€s. The PMs are also resources, and
they are also Wrapped.

First, every part of the system is a resource that provides some kind of infor-
mation service. This includes tools, functions, ordinary files, databases, prograrns,
data, user interfaces, other communication interfaces, interconnection architectures,
symbolic formula manipulation systems, scripts that refer to other resources (e.g.,
plans), and analysis tools that refer to other resources (e.g., parametric study), and
everything else (Everything!). We think aboû applying resoances instead of "invok-
ing tools" because the resource being applied might not be the active part of that
process.



Second, everything that happens in the system is the response to a posed problem.
Since not all problems can be solved, we think of stuilying problems rather than
solving them. Moreover, that allows the system to do more or less undirected
explorations as it studies certain kinds of problems, so it can treat some problems a^s
suggestions for study when appropriate, not as strict goals. Our notion of problems
deals with context as an explicit part of the problem study process: there must be
a problem context before posing a problem even makes sense. Therefore, problem
study always occurs after a context is chosen and a problem is posed (we allow
these choices to be made either by human users or by other prograrns as users).
Therefore, instead of thinkiug about "issuing commands" to the system, we think
about posing problems for the system. Then the Wrapping processes find resources
that can deal with the problems by studying them directly or decomposing them into
collections of simpler problems. This Problem Posing Interpretation of programs
a,nd systems allows the Wrapping processes to mediate all problem study using
the lVrapping Knowledge Bases. Instead of having direct calls between resources)
we have the resources pose problems that correspond to service requests. Other
resources announce information services that they provide and the interactions are
all mediated through the Wrapping Knowledge Ba"se.

Third, every resource ha.s one or morc Wmppings, which are explicit machine-
processable descriptions of the difierent ways to use the resource. A Wrapping is not
simply an interface "to" a resource; it is an interface to the "use" of a resource. We'Wrap 

"uses" of lesources because many important analysis tools in many application
domains have grown by accretion over many years, and we gain conceptual simplicity
by separating them into different styles of use. There will be separate Wrappings for
different common uses of certain complex tools, especially analysis tools that have
gro\iln by accretion. Similarly, combinations of resources that often work together
may have a single Wrapping for the combination, in addition to separate Wrappings
for separate ways to use the resources by themselves.

Fourth, the Problem Managers (PMs) are algorithms that use the Wrapping
descriptions to collect and select resources to apply to problems. There is a dis-
tinguished class of PMs called the Study Managers (SMs) that coordinates the ba-
sic problem study process, and a specialized PM called the Coordination Manager
(CM), which is a kind of basic "heartbeat" that drives all of the processing. The
SMs mediate between the problem at hand and the Wrappinç to select and apply
resources to the problem, and the CM cycles between posing problems and using
the SM to study them.

The most important conceptual simplifications that the Wrapping approach
brings to integration are the uniformities of the first two features: the uniformity
of treating everything in the system as resources, and the uniformity of treating
everything that happens in the system a.s a problem study. The most important al-
gorithmic simplification is the reflection provided by treating the PMs ari resources
themselves: we explicitly make the entire system reflective by considering these pro-
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grams that process the Wrappings to be resources also, and Wrapping them, so that
all of our integration support processes apply to themselves, too. It is this ability
of the system to analyze its own behavior that provides some of the power and
flexibility of resource use, and that we believe is essential for effective autonomy in
computing systems.

The key to all of this flexibility is the computational reflection that allows the
system to make choices ofcomputational resources at its very core; every resource,
including the ones that make the choices, can be chosen, according to the posed
problem at hand and the computational context in which the problem is being
addressed.

In summary, an infra.structure needs to put pieces together, so it needs the right
pieces (resources and models of their behavior), the right information about the
pieces (Wrapping Knowledge Bases), and the right mechanisms to use the informa-
tion (Study Manager, Coordination Manager and other Problem Managers).

2.2 Problem Posing Interpretation

In this subsection, we describe a slightly difierent interpretation of programming
languages that greatly facilitates our search for flexibility: the Problem Posing Inter-
pretation [23]. In this ca.se, the program does not issue commands, invoke functions,
or even send messages; it poses problems. This approach extends the application
of Wrapping, usirg the Knowledge-Ba.sed way it connects problems (information
service requests) with resources (information service providers) that can apply to
those problems, all the way down to the expression evaluation level of detail.

