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Abstract
The architecture, Complexity and Organized Behaviow Within Environmental Bounds
(COBWEB), was developed to support an anticipatory approach to adaptation.
COBWEB consists of a large number of aulonomous agents, each a genetic algorithm,
using different strategies to adapt to changing resource availability. Anticipatory
genetic algorithms, that are Turing complete, as well as mutation are used to allow the
agents to respond to a changing environment. The simulation has four attractors, which
exhibit sensitivity to initial conditions, and the spatial pattems of the agents exhibit
wide variation as well as local structure, which might indicate adapive or anticipatory
behaviour.
Keywords: genetic algorithms, anticipatory agents. leaming, adaptation and Turing
machine.

l lntroduction

The Framework Convention on Climate Change and subsequent accords have
referred to the need to consider how various types of systems might adap to climate
change. Given the uncertainties associated with climate change scenarios, there axe
arguments for both reactive and anticipatory approaches to adaptation. Reactive
arguments focus on letting adaptations occur as required due to the cost of some
proactive adaptations and the uncertainties associated with specific impacts, particularly
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when translated down to specific regions or locales. This approach also assumes that if
the climate does change, these changes will unfold LT a rate that will allow for the
requisite adaptations. Anticipatory or proactive arguments focus on the risk of not
taking action given the uncertainties, and acknowledge the potential for a rapid and
discontinuous transition between the current and future climates.

Anticipatory approaches to adaptation require some form of predicting the future,
and then using that future to change a broad range of government policies as well as
organizational and individual behaviour so that they incorporate adaptations or the
flexibility to be adaptable in the face of future climæe change. For the most part,
research in adaptation to climate change discusses the need for adaptation as well as
specific measures for different regions or sectors. The architecture, Complexity and
Organized Behaviour Within Environmental Bounds (COBWEB) represents a different
approach to studying adaptation. It is general simulation platform where autonomous
and where anticipatory or adaptive agents act in a variable and changing environment.

The goal of COBWEB is to study the general characterisûcs and principles of
anticipatory adaptation that might be applicable to wide variety of systems. The
specific objectives of this phase of the project were to evaluate the behaviour of a
simple system at the level of the agents and at the level of the system; to develop a
method to simulate anticipatory behaviour; and to develop a software architecture thæ
would be flexible enough to accommodate different research needs and different
platforms. In this initial study the focus is on the behaviour of the system under
different constraints in order to identi$r the emergence of anticipatory behaviour and its
effectiveness under different constraints.

Anticipatory agents and anticipatory systems are defined as an agent or a system
which contains a predictive model of itself or the environment at some future state and
acts according to that prediction. Agents that manifest adapive behaviour (Rosen 1985),
which is incorporated in evolutionary computing (Bedau and Packard, 1992; Holland,
1993), can represent anticiptory behaviour. Bedau and Packard (1992) modelled
multiple adaptive agents called Strategic Bugs, based on a set of rules, on a two-
dimensional grid with a renewable food supply. Holland (1993) used genetic
algorithms in the Echo model 1o represent agents in this environment and also
infroduced interactions amongst the agents as well as multiple resources.

COBWEB is a mix of these two approaches. It is very similar to the Bedau and
Packard gnd except like Holland, the agents are represented by genetic algorithms.
Like Bedau and Packard, the agents consume one resource, although this has been
modified in the next version of COBWEB. A cellular automaton models the resource
growth, although resources can appear at random locations at any time rvith a small but
fixed probability. As the location of resources is constantly changing, the environment
is in a state of constant flux. Unlike the Echo model, the only interactions between
agents are collisions, which require an expenditure ofenergy.

A similar approach to modelling anticipatory economic systems using classifier
systems has been proposed by Rivero et al. (1999) and a classifier system was used for a
single agent in an ecological context by Krebs and Bossel (1997). A classifier system
representation of an agent uses many genetic algorithms or strategies, and auctions are
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held to determine which strategy the agent will use at any one time. Lavigne (2001) has
suggested a similar approach to modelling anticipatory behaviour using neural
networks. The COBWEB architecture will allow agents to be represented by classifier
systems, neural nets or other inference engines.

