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Abstract

In this paper we present a class of paraconsistent deontic systems D*r which may
constitute, for instance, a framework for the formal study of normative theory in law, in which
it is important to manipulate directly the concept of contradiction.
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I Introduction

Deontic logic was inhoduced by E. Mally in 1926 (Die Logik des llillens - Grundgesetze
des Sollens, Graz: Leuchner-Lubensky). In his work, Mally has essentially developed a
logical system which dealt with expressions such as I want that... Later, A. Hofstadter and J.
McKinsey attempted to formalize a logic of imperatives, which is closed related to deontic
logic. As is well known, in the two systems above the deontic operators were only
omamental; that is, they collapsed.

Only with the publication of [von Wright 54] did deontic logic receive significant
development. von Wright also showed how deontic logic and the usual modal logics were
related.

When proposing a formalism for normative knowledge, the primary contender is deontic
logic. One argument in favor the need for deontic systems claims that such logics are
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necessary because the language used in laws and norms actually use the concepts expressed
by the deontic modalities such as'?ermitted", "obligatory" and "prohibited".

In applications, for instance in AI and law, some authors have proposed the use of deontic
logics, because they are able to represent the relations between'\uhat ought to be the case and
what is the case", or "between the ideal and the actual" ([Valente 95]).

However, there are a large number of well known difficulties in reasoning with legal
nonns:

o In the deontic model, there is no explicit distinction between the statements of fact
and norms.

o There is no explicit distinction between facts and norms
o There is no explicit classification ofcases.

Another difficult, as becomes evident in some classical examples (Chisholm paradox, Good
Samaritan paradox, and others), is that deontic logic normally assumes that it is always
desirable to comply with all norms. This leads most deontic systems into paradoxes.

ln reasoning with legal nonns, tïe central concem is the application of norms to cases and
the results of this application.

Finally, the usual deontic systems, because they are extensions of classical logic, do not
permit us to work with conflicting nonns.

Roughly speaking, the usual deontic logics are inadequate; there are structural limitations
on their use to model legal normative knowledge. Many authors have recognized these
aspects, for instance, [Alchun6n and Bulygin 7l], [Alchun6n & Makinson 81], and [Da
Costa 96]. The literature on deontic logic consists entirely, these days, of work intended to
overcome such limitations.

In this paper we present a class of fint order paraconsistent deontic systems D*t which
may constitute, for instance, a framework for the formal study of normative theory in the law,
in which it is important to manipulate directly the concept of contradiction.

2 Paraconsistent, paracomplete, and non-alethic logics

Let T be a theory whose underlying logic is I. ?n is inconsistent when it contains theorems
of the form A and 4 (the negation of,{). If I is not inconsistent, it is called consistent. T is
said to be trivial if afi formulas of I are also theorems of Z. Otherwise, l is called non-trivial.
So, in trivial theories, the extensions of the concepts of formula and theorem coincide. When
Z is the classical logic (or several other ones, such as intuitionistic logic), a theory is trivial iff
it is inconsistent. A paraconsistent logic is a logic which can be used as the basis for
inconsistent but non-trivial theories. A theory is calledparaconsistent ifits underlying logic is
a paraconsistent logic.

Similarly, we can be introduced the concept of paraeomplete logic. A logic is called
paracomplete if it can function as the underlying logic of theories in which there are formulas
such that these formulas and their negations are both false. A theory is called paracomplete if
its underlying logic is a paracomplete logic.

As a consequence, paraconsistent theories do not satisff the principle ofnon-conhadiction
which can be stated as follows: from among two contradictory propositions (i.e., one is the
negation of the other) one is false. Moreover, paracomplete theories do not satisfy the
principle of excluded middle, formulated in the following form: from among two
contradictory propositions, one is true.

26



Finally, logics which are simultaneously paraconsistent and paracomplete are called non-
alethiclogics.

3 Paraconsistent Deontic systems D*r

Annotated logics are a kind of paraconsistent and, in general, paracomplete and non-alethic
logics. Several interesting applications were found in Artificial Intelligence (e.g. reasoning
about inconsistent knowledge bases, declarative semantics for inheritance networks, object-
oriented data bases, paraconsistent frames, and others). Because of the importance of such
systems in artificial intelligence a number of authors began to study such systems from a
foundational point of view: [Da Costa, Subrahmanian, & Vago 9l], [Da Costa, Abe, &
Subralmanian 9ll, [Abe 92,94a], [Sylvan & Abe 96], among others.