We have demonstrated the conceptual utility of "problem posing" in our own de-
scriptions of systems. "Problem posing" is a new declarative programming paradigm
that unifies all major classes of programming. Programs written in this style do
not "ca,ll functions", "issue comm^ttds", "àssert constraints", or "send messages";
they "pose problems". Program units are not written as ttfunctionstt, *modules",

"clauses", or "objects" that do things; they are written as "resources" that can be
applied to problems. The problems are connected to the resources using what we
have called Knowleilge-Basel, Polyrnorphism, in which the WKBs are used by the
SMs to select resources.

The WKBs that are used by the PMs to connect the problem statements to
the resources that can address them also allow the progralnmers to provide explicit
guidance for the PMs as they ma.ke those connections. For example, the problem
statement need not specify the access or invocation method; that is part of the
"assembly'' information given with the different resources that might be used to
study the problem, and it might be difierent in different contexts. The resource
selection process car use the time or space requirements to help make the selection
(as long as that information is provided in the resource use descriptions in the
WKBs).

Problem Posing also allows us to reuse legacy software with no changes at all, at
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the cost of writing a new compiler that interprets each function call, for example,
not as a direct reference to a firnction natne or address, but as a call to a new "Pose
Problem" function, with the original function call a.s the specified problem and
problem data. With this change from function calls to posed problems, the entire
Wrapping iqfra.structur€ can be used. In particular, a.s the usage conditions for the
legacy software change (which they always do), that information can be placed into
the problem context, and used to divert the posed problems to new resources written
with the new conditions in mind (only the timing characteristics will change, but
those changes are frequently completely subsumed by using faster ha^rdwa^re). The
gradual transition away from the legacy code is extremely important. Writing such
a compiler is a well-understood process, and it is often worthwhile to do so.

The Problem Poeing Interpretation radically changes our notion of autonomy,
because it eliminates the notion of users "commanding" a system. It replaces that
notion with the inclusion of users âmong the resources that can be used to address a
problem. From this viewpoint, the more autonomous agents a,re merely the ones that
need less help in deciding what to do, whether the decision is about choosing high-
level goals or lower-level ta.sks that a,re expected to address previously determined
goals.

3 High-AutonomySystems

Our view of autonomy includes not only the simpler version, in which systems
can caxry out tasks with littl€ or no supervision, but also the more interesting and
difficult one, which requires that systems can participate in the creation of their own
goals. This kind of open-ended ability requires an enormous amount of knowledge
of the current situation, the possibilities for action in that situation, the capabilities
ofthe system itself, the consequences ofthose actions, and the valuations placed on
those actions or their results.

In our opinion, there are really only two classes of (difficult) requirements for
effective autonomy: robustness and timeliness. Robustness mealrs graceful degra-
dation in increasingly hostile environments. Timeliness means that situations a,re
recognized "well enough" a,nd "soon enough", and that "good enough" actions a,re
taken "soon enough" . Both of these are forms of adaptive behavior, and neither one
of these neces^sarily implies any kind of optimization.

These high-autonomy systems are interesting because they impose many strin-
gent requirements on the architectures that might implement them, flexibility and
robustness arnong the most difficult. These high-autonomy systems a^re ha^rd to
build because it is difficult to make a sufficiently flexible infra.structure.

Our approach to constructing autonomous systems is based on theoretical work
on organization of language and movement process€s [8], *d the structure of Con-
structed Complex Systems mediated or integrated by software [18].

79



3.f Autonomy R.equirements

We have described an architecture for autonomous systems that is knowledgebased,
computationally reflective [35] [36] [1411291, and contains many kinds of models of
itself and its environment [19] [25] [27]. Several questions about high-autonomy
systems arise while studying our approach.

High autonomy systems do not automatically require anticipatory modeling.
However, reactive systems are much too slow in a complex environment, so an-
ticipation of environmental efiects, and modeling of the potential efiects of actions,
are necessa,ry to keep up with the pace and variability of the external environment.

