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Abstract
Harmonic priming research provides evidence that local and global harmonic

contexts influence processing of target chords for musician and nonmusician listeners.
Perceptual analysis-of musicàl structtres partly depends on how listeners' knowledge of
tonal hierarchiés are represented in the mind. Internalized representations of structural
regularities generates musical expectations and facilitates the processing of harmonically
related evenis. MUSACT (Bharucha, 1987) provides a connectionist framework for the
representation of tonal knowledge. Activation spreading through a network of
representational units accounts for the influence of local and- global context on the
prbcessing of chords. The listeners' implicit knowledge of harmonic structures is
àcquired through mere exposure to the conventional rela_tionships between musical
evénts in Westérn tonal mùsic. MUSACT represents the idealized end-state of such a
learning process. In this paper, we present computer simulation^demonstrating that
MUSACT's basic structure can be leamed by mere exposure via self-organnatron.
Keywords: harmonic priming, global and local context effects, spreading activation
model, unsupervised learning of harmonic structure

I Perceiving Harmonic Structure

1.1. MUSACT: A Connectionist Model of Western Tonal Knowledge

Several experimental studies have shown that listeners have internalized the tonal-
harmonic hierr,ichy through passive exposure to Western tonal music (Bharucha, 1987;
Francès, 1958; Kiumhaisl, 1990). TÏis internalized knowledge is activated by a
musical context and generates expectancies for related events to follow. The MUSACT
model (Bharucha, 1987) providés a connectionist framework for unde_rstanding how
this knowledge is represènted and how expectations are gene-rated. In this model,
knowledge of-Western harmony is conceived of as a network of interconnected units
which arà organized in three layêrs: tones, chords, and keys. There are twelve tone units
(representin! the twelve pitch-classes), twelve major chord units,-twelve minor chord
units, and tfuelve major-key units. Each tone unit is connected to the chord units
representing chords ofwhich that tone is a component. Analogously, each chord unit is
connected iô the three major key units representing keys of which it is a member. The

Infemational Journal of Computing Anticipatory Systems, Volume 4,1999
Editcd by D. It{. Dubor$ CHAOS, Liè.gc Bclgium,ISSN 1373-5411 ISBN 2-9ffi179-}l



structure of the Western musical system is expressed in the model by the strength of the
connections that link tone units to chord units and chord units to key units.

When three triadic tones are played (say c-e-g), the units representing these tones
are activated, and phasic activation spreads to the chord units via the connected tinks.
(The phasic activation of a unit is its change of activation from the previous iteration to
the present one.) The chord unit connected to all three tones receives the strongest
actitation (the C rnajor chord in this example). During a second cycle, phasic activation
from the active chord units spreads towards the key units (bottom-up activation) and
back down to the tone units (top-down activation). During the next cycle, activated key
units send top-down activation to chord units that simultaneously received bottom-up
activatio:r frôm the tone units. After several cycles, the model reaches a state of
equilibrium. In the equilibrium state, the activation pattern reflects the Western tonal
hierarchy at each level of the network. In this example, the C major chord unit has the
highest activation, followed by the F major and G major chord units. Activation
decreases with increasing distance around the cycle of fifths (Figure l). The activation
pattern of chord units represents the degree to which each chord is expected, and
àccounts for the facilitation of the processing of related chords. The more a chord unit is
activated, rhe more that chord is expected and its processing facilitated ifit occurs.

r i ,e = àle-t(1-d)t  + AI > L ui ,r , ,
c =  I

where r/ represents the rate (varying between 0 and l) at which activation decays
following the offset of the last event, / represents the time transpired since the last
offset, A the stimulus activation, and the third term the total phasic activation of unit i in
respouse to event e, accumulated over q reverbatory cycles that are necessary to reach
equilibrium. The total activation, ai,r, of a unit i (a tone, a chord or a key) after an event
e is then an additive function of three quantities: (l) the decayed activation caused by
the previous event e-1, (2) the bottom-up activation caused directly by the stimulus itself
(i.e. the tones), and (3) the indirect activation received from other units in response to
event e. The first quantity represents the global context, the second quantity represents
rhe stimulus effect itself, and the third the local context (the most recent event). The
activations due to several chords are accumulated as the Sequence unfolds, yielding an
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Fig. l: Relative activations observed for major chord units once MUSACT has reached

equilibrium after the presentation of a C major chord

MUSACT also addresses the building up of harmonic expectancies over time.
Once the model has reached equilibrium after an event, the pattern of activation decays
over time. If another event is presented to the system, its activation is added to the
residual activation from the previous event. The activation of a unit i in the network is a
funct ionof not justthemostrecentevente,butalsoof thepreviousevent,  e-I , the
activation of e-.1 being itself a function of event e-2 , and so on. The total activation, a;,,
, of a unit i is given by the following equation:

(  l )
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aggregate expectation for further incoming events. In this way, MUSACT takes into
accoLrnt the development of expectations in long harmonic contexts.

1.2. MUSACT: A Spreading Activation Account of Harmonic Priming

Harmonic priming research explores the influence of a previous harmonic context
on the processing of upcoming events. A harmonic context generates expectancies and
primes chords that are harmonically related to the context. MUSACT explains the
development of these expectations via activation spreading through a network
replesenting tonal knowledge. After the presentation of a harmonic context, the
aciivation pattern of chord units reflects the expectancy for following events. The
context can be a single chord or entire chord sequences whose activations are
accumulated over time. The extent to which a target chord is primed is a function of the
acrivarion of the corresponding chord unit. Simulations of MUSACT can be compared
with priming data tiom human subjects.

1 .2 . l .  S ing le  Cho rd  P r im ing

In these studies (Bharucha & Stoeckig, 1986, 1987; Tekman & Bharucha, 1982),
participants heard a prime chord followed by a target chord. The prime and target were
either closely related (belong to the same key) or distantly related harmonically, For
example, if the prime chord was C major, Bb major would be a related target and F#
majoi an unrelared rarget. On half of the trials, the target chord was slightly mistuned,
and participants were asked to make a speeded intonation judgment, i.e., to decide as
qr,rickly as possible whether the target chord was in tune. The priming effect was shown
6y ( I ) a bias to judge targets to be in tune when they were related to the prime, and (2)
shorrer lesponsè times for in-tune targets when they were related to the prime, and for
out-ot--tune target when they were unrelated to it. Thus, a single chord can gen-erate
expectancies fdr related chords to follow, resulting in greater consonance and faster
prôcessing lbr expected chords. This outcome provides support-for the model. The
àctivation pattern of chold units simulates harmonic expectations of human subjects and
accounts for the facilitation of the processing of related chords. The more a chord unit is
activated, the more the chord is expected and its processing facilitated.

In the priming studies cited above, the related prime+arget pairs shared morc tones
in common ihan did the unrelated target-pairs, leaving open the possibility that priming
is driven solely by common features and doesn't require the top-down influences based
on priol knowledge. Tekman and Bharucha (1998) tested this possibility by pitting
shaied tones against conventional relatedness. Two types of target were selected: one
was more psychoaccoustically similar to the prime, the other more closely related_on the
basis of hârrironic convention. For example, a C major prime shares a tone with an E
major target but does not share a tone with a D major target; yet D major is more closely
relâted to the prime in conventional usage, In the model, the pattern of activation
changes qualiiatively during the reverberatory cycles from initial activation to
equiliUrium. In early àctivation cycles (bottom-up activation), the pattern of activation
reflects the number of tones shared by the prime and the target, whereas at equilibrium
(after top-down influences have had their effect) the pattern reflects conventional
relatednêss - distance around the cycle of fifths. Results revealed facilitation for
psychoacousrically similar targets when they followed after a short (50 ms) stimulus
ônset asynchrony (SOA;, and facilitation for conventionally related targets after a lo.nger
SOA (500ms or longer). While both psychoacoustic similarity and conventional
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relatedness drive priming, the influence of the former is short-lived, precisely as
predicted by temporal course of activation in the model.