COBWEB agents are able to replicate if they have suffrcient energy resources.
Those agents that do not have strategies that allow sufficient consumption ofresources
do not replicate and are eliminated from the system. COBWEB can support several
unique genetic algorithms and is able to evaluate several strategies at once. Hence the
agents that are selected represent a system-wide response to the expected level of
resources, the expecæd cost of movement and replicating and even the expected
location of resources. Mutation is very important because at the system level, iÎ allows
for the experimentation with rrv/ strategies that may be necessary to survive in a
changing environment.

To introduce anticipatory behaviour, defirrcd as acting on a predictive model of a
future state (Rosen, 1985), anticipatory agents were developed by allocating a small
amount of memory, that is updated with new information after every action and can
result in new behaviour. The full imflerentation is discussed in the following section.
Mutation could also allow for latent strategies to re-emerge in the environment. If the
environmert changes making that srategy useful again, it is available to the agent, and
thongh replietio4 to the system. This is akin to the firnction of biodiversity or any
sort of socieAl information slorage systetrl, and potentially allows for anticipatory
khaviow or adaptation to eûErge at the syst€m scale.

COBWEB has many of tk fratnes of adaptable and evolutionary behaviour that
Rosen (1985) discussed in linking anticipation to adaptation. Specifically, it has genes,
or gerrctlpes, acting on a landscape, and the use of manory allows for the emergence of
adaptive behaviorn. Although Rosen used a biological metaphor of genotypes and
$renoûypes, his intent was to provide a geæric descripnion, which is the inænt with
COBWEB as well. COBWEB does not mimic any system in particular, and it would
have to be modified for a specifïc applieæion. Ratlær the intent is to examine the
linkage bstween anticipatory agents and system behaviow in a variable and changing
environment.

The output from the current version of COBWEB consists of the time step, the
nrmrber of grid cells occrryied by food, the number of agents, the average agent energy
and the total energy summed over all of the agents. Despiæ the simplicity of the initial
COBWEB platform, it still exhibits nonlirrer behaviour, chaotic attractors, semi-
stabilrty @ass et al., 1998) and multiple attractors. Although the most common
outcome is a steady state cycling of food and agent populations representing a few
swcessful strategies, thEre are initial conditions that will lead to the elimination of all
the agents, unlimited growth of the agent population, and survival of all strategies. The
spatial patterning of the agents is not predictable, but with the first attractor there are
indications that pockets of local spatial sfucture emerge with some degree of stability.
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2 Implementetion of COBTWEB

Unlike many other simulation models, COBWEB was implemented as a Java
application primarily because Java prognms can execute on nearly any host platform.
While other environments share this cross-platform facility with Javq few are as
capable at producing dynamic graphical output on as wide a variety of systems.
Traditionally, programming languages tend to leave the question of interface to the
platform, leading to a wide range of platform+pecific user interface libraries. With
Java, this interaction is sandardized, leading to the ability to develop a visual
presentation of the simulation which remains the same across multiple host
environments.

COBWEB also makes use of the dynamic class loading functionality present in
Java, so that new simulations can be added to the system without any modification
to the driver code. The ability to embed Java applets in web pages allows for the
presentation of results on the web with actual live simulations as diagrams. While it is
tnre, that when using any interpreted language there will always be some performance
penalty when compared to a compiled language, the performance of the Java language
was very acceptable for COBWEB, even with early prototypes.

The architecture used to irnplement COBWEB is very much an object-oriented
system. The application itself simply consists of a mrmber of houseke,eping and
presentation classes, and the logic to load a dota file. Tb classes that actually
implement the simulation are referenced by name from the scrip file, which is loaded æ
start-up along with a configuration file that contains the values for various simulation
parameters. This clear distinction between the applicæion and the simulation has proved
very useful in reducing the complexity of the irnplementation, and increases the
potential flexibility of the system. The most basic class in the systern is the EnvironmerÉ
class, which implements the two-dimensional grid, upon which the agents interact
which contains rocks and resources. A nondeterministic cellular automaton drives the
growth of the resource; any resource not consumed by the agents at any time step may
reproduce to adjacent grid locations, with a probability that is set in the configuration
file for the simulation.