High autonomy systems do not automatically require reflective complex archi-
tectures Howevel, they do require

o self- and situation-mouitoring,

o selection from alternatives that are already in progress,

o heterogeneous-initiative behavior (not just mixed-), and

o continual contemplation for learning.

We think that these are enough reasons to want reflection (if the system knows what
it needs to do, knows what it is doing, and knows what it can do, then it can ma,ke
better choices).

High autonomy systems do not necessarily require knowledge-ba.sed architec-
turæ. Howevel, biological systems have an enormous and mysterious capability
for generative processes to create the va^riation spa€es within which activities are
constrained [8] [11], and then from which they a^re selected ("controlled sources of
va,riation"), and until we have such generative processes in computing systems, we
have to replace them with something else. We have chosen to use explicit knowl-
edge bases and interpreters thereof, since we have flexible methods for implementing
them, as described in the next section.

High autonomy systems do not necessa.rily require explicit models. Howevet,
they do require models that they can develop, adjust, and interpret, and having an
explicit modeling notation to which the system ha,s access is an important pa,rt of
being able to analyze the models.

3.2 Model Interactions

There are several difierent kinds of models:

o capability (this is the self-model from the Wrappings),

o empirical,

e inferential.

80



o anticipatory

We describe these models in this subsectiorr.
There a,re also models of the space of possible behaviors, that is, the trajectories

that the system may traverse, and its actions and the corresponding transitions
(some of the actions of the system will cause changes in the environment in response).
These can be organized into interactive game strategies, in which the system can
consider the alternation of its own actions and those of the environment (though of
course, most complex environments are not strictly taking turns). These models can
also be organized by time, both actual and potential, and also organized in several
other ways.

In order for the system to have a rich enough set ofmodels to consider, we expect
the system to build many of its own models. The system builds new models in two
ways: empirical and inferential. The empirical models are the data-driven obser-
l-ations, with many measurement processes and induction as the main component,
and the inferential models are the causality hypotheses. The system also needs to
construct Wrappings for the new models, which in general is very difficult, but is
relatively simple in this case: each of these model construction methods is based on
a hlpothesis about the input, and the model can be used in reasoning about that
input. In pa.rticular, the system will evaluate the models according to how well they
help the system predict its environment.

This model development starts with observations of the environment and of
itself. The Computational Reflection provided by Wrappings allows model analysis
and improvement to include all of these kinds of models.

Empirical models use induction to construct descriptions of the observations.
There are malry approaches to inductive inference [1], and which ones to use will
depend on the application area, but there will at least be some common sequence
recognition algorithms, and some partial pa^rsing algorithms.

Inferential models use abduction to construct explanations of the observations
and empirical models. The relationship between the inferential models and the
phenomena they explain is exactly the same a.s the relationship between mechanism
specifications and service specifications in communication protocol design: since
we cannot expect the system to be able to invent all the implementations for its
observed behaviors, we settle for trying a few well-known styles of implementation
that are specific to the application domain.

Both the empirical and inferential models are reactive, but they produce models
that ca,n be used for prediction. the anticipatory models are simulations (see the
next subsection).

All of these models a^re constructed in model spaces, and the model spaces in
our ideal system are often also constructed (though some are provided). The spe'
cific inductive and abductive methods use spaces that are constructed in advance,
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according to which method is used (each of these methods specifies that its models

a^re built in some well-defined space).
There are also exploratory models, processes that use evolutionary or adaptive

programming (using our semantically neutral Wrapping expression notation ure'ufor
its meta-programming capabilities [22] l23l) to develop more precise or more accurate
models of the observations, the explanations, and the consequences of activity. Some
of these more exploratory methods also build a model space, in addition to the model

they build within that space.

4 Symbol Systems

In this section, we turn to the symbol systems that underlie all explicit models in

the autonomous systems we consider. All behavior in the system is expressed in the
prograrns that define the set of resources available for selection by the CM. In the

simplest case, they a,re all expressed in wrex, but there a^re often models and other
resources that are not orplicit, and therefore not directly analyzable.