In this section we introduce the annotated deontic systems D*t. The symbol t = . lr | , < t
indicates some finite lattice called the lattice of tntth values. We use the syrnbol -< to denote
the ordering under which t is a complete lattice, J. and a to denote, respectively, the bottom
element and the top element of t. Also, n and v denote, respectively, the greatest lower bound
and least upper bound operators with respect to subsets of lr | . We also fix an operator
-, I" |- | c I which will work as the "meaning" of the negation of the deontic system D*t.

The language of D*r has the following primitive symbols:
l. Individual variables: a denumerable infinite set of variable symbols: xt, x? ...
2. Logical connectives: - (negation), n (conjunction), v (disjunction), and -+ (implication).
3. For each n, zaro or more z-ary function symbols (n is a natural number).
4. Foreach n*0,n-ary predicate symbols.
5. The equality symbol: =
6. Annotational constants: each member of r is called an annotational constant.
7. Deontic operator: O (obligatory).
8. Quantifiers: V (for al) and 3 (there exists).
9. Auxiliary symbols: parentheses and comma.

For each n the number of n-ary function symbols may be zero or non-zero, finite or infinite.
A 0-ary function symbol is called a constant. Also, for each n à I, the number of n-ary
predicate symbols may be finite or infinite. We suppose that D*r possesses at least one
predicate symbol.

We define the notion of krm as usual. Given a predicate symbol p of arity n and n terms 11,
... , tn, â basicformula is an expression of the form p(t1, ... , tn). An annotated atomicformula
is an expression of the formpr(tr, ... , l), where ?v is an annotational constant. We introduce
the general concept of (annotated) formula in the standard way. Among several intuitive
readings, an atomic annotated formula px(4 ... , tn) can be read: it is believed that p(fi, ... ,
tn)'s truth value is at least L

Definition 3.lLetA and.B be formulas. We put
l .  A+>B:o . r . (A  +3)n  (B+A)
2. nA=peç.4 -+ ((A -+ A) r,-(A -+ A))
3. PA=e.ç.1O14
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The symbol '<)' is called biconditional,'1f is called strong nqgation, and 'P' is called the
operator permitted'.

Let Abe a formula. Then: -01 indicates A, -tA indicates 4, and -kl indicates -1-k-ll),
(/c e N, /r > 0, N is the set of natural numbers).

Also, if p € r, -0 p indicates p, -r !r indicates -p, and -k p indicates -(-*-tp), (È e N, & >
0).

If ,4 is an atomic formulap(t1, ... , ln), then a formula of the form -br(tr, ... , tJ (È > 0) is
called a hyper-literal. A formula other than hyper-literals is called a complex formula.

The postulaûes (axiom schemata and primitive des of inference) of D*t are the following:
A,B,and Careanyformulaswhatsoever,  FandG arecomplexformulas, p(tç. . . ,1o) isa
basic formula, and )u, p, irj tre annotational constants.
l )  A - > ( B - + A \
2) (A -+ (B + C) -+ ((A -> B) -+ (A + C))
3)  ( (A-+B) -+A) -+A

A . A - + B
4 ) B

5 )  l n B - + A
6 )  A n B - + B
7)  A-+(B +(A nB) )
8 )  A - + A v B
9 )  B + A v B
l0) (l -r C) -+ (B -+ C) -à ((A v B) -+ C))
ll)(f'-r G) -+ ((r'-+ -G) + -r')
12)F -+ (-F -+ A)
l3)Fv - f '
14)pt(h, . . .  , ln) .
15) -kpÀ(tr, ... , ln) -) -k-lp-r(lr, ... , tn), k> |
l6)px(tv ... ,t;) ) pp(lr, ... , d,I2 F

ll)px{tr,... , /n) npu(/l, .., , fn) n ... ̂ pÀm(tl, ,.. , tt) -+ pl(tr, ... , 'J, where },, = i- f,

r8)O(A -+ B) -+ (OA -+ oB\
l9\PA -+ OPA
20)OA -+ PA

A
zt) oA
22)A(t) -+1xA(x)

A(x\-+ B
t?\ .---' 

lxA(x\-+ B
24)VxA(x) -+ A(t)
2S)VxOA -+ OVxA

B-+ A(x)
"o) B + v*A(r)
27)x = x
28)x: y -> Alx) +> Aïyt
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29)11@ =y) -+ 01@:y)
with the usual restrictions.