Given an Environment class, an arbitrary mrmber of different Agent classes
may be defined An Agent executes the allowable behaviours for an actor in
the system, defining both the perceptual input and the possible actions that may be taken
on any time step. It is possible for multiple heterogeneous agent types to be pesent in
the same environment, in the same simulation, heterogeneity being defined by a
different genetic code, which allows for competition between physically heterogeneous
populations. Furthermore, an Agent class does not speciry a policy regarding the
decision of what action should be undertaken on each time step; this decision is defened
to an AgentController instance. Just as heterogeneous agents can populate an
environment, any number of AgentControllers can control any class of Agent, though
only one AgentController may drive a single Agent at any time. This allows for the
direct modelling of competition between physically identical, but algorithmically or
mentally different actors.
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An AgentController is a pure representation of the intelligence of an actor. The
interaction between the Agent and the Agentcontroller is defined in a simple bitwise
manner where the Agent supplies a fixed number of bits of input, and requires a fixed
number of bits of output. This allows for the AgentControllers to be designed in a truly
abstract way, so that the complex and error prone code required to implement various
AI algorithms need only be written once and shared between multiple Agent types or
simulations. Due to the abstract nature of the AgentController class, any number of
abstract algorithms such as simple rule sets, neural nets, genetic algorithms or classifier
systems can drive the actors' actions.

The primary AgentController class in the current versions of COBWEB is a genetic
algorithm. The implementation of the genetic algorithm is straightforward, containing a
table that directly represents a translation between the input and the output. When
Agents replicate, this table is copied to their offspring, with a random chance for bitwise
mutation. An interesting extension to the standard genetic algorithm that was used in
COBWEB was to provide a limited memory to the AgentController. This was
implemented by providing an additional number of bits of both input and output,
beyond what is strictly required by the Agent. On the first simulation timestep, this
additional input space is simply set to zero. However, the extra output is saved, and is
used in this input space on the next timestep. Thus the AgentController has a fxed
space where information can be passed to itself to change its behaviour at the ræxt time
step.

More formally, this allows the input to become an encoding of a futue state into
a model that is held in the agent's memory, which functions as a prediction and alters
the behaviour agent. In this version, a l2-bit genetic algorithm, with a random allocation
of one's and zeros, and a two-bit memory, define the agents. Of course, the complexity
of the algorithm is limited in practice by the number of memory bits allowed to each
AgentController, but the encoding of additional informalion is an interesting result in
and of itself as it creates genetic algorithms that are Turing complete. The ability to
process additional information is also one of the charactensûcs of a truly complex
system.

The ideal solution for any agent is trivial - eat if possible, else move or else turn
- but it allows for the development of a genetic algorithm library to drive the agents, as
the base model for future developrnent. The actual number of genetic algorithms is
equivalent to the number of agents in the environment at any particular time step. In
order to view the evolution ofstrategies a hashing procedure was used to create colour
identifiers. based on how the actor moved in the environment.

3 Running the COBWEB Model

There are several components in the COBWEB environment. As previously
mentioned, it includes agents that can move, consume resources, give birth, expend
energy, die and potentially anticipate the future. The accumulated energy represents the
"life force" of the agent. When this score drops below 0, the agent dies, and is removed
from the simulation.
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In the first version of COBWEB, birth occurs as soon as enough energy is
accumulated. In the second versioq a gestation period is infroduced, thus introducing
additional uncertainty into the simulation as an agent could die before giving birth. An
agent is restricted in that it cannot see past one grid square nor can it communicate with
other agents. The initial number of agents, the amount of energy required to accomplish
any tash the initial energy available at birth" the mutation rate, and whether the memory
is in use can be changed before running the program. The time steps are defined by
every ne\il appearance of the resource in a grid cell that was previously empty.