L2.2. Priming in Long Sequences of Chords

In MUSACT, the activations due to a sequence of chords are accumulated as the
seqllence unfolds. The total activation pattern reflects the harmonic hierarchy of the
sequence's underlying key. The position of the target chord in this hierarchy (i. e., its
actlvation level) detelmines the degree of expectation for this event. Recent studies
extended harmonic priming effects to large contexts. Bigand and Pineau (1997)
manipulated the global context ofeight-chord sequences. Expectations for the last chord
(the târge| were varied by changing the harmonic context created by the first six chords.
The last two chords were held constant. In the expected condition, the last chord was a
harmonically stable tonic chord, part of an authentic cadence (V-I). In the unexpected
condition, the last chord took the form of a less stable fourth harmonic degree following
an authentic cadence (I-IV). Participants were faster and more accurate in their
intonation judgment of the last chord when it was expected. These results suggest that
harmonic priming involves higher level harmonic structures and does not occur only
from chord to chord. In particular, priming reflects global harmonic contexts as well as
just the local effect ofthe previous chord.

In simulations of the model performed with the sequences of Bigand and Pineau
(1997), the filst seven chords defined the prime. The resultant activation pattems for
major chords were interpreted as the array of expectations for the major chorcls to fbllow
(Figure 2). The target chord unit rcceived stronger activation when it acted as a stable
tonic chord (I) in the expected context than when it was a less stable sub-dominant
chord (IV) in the unexpected context. The activation pattern in the neural net thus takes
into account the influence of the global context and mimics human perfbrmance.
showing a facilitation of the expected targets in comparison to the Lrnexpected tal€ets.

- expected
- -- unexpected

Fig. 2: Re' ative *,'" -:":,::,"î;:, ki:ri,.i",: ":. ;" Ï., has reached
equilibrium on the penultimate chord in the expected and unexpected contexts. Fot'

convenience, the state of the network is represented with reference to the C major key. In
this key, the C chord unit represents the target.

Global harmonic priming was extended to wider harmonic contexts in a rccent
study (Bigand, Madurell, Til lmann & Pineau, in press). The global context was
manipulated in l4 chord sequences at three levels, while holding constant the chord
prior to the target (local context). The tunction of the target chord was changed by
transposition. In the highly expected condition, the whole sequence is played in the
same key, and the target chord is part of an authentic cadence (V-I) that closes the
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overall structure. In the unexpected condition, it is played in the dominant key and the
tarset chord is the fourth harmonic desree followine an authentic cadence (I-IV). These
tw6 conditions replicated those of i igand and-Pineau (1997) with longei chord
sequences. In the middle expected condition, the first half is harmonically identical to
the first half of the highly expected condition and the second half to that of the
unexpected condition. Although the chords of the second half are strictly identical, the
target chord in the middle expected condition is no longer the fourth harmonic degree
following an authentic cadence. In this context it may be analyzed as part of the
authentic cadence (V-I) that retums to the main key. The results provide evidence that
musical expectations derive from various levels of hierarchical structure. Strongest
facilitation was observed for highly expected targets, as the target chord was expected at
both high and intermediate levels. Facilitation was reduced when it was expected at the
higher level only (i.e. middle expected condition). The weakest priming effect was
observed when the target chord was not strongly expected at both high and intermediate
levels.

Simulations run with the long chord sequences are globally in accordance with
human performance. The target chord was less activated in the unexpected context than
in the middle expected context, and in the middle expected context it was less activated
than in the highly expected condition. MUSACT thus accounts for subtle effects of large
scale structures in music. The neural net keeps some trace of the first key until the end
ofthe sequence because activations present at the beginning ofthe sequenèe are added to
those created by the new key.

l.2.3.Lacal and Global Harmonic Priming

To what extent does interposing a harmonically unrelated chord between the
global context and the target weaken the priming effect? To what extent does inserting a
harmonically related chord before the target compensate for the lack of any global
harmonic relation between the target and the sequence? Tillmann, Bigand & Pineau (in
press) varied the target's relatedness on a global and local level and performed crude
changes in harmonic relationships at both global and local levels. For example, in a C
major key, the target chord was globally and locally related (GRLR) when it was a tonic
chord (C) and was preceded by a dominant chord (G). It was globalty related but locally
unrelated (GRLU) when the preceding dominant chord was played one semitone higher
(G#). In this case, the target and the preceding chord do not belong to the same key.
The target was globally unrelated but locally related (GULR) when only the first six
chords of the sequences were transposed one semitone above (i. e. in the C# major
key). Here the key of the first six chords is weakly related to the keys of the target chord
and its preceding chord (i.e., C and G major keys). Finally, the target chord was both
globally and locally unrelated (GULU) when the first seven chords were transposed one
semitone above (in the C# major key).