Theorem 3.2 ln D*r,1 has all the properties of the classical negation. For instance, we
have:

l .  l A v n A
2. l{A nnA)
3. I Qq -+ À) -+ ((l + 1,8) + nl)
4 .  lA-+1;11A
5. lnA -+ (A--> B)
6. | (.t -+ 1A) -+ B

Corollary 3.2.1 In D*t, the connectives ll, A, v, and -+ together with the quantifiers V and
3 have all properties of the classical negation, conjunction, disjunction, conditional and
universal and existential quantifiers, respectively. lf A, B, and C are any formulas whatsoever,
we have, for instance,

l .  (A  nB)er (  nAv11B)
2. nVA <+3xnA
3. )xB v C+> lx(B v C)
4. Bv LrC<+3x(BvC)

Corollary 3.2.2 The "corresponding" classical deontic predicate calculus is contained in
D*r though it constitutes a strict subcalculus of the later.

Theorem 3.3 If A is a complex formula, then
1 4 < + 1 A

Theorem 3.4: D*r is non-trivial.

4 Semantical analysis: Kripke structures

Delinltion 4.1: A Kripke model forD*c is a set theoretical skucture
K = flIl, À, { where
I/is a nonempty set of elements called 'worlds'

À is a binary relation on l/such that
l. For each w e lI/, there exists w' e W suchthatw Rw'
2. F or w, w', w " e lT, and if w R w' and w.R w ", then w' R w ".
,I is an interpretation function with the usual properties with the exception that for each n-ary
predicate symbolp we associate a functionpl:I7n -+ ltl.

Given a Kripke model K for the language L of D*r, the diagram language Z(K) is obtained
as usual. Given a free variable term a of L(19 we define, as usual, the individual K(a) of K.
We use i andj as meta-variables for names.

Definition 4.2If A is a closed formula of D*r, and we l/, we define the relation K,w ll A
(K,w force A) by recursion on l:
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l) Ifl is atomic of the formpr(tr, ... , t), then K,w

ll A iff pt(K(t),... ,r(t )) > p.
2) If A is of the form -kp1(r1, ... , t,) (k2l), K,w ll A ifî K,w lf -k-tp-r(lr, ... , tn).
3) Let A ar.rd B formulas. Then, Kw ll (/ n B) iff Kw lf ,4 and K,w ll B; K,w ll (A v
B) iff K,w ll A or K,w ll B; K,w ll (A -+r) iff it is not the case thatK,w ll A or K,w ll B;
4) It A is a complex formula, then Kw lf (-l) iff it is not the case that K,w ll A.
5) If ,4 is of the form (3x)8, then
Kw llA iffK,w lf ,B-[r] for some i inI(K).
6) If A is of the form (Vr)B, then K,, ll
A iff Kw lf B.[i] for all i in I(K).
7) If A is of the form OB then K,w ll A iff K,w' lf I for each w' e lT such that w R w'.

Theorem 4.3 Let K = llV, R, { be a Kripke structure for D*t (or D*t-structure) and F a
complex formula Then we have not simultaneously K,w ll-F nd K,w ll F.

Proof. It follows from the condition 4 of the preceding definition. o

Delinition 4.4 Let K = Ill, R, ,11 be a D*t-structure. The Kripke sfucture K forces a
formula,4(insymbols, KllA\,if K,wllA foreachw eW.AformulaliscalledD*t-validif
for any D*r-structure K, K ll A. We symbolize this fact bV ll A.

Theorem 4.5 Let K = fW, R,Il be a D*r-structure. For all formulas .,4 , B of D*r we have
l. lf A is an instance of a propositional tautology then, K ll A
2. rf K ll A nd K ll A -+ B,thenK lf .B
3. ,K lf O(A + B) + (OA -+ OB)
4. K ll PA -> OPA
5 . r F O A - + P A
6. I fKl lAthenKl loA

Theorem 4.6Letp(tr,..., tn) be abasic formula and 1,, p, p € l r | . we huue
l .  l lP t ( r t , . . ' ,  â )
z. ll pxQr, ... , tn) -+ PuQb ... , tn), if À : P
t .  l l px (h , . . . , tn )  npu( t r , . . . , ln )  +pp( tv . . . , ln ) ,  where  p  =  À v  p

Proof l. For any Kripke structure K, wehave p1(K(r1), ... 'K( /.)) > I, for all w e K. So, K I
p..(L ..., tn) for every K, and therefore ll pL(h, ... , t").
2. Let us suppose that there exists a K such that it is not the case that K ll pr(tr,... , fn) -)

p*(tv ..., tn), tlat is K lf p(11, ... , tn) and it is not the case that K lf pv(h, ..., /n), for some lr' €
K. So, pr(K(tù, ... J<( t")) > I and rLot pt(K(tù, ... ,K( t")) ) p, which contradicts the
hypothesis. Therefore, we have ll pr(tr, ... , t") -+ pp(tr, ... , /n), if À > p.
3. Similar to the preceding, using conditions I and2 of Definition 4.2.