At the start of each simulation run, the user can specify several parameters such
as the size of the grid, the number of agents, the number of stones, the amount of energy
obtained from food and expended on each activity, and the rate of food growth. Both
means of controlling the rate of growttr, and hence the distribution of new resources, can
be altered at the beginning of the program. The grid is two dimensional, but the
platform is flexible enough to allow for a threedimensional gid in the firture. Stones,
which are immovable objects that extract a certain amount of energy per collision, are
also distributed randomly in the grid. The number of stones and the energy expended by
a collision is chosen at the beginning of the program. The user can also specifr whether
the agents have memory and the rate of mutation.

4 Ana$sis of COB\ryEB

For most parameter values, the initial behaviour of the system through time
oscillates beÉween extremes for agent population and the available resources. At 200
time steps the agent population may decrease quite rapidly, sometimes falling to one
individual, or the system may reach its steady state. This is the phase where the system
eliminates most of the strategies. After 200 time steps three attractors emerged
depending on the initial values of the parameters. The predominant attractor resembled
the classic predator pr€ry pattern in ecology where both the agent population and
resources oscillated in a very narow range in what resembles. The spatial patterns were
much more chaotic with pockets of order emerging, that are stable or at least semi-
stable (Bass et al., 1998). A second attractor resulted in the elimination of all agents by
800 time step, and a third attractor was unlimited gowth in the agent population until
the agents filled up the grid.

The temporal behaviour of COBWEB was analyzed by adjusting the parameters
individually and moving them together, and allowing the simulation to run for 3,000
time steps. Parameters were adjusted between a high, intermediate or low value. The
intermediate values were set at a level that resulted in the stable predator-prey
interaction and the extremes were set at arbitrarily high and low values. The parameters
were increased and decreased by small increments until they upper and lower limits
were reached on a fixed 75 x75 two-dimensional gnd.

The objective of these tests was to determine the number of attractors in COBWEB
and the degree to which an attractor, not a specific trajectory of any one simulation,
could be predicted from the initial values. Two sets of experiments were run with two
different sets of initial parameter settings. The first experiment produced the first two
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attractors. At the first attractor the steady state agent population usually hovered
between 80 - 90 regardless of the parameter values.

Most of the initial paramet€r values drove the system towards the first attractor,
which is easily detected at the system level, through the number of agents, and strategies
that persist in the environment. When the system reaches its steady state, the genetic
variety has been reduced such that the population is dominated by at the most four
different strategies, though the exact balance between them is not predictable. In some
simulation runs they four different types of genetic algorithms may be present in equal
numbers while in others, one or two may dominate in the environment.

The first attractor was reached within a wide range of parameter values, and the
agent population, energy and available resources usually varied within a very narrow
range. The transition from the convergence on a steady state ûo the elimination of all the
agents occurred quite suddenly with subtle shifts in the initial parameter values at the
boundary or ttneshold of this range. While some of these threshold values, such as the
number stones, are sensitive to the size of the grid, others clearly reflect the limits of the
strategies rhnr il's available to the system. Although the mutation rate and anticipation
offer the means to increase learning ad vary the strategies, in this case, too much
variation in the ancestral sfrategies could not be tolerated. In other words, the
epigenetic landscapc was sernerely oonstrained (Beer, 1981) due to the apparent
$ability, or lack of vuiety, in future rcsûrce distribrrion.

There were several parameters for which thresholds existed that overwhelmed the
available stategies to tlre system and drove the system to the second attractor Clable 1).
The agents were eliminaæd between 800 - 1000 steps when the number of stones
exceeded 600. The agent population also died out when the resource rate ofthe cellular
automaton was reduced to 50oÂ, uùen the initial energy fell below the intermediaæ
value, when ttË food energy was decreased 1o 100 units, and when the turn energy was
set to 30. The impacts of other thrcsbold values, such as mrûation rde and resource
enerry, were unpredictable. For example, when the rate of mutation exceeded 0.06 the
agents were eliminæed in some simulation runs, but not in others, although at very high
levels of mrlatio4 all of the agenæ atappearea d before 600 time steps. There were
other pararneters, such as the enerry required to breed, for which the equilibrium
number of agents were reduced bul not eliminated from the grid.