For this experimental material, simulations with MUSACT predict that both local
and global context influence harmonic priming, with the strength of the global context
depending on the tempo. During the ongoing sequence, activations of both local and
global context add, and decay (exponentially) over time, with the most recent events
being the most active. The strength of this decay varies as a function of the tempo. As a
consequence, the effect of global context should be more pronounced at a fast tempo.
Simulations were conducted with the firsf seven chords of each sequence for two tempi.
The activation of the target chord unit depended on whether one or two sources of
priming are present. It was the highest for the GRLR condition, as both contexts were
related to the target chord. Activation decreased for GRLU and GULR respectively,
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with only one context related to the target. It was the lowest for GULU, where the target
chord had no relation to the previous context. At a slow tempo, the global and the local
contexts exerted roughly similar effects. At a fast tempo, however, the global context
strongly prevailed over the local context. The performance of participants thus
demonstrated a strong effect of both global and local context. Target chords were
processed more accurately and quickly when they were locally or globally related to the
previous context. In accordance with MUSACT's predictions, the effect of global
context tended to be more pronounced at a fast tempo. In sum, the simple accumulation
of tonal hierarchy patterns takes into account the priming effects observed for local and
global contexts. The influence of tempo also suggests that tonal hierarchy patterns are
added and weighted by decay. Priming effects seems to be the result of activation
spreading via a stable cognitive structure that links related chords.

1.3. MUSACT: End-state of Learning

All harmonic context effects summarized above were observed independently of
the extent of musical expertise. Data from both musicians and nonmusicians fit with the
predictions of the spreading activation model. Harmonic priming thus seems to reflect
an underlying system that can be acquired without formal instruction, presumably
through passive exposure to Western music, in which constraints on harmonic
relationships are pervasive. MUSACT represents an idealized end-state of such a
learning process, as it is based on these music theoretic constraints (Bharucha & Olney,
1989). lts connectionist representation of tonal knowledge is a powerful framework for
understanding the influence of context on harmonic expectations. However, it is a
constraint-satisfaction model, and a crucial point is to analyze how such a representation
of tonal knowledge is learned by mere exposure to musical material. It has been
suggested that MUSACT can be learned by unsupervised learning. Unsupervised
learning mechanisms extract underlying regularities of the tonal system, i. e., co-
occLrn'ence of notes in chords or of sets of chords in keys (Bharucha, 1991, 1992). ln
the following, computer simulations are presented that were run with Self-Organizing
Maps (Kohonen, 1995), an unsupervised learning algorithm.

2 Learning of Harmonic Structure by Self-Organization

2.1. General Principles of Self-Organization

The Self-Organizing Map algorithm is an unsupervised learning algorithm that
creates topological mappings between the input data and map units. For two similar
input patterns, the responding map units are located near each other on the map. This
algorithm is based on principles of cortical information processing, in particular the
tbrmation of spatial ordering in sensory processing areas (i.e. somatosensory, vision
and audition). In the primary visual cortex, the orientation of stimuli to which cells
respond best changes in an orderly fashion across the context: nearby cells respond best
to sinlilar orientations (Hubel & Wiesel, 1962). The auditory cortex displays a
topographical organization in which cells responding best to different frequencies are
arranged in orderly fashion (Brugge & Reale, 1985; Wessinger, Buonocore, Kussmaul
& Mangun, 1997).

The SOM algorithm has been apptied in a wide variety of fields: starting from
neurophysiological research over physics, signal and data processing to speech analysis
and recognition. It has also been used to rnodel various aspects of music (e. g.
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Gjerdingen, i990: Griffith, 1994. 1995; Leman, 1995). Our principal aim here was to
siinulatà the learning of a reprcsentation of harmonic knowledge with MUSACT's
propefiies.