Theorem 4,1 Let A and B be arbitrary formulas and F a complex formula. Then:
l. ll ((A -+ B) -+ ((A+ nB) -+ trA))
2. ll çq + fiA -+ B))
3. lf (,{ v 1,4)
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4. [(- f++nFt
5 .  l lA+>6A
6. l lvxA<+34A
7 .  l f ( l n a ) < + 1 ( 1 1 v 1 8 )
8. l lVA<+1x1A
9. lf V.rB v C <+:tx(B v Q
10. lf B vSxC <+ 3-r(B v Q

Corollary 4.7.7 In the same conditions of the
simultaneously K ll ttA and rK lf l.

preceding tleorem, we have not

Theorem 4.8 There are Kripke structures K = lW,.R, /] such that for some hyper-literals ,4
and B and some worlds w and w' e W, wehave K,w lf -l and K,w ll A and it is not the case
tlnt K,w' ll B.

Proof Let W : l{a\l and R = {({a}, ta})} (that is w : {aI) and p(t1, ... , tn) and q(t'r, ... ,
tî basic (closed) formulas such thatpl = 1 and q1 = I. As a > 1, it follows that prQt ... , tn)
2 a. Also, r 2 -r. So, pl > -1. Therefore, K,, ll prft, ..., /n) and K,w ll p-(tr, ... , tn). By
condition 2 of Definition 4.2, it follows that K,w ll - p,(tr,... , t ). On the other hand, as it is
false that I 2 r, it follows that it is not the case that et2T, and so, it is not the case that K,w lf
q r ( t ' r . . . ,  r ; ) .o

Theorem 4.9 For some systems D*t there are Kripke structures K = flY, R, { such that for
some hyper-literal formula I and some world w e lV,we don't have K, w ll A nor K,w ll a.

Proof Let us define the operator -r l" | - l" I Uy setting -T : T. Then, let .I be the
interpretation such thatpl - I. So, it is no the case thatpl 2 1 and also, it is not the case thatpl
2 -1(or, equivalently, not Kw ll pr(tr,... , tn) and not K,w lf -pr(t, ... , tn)). o

Corollary 4.9.1 For some systems Dfr there are Kripke structures K = lW, R, { such that
for some hyperJiteral formulas I and B, and some worlds w, w' e W, we have K,w ll a aû,
K,w ll A and we don't have K,w ll B nor Kw lf J.

Proof Consequence of the theorems 4.8 and 4.9. o

The earlier results show us that there are systems D*r such that we have "inconsistent"
worlds, "paracomplete" worlds, or both.

Now we present a strong version these results linking with paraconsistent, paracomplete,
and non-alethic logics.

Delïnition 4.10: A Kripke structure K = Ul, R, /l is called paraconsistent if there are basic
formulas p(h, ... , t), q(4... , /n), and annotational constants 7r, F e lt I such that K,w ll
px(h,. . . , to),  K,w l f  -pr( tr , . . . , tn),andit isnotthecasethat lÇw l lq*(t t , . . . , tJ.

Delinition 4.11 A deontic system D*r is called paraconsistent if there is a Kripke structure
K = lW,.R, { for D*r such that K is paraconsistent.

Theorem 4.12 D*r is a paraconsistent system iff + | r | > Z.
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Proof Define a stucture K: l{w} , {(w, w)},,11 such ,hn {Ut 
= 

:
t P r = r

It is clear that pt2a, and so Klf pr(tt ... , tn). Also, p1 à -n and, so Kll p-r(ty... , ro), or Klf
-pJL... , /n). Also, it is not the case that qr(4 ..., tJ > I, so it is not the case that K,w lf
qt(tr ... , tù. o

Definition 4.13 A Kripke structure K = fW,4, 4l ir calle.d paracomplete if there is a basic
formulap(11, ...,tn), annotationalconstant )t e lrl suchthatitis falsethatK,w ll pr(tt,...,
/n) and it is false that K,w ll -p{4... , ln). A deontic system D*r is called paracomplete iî
there is a Kripke structures K : Uf, R, Il for D\ such that K is paracomplote.