Table 1: High, Internedisf€ and Low Values of Criticel Parameters
(First Set of Experiments)

Stones Resource
Rate

Mutation
Rate

lnitial
Agent
Enersv

Resource
Energy

Step
Energy

Turn
Energy

Hish 1000 2.0 2.00 2000 200 100 100
lntermediate 300 1.0 0.05 1000 100 5 )
Low 0.5 0.01 2 J I I
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The second set of experiments were run with a difTerent set of high, low and
intermediate values. Ttble 2 indicates those parameters that were critical and Table 3
indicates some of the larger differences that were introduced between the two
experiments. There were some notable differences and similarities between the two sets
of experiments. In the second experiment the average steady state agent population was
350, but the range was much larger, + 100. In the first experiment, a dramatic cull of
strategies and agent population occurred at time step 200, and this was visible both in
the graph of population with time and on the two-dimensional grid In the second
experiment, the dramatic cull occurred at time step 200 but was only visible on the grid
at time step 400. The third attractor only emerged in the second set of experiments.

Table 2: Eigh, Intermediate and Low Vslm of Critical Parameters
(Second Experirent)

Resource
Rate

Resource
Growth

Mr.ûation
Rate

Resource
Enerw

Step
Enerw

Turn
Energv

Hish 3.0 1.0 1.00 500 30.0 30.0
Intermediate 2.0 0.5 0.05 100 5.0 10.0
Low 0.2 0.2 0.01 ) 0.5 0.5

As can be seen in Table 2, parameters stçh as the number of stonæ were no longer
critical in terms of system viability. The system was sersitive to a threshold value of 0.5
for resource growtL the probability of new resourtes appearing at random locatiom, at
which point all the agents were eliminatd At fie other end, the average steady state
agent population suddenly increased to 625 when food growth increased to 2. When
step rock energy and turn energy were set to 0.5, the agent population did not reach a
steady state, but instead continued to increase until the gid was filled with agents.
When this simulation is allowed to continue, the sysEm will crash, not due to resource
scarcity, but due to a scarcity ofspace.

Table 3: Parameter Dilferences betwecn th Two SeA of Experiments

Experiment I
to2
(t change)

Stones Initial
# Agents

Initial
Resources

Initial
Energy

Resource
Energy

Step
Energy

High 1000 -
2000

2000 -
1000

3000 -
2000

2000 -
3000

200 - 500 100 - 30

Intermediate 300 -
700

1000 -
100

1000 - 500 1000 -
2000

No change 5 - 1 0

Low l - 1 0 2 -10 5 -20 2 -30 No chanse I  - 0 . 5
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In this set of experiments, increasing the mutation rate appeared to lower the agent
population, but the pattern was not regular. However, as the rate was increased from
0.25 to 0.75, the average steady state population decreased from 1300 to 100, but the
average energy remained slightly higher than 1000. Thus, although increasing the
mutation rate appears to have a detrimental afiect on the system in the long run, the
changes in the initial parameters allowed a much higher degree of trial and error. When
goups of parameters were moved in unison, the food parameters had the most
consistent impact. Regardless of the other parameter values, when the food parameters
were set at their low values, a number of the agents were eliminated from the grid.
Raising the values of other parameters could delay the elimination, but the food
parameters were the only set of parameters 1o consistently thwart the system's ability to
adapt.

A preliminary set of experiments has been conducted by primarily increasing the
amount of energy available at birth and lowering the cost, in terms of energy expended
of movement about the grid, resulting in a founh attractor. This attractor allows for
most, or at times even all, of the strategies to surv1ve. Its emergence appears to be based
on highly mobile agent that consumes a lot of the resource, replicates often atd will
occasionally replicate other strategies through mutation, which survive due to their high
initial energy allocation. Large increments in the cost of movement will induce a shift
to the second atfaclor, but this may occur with even small increments in this parameter.
At certain threshold values, the emergence of either the second or the fourth attractor is
not predictable, and small changes in other parameters may cause a shift from the fourth
to the thrrd attractor.