We a,re looking for criteria that can be used by a Constructed Complex System
to decide when its own use of its own fundamental symbol systems has become

inadequate, and for methods by which such a system can use the deficiency criteria
to help it develop new symbol systems that do not have the detected deficiencies
(without getting into an indefinite or cyclic series of changes that all have different
deficiencies).

We start by mentioning two theorems that seem to be well-known in the folklore,

though we have not seen any proofs of them before [21]. We called them uGet Stuck"
theorems, since they assert that any finite system of symbols and symbol grouping

constructs would eventually get stuck unable to express more complex relationships)
in a certain way. The relevance here is that it directly supports the assertion that
the ability to create new units and new symbol grouping methods (that is, new
symbol systems for representation), and the corresponding ability to re-express all

of its own behavior using the new units and the new constructs, is essential for
certain kinds of systems (in particular, the ones that we want to call intelligent).
This notion of systems that can change their own symbol systems is something new
in both Computing and Mathematics. Since, âfter all, any formal logical system
depends for its proofs on a fixed set of symbols, it follows that when we can change
the symbols, we obviate the proofs, and sometimes invalidate the theorems. In
particular, Gôdel's Theorem only applies to logics with fixed symbol systems (this

is not to say that it cannot be proved for certain logicat systems with variable symbol
systems, only that it ha.s not yet been proved)'

Making systems that can change their own symbols seems to be a ha"rd prob-

lem, but we think it is pæsible to solve it. The advanùage of our system design for

working on this problem is that it already has a system infrastructure that is com-
putationally reflective (our "Wrapping" approach to integration described above),

82



which means that our Constructed Complex Systems have access to a model of their
own capabilities and behavior that they can monitor and analyze.

So there are two ha,rd pa.rts to this problem: how to detect inadequacy in a
symbol system, and how to invent new symbols (actually, the invention of new
narnes for the new symbols is ea.sy; it is deciding on the appropriate meaninp that
is hard).

For the first problem, performance a,ssessment of a symbol system, there must
be a definition of what the performance of a symbol system is, and criteria for the
adequacy of that performance. The symbol system is used to express posed prob-
lsms, find appropriate resources to address thoee problems, and apply the resources.
Adequacy criteria therefore fall into several classes: (1) ease of identification (how
easy it is to produce the symbol structures that correspond to a particular situation
or event), (2) orpressive coverage (how much of the situation ca.n be expressed), (3)
expressive power (how small the resulting structures are), and (4) ease of interpre-
tation (how easy it is to use the structures for further processing). Note that classes
(3) and (4) a,re more ea,sily handled because they occur entirely within the system,
and so can be controlled or at least observed and influenced by the system.

Clâss€6 (1) and (2) require a way to describ€ situations that may be outside the
system (all of this evaluation also applies to events and situations that occur inside
the system, but as before, those ones are ea.sier to deal with), and that therefore
have no explicit representation inside the system, except for the one provided by
the existing symbol system. So in order to make the comparison, there must be
some basic interactions between the system and its environment that a,re not cov-
ered by the symbol system. For both Virtual Worlds (VW) and Real-Life (RL)
enyironments, they can be taken to be interaction items. For RL, these are usually
energy transfers of some kind, and for VW, they are text structures. The RL version
of the interaction is called the symbol-grounding problem, and is in general much
ha,rder. Even for VW, however, where the discrete nature of the world provides a
lower bound on required resolution, there a^re interesting problerrs because we will
eventually want to share those virtual environments with our computational agents,
which we expect will be implemented as this kind of Constructed Complex System

[6] [24].
For the second problem, that is, to decide what changes to make, the performance

measurements of the symbol system provide hints about what must be changed and
how to do so. When situations are not expressible, erctensions must be made, which
mealrs addition of new symbol definitions (without removing the old ones). When
situations a,re conflated that should not be (similarly described events or situations
have different effects or consequences), the identification context must be extended
to improve the discrimination between the situations. When the constraints among
a set of symbols become zufficiently complex, the set of interconnected symbols
needs to be r*expressed. The constraints guide the selection of new symbols, and
show how the old ones ilre partitioned among the new ones.
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We expect that there are other important processes here, but that these ones a,re
sufficient for a good start.