Delinition 4.14 A Kripke structure K : lW, À, 1l is called non-alethic if K are both
paraconsistent and paracomplete. A deontic system D*t is called non-alethic if there is a
Kripke structure K : lW, R, Il for Jr such that K is non-alethic.

Theorem 4.15 If # l"l>Z,then there are deontic systems D*t which are paracomplete and
systems D*t' thatare not paracomplete, *lr'l>2.

Proof Similar to the preceding theorem. o

Corottary 4.15.1If # | t | > 2,, th"n there are systems D*r which are non-alethic and systems
D*r' that are not non-alethic, #lr' l>2.

5 Soundness and Completeness

Theorem 5.1 Let U be a maximal non-trivial maximal (with respect to inclusion of sets)
subset of the set of formulas F.LetA and I formulas whatsoever. Then
l. If A isanaxiomofD*t,then,4 e U
2. A nB e Uiff A e Uand,B e U.
3 .  A v B e U i f f A e U o t B e U .
4 .  A - + B e U i f l A e U o r B e U .
5 .  l f  p^ ( ty . . . , tn )and p4( tu . . . , tn \  eU, then p^( tç . . . , ln )  e  U,where I=À,  v  1 , ,

6. -k p^(ty... , /n) e U iff -kap-,(t1, ... , ta) e (J.

7. If A andA -+ B e U,thenB e U.
8. A e U iff .\A É U. Moreover A e U or nA e U.
9. lf A isacomplexformula, A e Uiff 4 É U. MoreoverA e Uor4 e U.
l0.If A e U, then OA e U.

Proof. Let us show only 5. In fact, if p ̂ (t1, ... , tn) and p4(h, ... , tn) e U, then p o(tç ... ,
t " )  n  pa( tu . . . , t " )  by2 .  But i t i sanax iom p4( t r . . . , tn )  ̂ p4( t t . . . , tn ) )  p7 ,  whereÀ=

? ' rv  )u r . I t fo l lowstha tp^(h , . . . , tn )n  pa( tb . . . , tn ) - )  p t ( i l . . . , tn )  €  U,andso p^( ty . . . ,

t ù e U , b y 7 . o

We give a Henkin-type proof of the completeness theorem for the logics D*r.
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For this we define a relation ^R on the set of all free-variable terms of D*r as usual and we
indicate by f the equivalence class determined by l. Also, we will consider the quotient set
F/R,where F indicate the set of all formulas.

Given a set U of formulas, define U/0 = {AIOA e (}}. Let us consider the canonical
structure K = [W, R, ,I] where W: lul U is a maximal non-trivial set]and the interpretation
function is as usual with the exception that given a n-ary predicate symbol p we associate the
tunction pr: t t / ' -+ l t l  a"nnea by pr(,, . . . , f  ,) =*r 

" ir,  
. l t l l iue,,. . . , tn) e u] (such

function is well defined, sopl(/1, ... , t") e {4.
Moreover, define
R--o"t. {(U, U) lU/O c U'l

Lemma 5.2 For all propositional variable p and if U is a maximal non-trivial set of
formulas, webave ppyet,..., rù (tt, ..., t) e U.

Proof It is a simple consequence of the previous theorem, item 5. o

Theorem 5.3 For any formula I and for any nontrivial maximal set U, we have (K, U) ll A
i f f A e U .

Proof Let us suppose that I is pr(h, ... , tn) and (K A ll pxtr, ... , tn). It is clear by
previous lemma that pg1et,...,rn1 (t1, ... , tn') € U. It follows also that p1(r" r, ... , t" o) > l. It is an
axiom thatpo(rl, ... , rn) (/r, ... , tn) -+ p1(tç... , /n). Thus, pl(/t, ... , t") e U. Now, let us suppose
thatpl(/1, ... , fn) e U. By previous lemma, poylpr, ..., rny (11, ... , tn) e U. It follows thatpr(t'r, ... ,
t",) > X.Thus, by definition, (K, q ll p t(tr, ... , tn). By theorem 5.1, -k p^(tç ... , t) e U iff
-k-tp-,(ty... , /n) e U. Thus, by definition 4.2, (K, LD ll -r p^(h, ... , /n) iff (rK, tD lf
-*-tp-.(tr, ... , /n) . So, by induction on /c the assertion is true for hyper-literals.

The other cases, the proofis as in the classical case. o

Corollary 5.3.1 A is a provable formula of D*r iff lf l.

6 Concluding remarks

Similarly, we can construct several other paraconsistent deontic systems analogous to the
classical ones, even those with relative deontic operators.
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