ln SOMs, the training is done in an unsupervised manner as the network,changes
its connections based on ihe properties of the input data. Unsupervised learning
algolithms seem to be the closeit tô real music perception as no external teacher gives
feéO-tact on the organization of chords or tdnalities. Competitive learn_ing is one
algorithm tbr data-driven self-organized learning. Itlepresents a process in which neural
ne-twork units gradually become sensitive to different input stimuli .or categories
(Rr.rmelhart & Zpser, 1985). The specialization takes place by competition among the
units: when an input arrives, the unit that is best able to represent it, wins the
comperition and is âllowed to learn the representation even better (as will be described
below). If there exists an ordering between the units, i.e. the units are located on a
discrcte lattice (rhe self-organizing map SOM) the competitive learning algorithm can be
generalized: not only the winning unit, but also its neighbors are allowed to learn.
Neighboring units will gradually specialize-t_o- represent similar inputs and the
représentatiôn becomes ordered on the map. SOM pr9{u99s a mapping irom a.n n;
diàrensional data space onto a two-dimensional space, which is represented.bV a grid ot
neuron-like units. 

-After 
learning, each unit is specialized to detect a particular input

pattern. and a topological organiTation of the input data can be discovered on the grid,
such that similar input patterns activate nearby units.

The network thàt develops a self-organized map consists of two layers of u-nits:
an input layer ancl a two-dimensional-grid layei. These two layers ̂ are fully
intercônnectéd by synapses, i. e. each grid unit has a synapse feeding into it fron each
inpgt unit. Prior-to-leaining, the connection strengths (the weights) are initialized to
random values. When a stimulus is presented, the input units, i, tuned to its features are
activated. These activations spread via the connected links, tv(i,i), to the grid layer.
Each unit, j, of the second layèr accumulates the activation it receives from the input
units. The activation ofeach grid unitj is given by:

a( l)=l  a( i )  *  w(i j )  Q)

The unit j with the highest activation (i. e., the winning unit) is selected. Drlling
the learning phase, the assoc-iated weight vectors of the winning unit.and those within a
neighborhooà ser N are updated. The weights of units outside the neighborhood set are
kep-t constant. Learning cbnsists of updating the_weights feeding into the winning unit
anà its neighbors with ihe following algorithm (Kohonen' 1995) :

w ( t ) + n ( t ) x a ( t )
w(t+l)=[.ÉiTTf+ffIq$'[ 

(3)

where u.'(r+/) is the weight vector at time t+.1, tv(t) at time r, and 4(t) is the learning
r.ate. This learning rule moves the weight vectors closer to the input vector, making th9
winning unit andlts neighbors more likely to win the competition when presented with
this input or ones similar to it.'The 

neighborhood set N is set to be wide at the b-eginning of learning- During
learning, it deéreases monotonically until it consists of the winning. unit alole_. As
learnin[ begins, a large neighborhooà allows a global organization 19 take place. With a
smaller-neilhborhooà radius, the units become adapted to the individual patterns and its
close rclatives, and a local organization takes place.

Before learning, theràis no parricularorganization among the grid units. Vy'hen
the ner is trained by répeated presentation of thè input data, it begins to self-organize.

295



Topographic pattern begins to appear, such that units that are topographically close in
the array will be activated by similar input stimuli. SOM can be conceived of with one
grid layer or be adapted to multilayer hierarchical self-organizing maps (HSOM)
(Lampinen & Oja, 1992).

2.2. Learning of Harmonic Structure

Our principal aim is to analyze how MUSACT's basic structure can be leamed by
mere exposure via self-organization. A three layer hierarchical system is defined: the
input layer consists of l2 units, the second layer is a map of 36 units and the third layer
is a map of l6 units..The input units are tunegto the l2 chromatic scale tone units that
represent octave-equivalent pitch categories. The second layer will leam to specialize in
the detection of chords and the third layer in the detection of groups of chords defining a
key. In the input layer, a more abstract coding than just frequency is chosen as it has
been shown that neural net models can learn octave equivalent pitch classes (Bharucha
& Mencl, 1996). The input unit is activated if the corresponding tone to which it is
tuned occurs in the chord, and 0 otherwise. The units of the first and second layers are
fully interconnected via a connection matrix; and the units of the second and third layers
with a second connection matrix. Before learning, the strengths of all connections are
initialized to random values.

Several constraints are applied to the learning material to which the system is
exposed. These constraints reflect the restrictions inherent in MUSACT, and should
favor the learning of its structure. If this structure can be learned, the learning material
can be extended to more complex patterns in further simulations.