5 Conclusions

This paper describes a research program in Integration Science [10], using au-
tonomous and intelliçnt systems as a driving application [19] [15] [32]. It describes
our approach to Constructed Complex Systems, using Wrappings, and our insistence
that these systems manage their own representational mechanisms [28] [32].

There are several fundamental mathematical questions involved in this study:
(1) how self-reference can be made not only possible but sensibly computable [2] [3],
which we have empha.sized by using the Computational Reflection of Wrappings,
and our engineering notions of depth of self-modeling [26j, (2) how formal mathe
matical structures can be extended to incorporate more information about context
and situation, which we describe in detail elsewhere [32] (3) how to move formal
structures into new contexts and assess the resulting validity [30], (4) how to deûne
mathematical structures before their ba.sic elements are defined [32], (5) how to cap
ture more of the modeling processes in mathematical structures, (6) how to decide
when a notational system is inadequate, and (7) how to fix it.

References

[1] Dana Angluin, Carl H. Smith, "Inductive Inference: Theory and Methods",
Computing Sunseys, Volume 15, Number 3, pp. 237-269 (September 1983)

[2] Jon Ba^rwise, John Etchemendy, The Liar: An Essay on lïath and Ci,rculority,
Oxford U. (1987)

[3] Jon Ba"rwise, Lawrence Moss, Vici,ous Circles, CSLI Lecture Notes No. 60,
Center for the Study of Language and Information, Stanford U. (1996)

[4] Kirstie L. Bellman, "The Modelling Issues Inherent in Testing and Evaluating
Knowledge-ba.sed Systemd', pp. 19$'215 in Chris Culbert (d.), Special Issue:
Veri,ficati,on and. Valid,ation of Knowledge Based Systems, Erpert Sgstems With
Applications Journal, Volume 1, No.3 (1990)

[5] Kirstie L. Bellman, "An Approach to Integrating and Creating Flexible Soft-
wa,re Environments Supporting the Design of Complex Systems", pp. 1101-
1105 in Proceedings of WSC '91: The 1991 Winter Sirnulation Conference,
8-11 December 1991, Phoenix, Arizona (1991); revised version in Kirstie L.
Bellman, Christopher Landauer, "Flexible Softwa.re Environments Support-
ing the Design of Complex Systems", Proceedings of the Artifrcial Intelligenæ
in Logistics Meeting, S-10 March 1993, Williamsburg, Va., American Defense
Prepa^redness Association ( 1993)

84



[6] Kirstie L. Bellman, "Sharing Work, Experience, Interpretation, and maybe
even Meanings Between Natural and Artificial Agents" (invited paper), pp.
4127-4132 (Vol. 5) in Proceedings of SMC'97: the 1997 IEEE Intemational
Conference on Systems, Man, and Cybernetics,12-15 October 1997, Orlando,
Florida (1997)

[7] K. Bellmm, A. Gillam, and C. Landauer, "Challenges for Conceptual De-
sign Environments: The VEHICLES Experience", Reuue Intem. de CFAO et
d,'Infographie, Hermes, Paris (September 1993)

[8] Kirstie L. Bellman and Lou Goldberg, "Common Origin of Linguistic and
Movement Abilities", American Joumal of Physi,ologg, Volume 246, pp- R91S
Re21 (1e84)

[9] Kirstie L. Bellman, Christopher Landauer, "Integration Science is More Than
Putting Pieces Together", in Proceed'ings of the 2000 IEEE Aerospace Confer-
ence (CD),1&25 March 2000, Big Sky, Montana, IEEE Press (2000)

[10] Kirstie L. Bellman, Christopher Landauer, "Towards an Integration Science:
The Influence of Richard Bellman on our Research", Joumal of Mathematical
Analgsis and, Applicafions, Volume 249, Number 1, pp. 3-31 (2000)

[11] K. L. Bellman and D. O. Walter, "Biological Processing", American Jountol
of Physi,ology, Volume 246, pp.R860-R867 (1984)

[12] Richard Bellman, P. Brock, "On the concepts of a problem and problem-
solving", Arnerican Mathematical Monthly, \blume 67, pp. 11S134 (1960)