5 Discussion

The analysis of the temporal patterns in COBWEB revealed that the system is quite
robust to the changes in resource distribution as well as changes to the initial pararneter
settings. However, the systern's response to these settings is nonlinear as indicaæd by
the sudden shift to a new attractor below or above certain threshold values. The success
of any strategy, or type of genetic algonthm, is constrained by the values of the initial
parameter settings. The initial values create a iarge window of opportunity in which
y)me or all of the strategies are successful whereas just outside that window a diffsent
attractor rnay emerge.

At other times, exceeding the threshold values did not result in the elimination of
the agents. The population might have decreased dramatically, but it recovered and the
predator-prey pattem re-emerged over time. The specific attractor could not be
predickd from the paameær values, these uncertainties might be indicative of the
presence ofchaotic attractors at certain threshold values.

It could be argued that the stable predator-prey pattern that ernerges is
representative of successfully anticipatory behaviour at the system level in that the
strategies that survive represent models of decision making that are appropriaæ for
survival. This is especially applicable when the initial parameær values for the
simulation would usually result in the elimination of the agents, yet the agent population
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is able to recover; the system has successfully adapted to the environmental constraints.
Other strategies will re-emerge, but their elimination indicates a system-wide
anticipation of a future where those strategies would not be conducive to maintaining
the current agent population. Although COBWEB contains no higher order agents to
direct the system's choices, emergent behaviours above the scale of the individual are
often interpreted as system responses in a wide variety of disciplines.

The spatial patterns have not yet been analyzed in a formal manner, yet in many
simulations the agents exhibit clustering patterns, often by colour group. They no
longer traverse the whole grid in search of resources, but rather remain in a smaller
domain with sufficient resources to meet their energy requirements. This suggests that
if the system is at the first attractor, behavioun are emerging that narrow the search
radius as long as resources appear in that section of the domain while other parts of the
grid appear to remain unstructured or perhaps chaotic. These behavioun are consistent
wifi what would be expected from anticipatory agents as well as observations in
ecology (Hassell et al., l99l) and similar modelling studies (Kauffman, 1993).
Although this behavioural modification may be a result of the anticipatory nature of the
genetic alprithms, mutation may also play a role, although the clustering was more
difficult to detect when the memory was not activated in the genetic algorithms.

The third and fourth attractors, unlimited growth in the agent population and the
penistence of a wider range of strategies, emerge under cerhin conditions. The third
attractor emerges when certain, but not all, energy expenditures were reduced below a
critical threshold. For example, in the first set of experiments, when the energy
requirements for movement and replication were sufficiently low, the steady state agent
population at the first attractor was far below the average or the agent population would
be eliminated In this case, the rate of population growth exceeded the rate of resource
production. In the second set of experiments, when the replication and movement
energies were reduced to similar levels, the rate of resource production was sufftcient to
support an ever-increasing population, limited only by the size of the grid.

The nonlinear response to changes in initial parameter settings raises some
interesting questions about anticipation. If the environment changes too drastically, will
it overcome the system's ability to anticipate the future, i.e. to develop new strategies to
ensure its survival? This question affects all applied research in adaptation, particularly
climate change, in that many of the conclusions drawn form impacts and adaptation
research are based on a gradual transition from one climate to the next.

The second question is the importance of anticipation. COBWEB agents are
anticipatory, but it is not yet clear that it confers a distinct advantage when the best
strategies for survival are fairly simple. The impact of memory in the individual agents
was not discernible in these simulations. However, COBWEB was reprogrammed to
allow only some fraction of the agents to have this memory. When the fraction was
85Vo or higher, the system elirninated those agents without memory. Below the 85%
threshold, the system tended to favour those agents without memory. The next version
of COBWEB allows for the memory to activated in only some of the agents, so that the
importance of anticipation for survival can be evaluated under a wide variety of
conditions.
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Additionally, in this version, there are three types of resources and the simulation
can be configured so that the agents' preferred resource confers more energy. The other
major changes arc that birth is not instantaneous, rather the agents are pregnant and,
mutation cannot occur:lcross resource preference groups, i.e. ifan agent prefers the blue
resource, it cannot give birth to an agent prefers the yellow resource. Initial runs with
this version, indicate markedly different agent behaviours and a range of different
outcomes, and the system takes much longer to reach this stable pattern. Initial testing
with the same parameter settings suggests that the groups that are eliminated and the
time required for elimination cannot be predicted in advance. However, as agents can be
modified according to their resource preferences, the next version of COBWEB will
allow a much richer set of experiments, including a direct comparison of agents with
and without tlrc capaciry for anticipatory behaviour.