In the present simulations, the learning set is restrictedto2l chords (12 major
and l2 minor chords) and l2 major keys. An important constraint is the composition of
major keys: a major key is defined by a gt'oup of six chords (three nrinor and three
major chords) presented to the input layer one by one without decay.

The training patterns are presenteJ in random order during each training cycle.
Learning consists of two phases. In the first phase, the second layer is trained by the
presentation of 24 chords ( l2 major chords, 12 minor chords) presented individually. In
the second learning phase, the third layer is trained with sets of six chords representing
major keys. A major key is defined by three minor and three major chords, e.g.. the C
major key is represented by the major chords C, F, and G, and the minor chords d, e,
and a. These six chords are presented individually to the input layer. For each input
chord, the best matching unit is chosen from the second-layer map and its index à is
stored in memory unti l the end of the presentation of the chord set. The pattern of
indexes b (without decay) defines the input for the training of the third layei.

At the beginning of learning, the neighborhood radius is set to its maximum and
decreases dr-rring training unti l i t reaches 0, i. e. only the winner learns. The lealning
rate is kept constant at the beginning of learning. In the convergence phase (i.e. when
only the winning unit leams), the learning rate decreases over the naining cycles.

For both training sessions, the weight changes decrease over the training cycles
and as the neighborhood decreases. When weights have converged to practically
stationary valueso the maps are calibrated in order to locate inages of inputs on them.
During learning, units are specialized for the detection of chords and fbr the detection of
sets of chords (r'eferred to henceforth as 'keys').

The calibration phase reveals a topographic organization of both maps. Chord
units in the second layer are organized so that neighboring units share component tones.
Cholds that do not share tones al€ segregated; for example, D# major, d# minor, B
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major, b minor, G major and g minor are on one side of the map while F rnajor, f
minor, A major, a minor, C# major, and c# minor are on the other side. In the third
layer, keys sharing chords and tones are represented by units close to each other on the
map. The organization of the specialized key units represents the cycle of fifths, a music
theoretic concept. Musical distances between keys are represented on a circle with keys
sharing all but one notes as neighbors. This organization emerges in the third layer after
learning with groups of chords.

The weights of both connection matrices have changed after learning. When
considering the links feeding into winning units, the learned matrices reflect the
predefined links of the MUSACT model. Each lone unit of the input layer has six
connections to the winning units of the chord layer, i. e. to the six chords of which it is
a part. Each chord unit is linked to three key units in the third layer, i.e. to the keys to
which it belongs. The connections defined by music theory in MUSACT are thus
leamed by self-organization.

The present simulation provided evidence that a representation of tonal
knowledge can be learned by self-organization. Without external feedback or
supervision, the structure of the material to which the system is exposed to is learned in
the connection matrices. As a consequence of these changed connections, units
specialize in the detection of chords and keys. Interestingly, both maps reveal a
topographic organization. Units responding to similar stimuli (i.e. chords or groups of
chords) are located in neighborhood on the map.

Further simulations will be necessary to test the learned model as both a
feedforward and a reverberation system and to compare its behavior to that of
MUSACT. When the new network is used as a simple feedforward system, tone units
send their activation to the second and third layers, and the activation levels of these two
layers represent the output. This feedforward activation incorporates psychoacoustic
information only (tones present in the stimuli) without any top-down influences. Adding
reverberation permits a top-down influence of the key layer on the chord and tone
layers. In the MUSACT model, reverberation changes qualitatively the pattern of
activation because of this top-down influence of learned, schematic structures. Further
extensions of simulations will be the use of more ecologically valid materials, as real
chord sequences or a richer coding based on subharmonics (Parncutt, 1988, 1989).

3 Conclusion

Harmonic priming studies provide evidence that Western listeners have
internalized an implicit knowledge of regularities of the Western tonal system. This
knowledge is activated by a context and creates expectations for subsequent events. The
processing of expected events is facilitated in contrast to unexpected events. Self-
organizing algorithms can account for the passive perceptual learning of tonal
knowledge by mere exposure. During learning, specialized representational units are
formed for combinations of musical events (tones, chords) that occur with great
regularity. Results reveal that the MUSACT model, constructed on the basis of music
theoretic constraints and originally proposed as an idealized end-state of a learning
process, can be learned by self-organization.
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