[13] Les Ga.s.ser, Michael N. Huhns (eds.), Distri.buted Arti,fi,cial Intelligence, Yol-
ume II, Morgan Kaufmann (1989)

[14] Gregor Kiczales, Jim des Riviéres, Daniel G. Bobrow, The Art of the Meta-
Object Protocol, MIT Press (1991)

Christopher Landauer, "Some Mea.surable Characteristics of Intelligence", Pa-
per WP 1.7.5, Proceedings of SMC'2000: The 2000 IEEE Intemational Con-
ference on Systems, Man, and Cgbemetics (CD),8-Tl October 2000, Nashville
Tennessee (2000)

Christopher Landauer, Kirstie L. Bellman, "The Organization and Active Pro-
cessing of Meta-Knowledge for LargeScale Dynamic Integration", pp. 149160
in Proceedings 10th IEEE Intemational Symposiurn on Intelligent Control,
Worhshop on Architectures for Semiotic Modeling and Situation Anolysi,s i,n
Large Compler Systerns,2T-30 August 1995, Monterey (August 1995)

Christopher Landauer, Kirstie L. Bellman, "Integration Systems and Inter-
action Spaces", pp. 161-178 in Proceedings of FroCoS'96: The First Inter-
notionol Workshop on hontiers of Combining Systems, 2&29 March 1995,
Munich, Germany (March 1996)

[15]

[16]

[17]

85



[18] Christopher Landauer, Kirstie L. Bellman, "Constructed Complex Systems:
Issues, Architectures and WrappitrBS", pp. ?3&?3Sin Proceedings EMCSR 96:
Thi.rteenth Eurcpean Meeting on Cybemetics and Sgstems Reseatrh, SWpo-
sdurn on Çornpleo Systems Analysis ond Design, g-12 April 1996, Vienna (April
1ee6)
Christopher Landauer, Kirstie L. Bellman, "Computational Embodiment:
Constructing Autonomous Software Systems", pp. 131-168 n Cybemetics and
Systerns: An Intemat'i,onal Jouma( Volume 30, Number 2 (1999)

Christopher Landauer, Kirstie L. Bellma^n, "Wrappings for Software Develop
ment", pp. 420-429 in 31st Hawaii Conference on System Sciences, Volume
III: Emerying Technologies, Ç9 January 1998, Kona, Hawaii (1998)

Christopher Landauer, Kirstie L. Bellman, "Situation Assessment via Com-
putational Semiotics", pp. 712-777 in Proceedings ISAS'98: the 1998 Inter-
national MultiDisciplinarg Conference on Intelligent Systems and, Semiotics,
1417 September 1998, NIST, Gaithersburg, Maryland (1998)

Christopher Landauer, Kirstie L. Bellman, "Generic Programming, Partial
Evaluation, and a New Programming Paradigm", Paper etspi02 in Proceedings
of HICSS'9?: The 32nd, Hawaii Conference on System Sciences (CD), Ttrvck
III: Emerging Technologies, Soltware Process Improaement Mini-T|ace, 5-8
January 1999, Maui, Hawaii (1999); revised and extended version in Chrisio-
pher Landauer, Kirstie L. Bellman, "Generic Programming, Partial Evalua'
tion, and a New Programming Paradigm", Chapter 8, pp. 10&154 in Gene
McGuire (ed,.), Software Process Improaemenl Idea Group Publishing (1999)

Christopher Landauer, Kirstie L. Bellman, "Problem Posing Interpretation
of Programming Languages", Paper etecc0T \n Proceedings of HICSS'99: the
32nd, Hawaii Conference on System Sciences, T?ack III: Emerging Technolo-
gies, Engineerùng Compler Computing Systems Mini-Track,5-8 January 1999,
Maui, Hawaii (1999)

Christopher Landauer, Kirstie L. Bellman, "Computational Embodiment:
Agents as Constructed Complex Systems", Chapter 1L, pp. 307-322 in Kerstin
Dautenhahn (ed.), Hurnon Cognition and Social Agent Technology, Benjamins
(2000)