One of the hallmark features of COBTWEB, that provides the basis for simulating
anticipatory behaviour, is the memory that has been appended to the genetic algorithms.
These agents axe now able to encode input, perfomr arbirary computations on the input,
store intermediate results and generate output in the form of behaviour. Hence the
genetic algorithms are isomorphic with a Universal Turing Machine (UTM), or Turing
complete in an uncertain environment; essentially any algorithm, which can be
implemenæd in any deterministic language, could mechanically be translated to this
genetic algorithm just as it could to a UTM. Thus, in principle, this genetic algorithm
can run any algorithm that is a model for anticipatory behaviour, although in practice it
is limited by the size of fu space Éat is allocated for its memory.

6 Future Reseerch

There are several futre reserch directions that will be explored over the next few
years. These directions involve analysis of spatial pattems, analysis of the attactors,
response to changes introduced dunng the simulation, additional environmental
complexity ad additional agent complexity. The spatial analysis will utilize both
qualitative and quantitetive measiures to assess the sigrrificance of the clustering that has
been seen to ernerge at latær time steps in the simulation. The analysis of multiple
attractors will be continued, specifically at those threshold values that produce the
second third and fourth attractors.

Additional complexity will be added to the agents to allow for the emergence of
different strategies, through the addition of breeding, communication, tenure of
resources and a larger memory, or capacity for anticipation. Additional complexity will
be added ûo the environment by inûoducing resource scarcity. As the ability to adapt to
rapid environmental change is of major concern in climate change research, frrture
versions of COBWEB will allow paramstsr changes during a simulation as well as at
the initialization of each run. These modifications will provide a basis to explore the
Law of Requisite Variety, only variety can absorb variety (Beer, 1981), and it will be
interesting to explore how much variety is needed at the agent level to cope with
additional environmental variabiliw.
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The COBWEB platform can be extended to experiments involving multithreading,
running the simulation on multiple platforms. This would be accomplished through
partitioning the world into 'processor blocks', where each n x n block of the world is a
separate process. To facilitate this experiment the borders between processes could be
made more explicit making it expensive for agents to move across these borders.
lJltimately, each agent could be modelled as a process with a separate process to run the
environmental simulation and agent interaction. Although this would require
synchronization at every time step, it would provide for a truly complex agent in a
multiple agent world allowing for agents with substantially larger memories, on the
order of 1024 bits.

7 Conclusions

COBWEB is a simulation platform for exploring questions about anticipation and
hence adaptation to environmental change: It allows for a multiple agent simulation,
penalties for making a mistake and the preservdion of unused stategies. The system is
able to leam and adapt, in an evolutionary manner, selecting ûte most viable strategies
and the optimal number of agents. The system can also fail to adapt and the agents die,
or maladapt leading to overpopulation.

Anticipation was embedded at the agert level thrcugh mutation and ûrough
providing each genetic algorithm with additional but unspecified storage space,
allowing for a Turing complete computational model. COBWEB is still simple enough
that a 'best' leaming strategy does not have to be imposed upon the system; Darwinism
accomplishes that task. Instead of explicitly defining what is best which may conupt
the system, the best are those that replicate. Other strategies are storcd for later use or
become extinct. At smaller scales in the domain, the agents appear to modiff their
spatial behaviour, which may indicate a capacity to anticipate the location of a resource.
Future versions of COBWEB will allow for a richer set of experiments and a
comparison of agent success with and without anticipæion
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