Christopher Landauer, Kirstie L. Bellman, "New Architectures for Con-
structed Complex Systems", in The 7th Bellman Continuum, Intemat'ional
Workshop on Computation, Optimi,zation and Control,24-25 May 1999, Santa
Fe, NM (1999); in Applied Mathernatics and Computation, Volume 120, pp.
149-163 (May 2001)

Christopher Landauer, Kirstie L. Bellman, "Lessons Learned with Wrapping
Systems", pp.732-142 in Proceedings of ICECCS'99: The ïth IEEE Intema-

[1e]

[20]

[21]

l22l

[23]

124l

[25]

[26]

86



tionol Conferenc,e on Engineering Cornplex Computing Systems,lS-22 October
1999, Las Vega.s, Nevada (1999)

[2{ Christopher Landauer, Kirstie L. Bellman, "Architectures for Embodied Intel-
ligence", pp.2Ib-220in Proceedings of ANNIE'99: 1999 Artifieial Neuml Nets
and Indwtriol Engineering, Special Tlack on Bieore Systems, T-10 November
1999, St. Louis, Mo. (1999)

[28] Christopher Landauer, Kirstie L. Bellman, "symbol Systems in Constructed
Complex Systems", pp. 191-197 in Procædings of ISIC/ISAS'99: The 1999
IEEE Intemationol Symposi.um on Intelli,gent Control,1LL7 September 1999,
Cambridge, Massachusetts (1999)

[29] Christopher Landauer, Kirstie L. Bellman, "Reflective Infrastructure for Au-
tonomous Systems", pp. 671-676, Volume 2 in Proceedings of EMCSR'2000:
The 15th Eumpean Meeting on Cybemetics and Sgstems Reseorch, Synposium
on Autonomy Contrcl: Lessons from the Emotional,2L2S April 2000, Vienna
(April2000)

[30] Christopher Landauer, Kirstie L. Bellman, "Can Forrral Mathematics Model
Non-Formal Phenomena?", Abstract 171-3 in Proceedings IMACS'2000: The
16th IMACS World Congress on Scient'i.frc Computation, Applied Mathemotics
and Sirnulation (CD), Invited Session on Bioinformatics,2l-25 August 2000,
Lausanne (August 2000)

[31] Chrisbopher Landauer, Kirstie [,. lsllmaÂ, "symbol Systems and Meaninp
in Virtual Worlds", Procerlings of VWsim'îl: The 2001 Virtaol Worlils arul
Simulstion Conference, WMC'2001: The 20A1 SCS Westent, MultiConference,
7-11 January 2001, Phoenix, SCS (2001)

[32] Christopher Landauer, Kirstie L. Bellman, "Conceptual Modeling Systems:
Active Knowledge Processes in Conceptual Categories", pp. 131-144 in Guy W.
Mineau (Fd.-), Conæptuol Structares: Extrocting ond Representing Semantics,
Contributions to ICCS'2001: The 9th Intemotional Conference on Conceptual
Stnrctures,30 July-03 August 2001, Stanford University (August 2001)

[33] Christopher Landauer, Kirstie L. Belbnan, "Computational Infrastructure for
Experiments in Cognitive Leverage", in Proceed,ings of CT'2001: The Fourth
Intemotional Conference on Cognitiae Technologg: Instrtments of Mi,nd, Ç9
August 2001, Wa,rwick, U.K. (2001)

[34] Christopher Landauer, Kirstie L. Bellman, April Gillam, "software Infra.struc-
ture for System Engineering Support", Proceedings AAAI '93 Workshop on AI
for Softwore Engineering,12 July 1993, Wa.shington, D.C. (1993)

[35] Pattie Maes, "Computational Reflection", technical report 872, Vrije Univer-
siteit Brussel, Artificial Intelligence Laboratory (1987)

87



[36j

[3ï

Pattie Maes, "Concepts and Experiments in Computational Reflection", pp.
147-155 in Proceedings OOPSLA ?7 (1987)

Donald O. Walter, Kirstie L. Bellman, "Some Issues in Model Integration",
pp. 24*254 in Proceedi,ngs of the SCS Eostem MdtiConference, 2.&26 Apnl
1990, Nashville, Tennessee, Simulation Series, Volume 22(3), SCS (1990)

88


	Casus_v12_pp73-88_Landauer



